-
Notifications
You must be signed in to change notification settings - Fork 22
Description
Hi ,
I am using the below code.
import torch
import torch.nn as nn
import torch.nn.functional as F
from pthflops import count_ops
import torchvision
class BasicConv2d(nn.Module):
def __init__(self, in_channels, out_channels, **kwargs):
super(BasicConv2d, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
self.bn = nn.BatchNorm2d(out_channels, eps=1e-5)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return F.relu(x, inplace=True)
class Inception(nn.Module):
def init(self):
super(Inception, self).init()
self.branch1x1 = BasicConv2d(128, 32, kernel_size=1, padding=0)
self.branch1x1_2 = BasicConv2d(128, 32, kernel_size=1, padding=0)
self.branch3x3_reduce = BasicConv2d(128, 24, kernel_size=1, padding=0)
self.branch3x3 = BasicConv2d(24, 32, kernel_size=3, padding=1)
self.branch3x3_reduce_2 = BasicConv2d(128, 24, kernel_size=1, padding=0)
self.branch3x3_2 = BasicConv2d(24, 32, kernel_size=3, padding=1)
self.branch3x3_3 = BasicConv2d(32, 32, kernel_size=3, padding=1)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch1x1_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
branch1x1_2 = self.branch1x1_2(branch1x1_pool)
branch3x3_reduce = self.branch3x3_reduce(x)
branch3x3 = self.branch3x3(branch3x3_reduce)
branch3x3_reduce_2 = self.branch3x3_reduce_2(x)
branch3x3_2 = self.branch3x3_2(branch3x3_reduce_2)
branch3x3_3 = self.branch3x3_3(branch3x3_2)
outputs = [branch1x1, branch1x1_2, branch3x3, branch3x3_3]
return torch.cat(outputs, 1)
class CRelu(nn.Module):
def init(self, in_channels, out_channels, **kwargs):
super(CRelu, self).init()
self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
self.bn = nn.BatchNorm2d(out_channels, eps=1e-5)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = torch.cat([x, -x], 1)
x = F.relu(x, inplace=True)
return x
class FaceBoxesNet(nn.Module):
def __init__(self):
super(FaceBoxesNet, self).__init__()
self.conv1 = CRelu(3, 24, kernel_size=7, stride=4, padding=3)
self.conv2 = CRelu(48, 64, kernel_size=5, stride=2, padding=2)
self.inception1 = Inception()
self.inception2 = Inception()
self.inception3 = Inception()
self.conv3_1 = BasicConv2d(128, 128, kernel_size=1, stride=1, padding=0)
self.conv3_2 = BasicConv2d(128, 256, kernel_size=3, stride=2, padding=1)
self.conv4_1 = BasicConv2d(256, 128, kernel_size=1, stride=1, padding=0)
self.conv4_2 = BasicConv2d(128, 256, kernel_size=3, stride=2, padding=1)
self.loc, self.conf = self.multibox(2)
self.softmax = nn.Softmax(dim=-1)
def multibox(self, num_classes):
loc_layers = []
conf_layers = []
loc_layers += [nn.Conv2d(128, 21 * 4, kernel_size=3, padding=1)]
conf_layers += [nn.Conv2d(128, 21 * num_classes, kernel_size=3, padding=1)]
loc_layers += [nn.Conv2d(256, 1 * 4, kernel_size=3, padding=1)]
conf_layers += [nn.Conv2d(256, 1 * num_classes, kernel_size=3, padding=1)]
loc_layers += [nn.Conv2d(256, 1 * 4, kernel_size=3, padding=1)]
conf_layers += [nn.Conv2d(256, 1 * num_classes, kernel_size=3, padding=1)]
return nn.Sequential(*loc_layers), nn.Sequential(*conf_layers)
def forward(self, x):
detection_sources = list()
loc = list()
conf = list()
x = self.conv1(x)
x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)
x = self.conv2(x)
x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)
x = self.inception1(x)
x = self.inception2(x)
x = self.inception3(x)
detection_sources.append(x)
x = self.conv3_1(x)
x = self.conv3_2(x)
detection_sources.append(x)
x = self.conv4_1(x)
x = self.conv4_2(x)
detection_sources.append(x)
for (x, l, c) in zip(detection_sources, self.loc, self.conf):
loc.append(l(x).permute(0, 2, 3, 1).contiguous())
conf.append(c(x).permute(0, 2, 3, 1).contiguous())
loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)
output = (loc.view(loc.size(0), -1, 4), self.softmax(conf.view(-1, 2)))
return output
model =FaceBoxesNet()
data = torch.rand(1,3,224,224)
count_ops(model,data)
The error I obtained is :
return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
Traceback (most recent call last):
File "pthflops_CALC_FACEBOXES.py", line 136, in
count_ops(model,data, ignore_layers=['FaceBoxesNet'])
File "/home/Documents/PYTORCH_CPP/PYTORCH_CPP/lib/python3.8/site-packages/pthflops/init.py", line 15, in count_ops
return count_ops_fx(
File "/home/Documents/PYTORCH_CPP/PYTORCH_CPP/lib/python3.8/site-packages/pthflops/ops_fx.py", line 255, in count_ops_fx
tracer.run(input)
File "/home/Documents/PYTORCH_CPP/PYTORCH_CPP/lib/python3.8/site-packages/torch/fx/interpreter.py", line 116, in run
self.env[node] = self.run_node(node)
File "/home/Documents/PYTORCH_CPP/PYTORCH_CPP/lib/python3.8/site-packages/pthflops/ops_fx.py", line 195, in run_node
self.parameters[n] = return_val[2]
IndexError: tuple index out of range