-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathTreeKnapsackDp.go
555 lines (484 loc) · 14.2 KB
/
TreeKnapsackDp.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
// 树上背包/树形背包/依赖背包
// 子树合并背包的复杂度证明 https://blog.csdn.net/lyd_7_29/article/details/79854245
// 复杂度(二乘木dp) https://leetcode.cn/circle/discuss/t7l62c/
// !通过子树大小优化背包循环上界
package main
import (
"bufio"
"fmt"
"os"
)
func main() {
// P2014选课()
// CF815C()
// abc287F()
// ABC207F()
// yuki196()
// ABC207F()
P2015二叉苹果树()
}
// P2014 [CTSC1997] 选课, O(nk) dp
// https://www.luogu.com.cn/problem/U53204#submit
// https://www.luogu.com.cn/problem/P2014
// https://zhuanlan.zhihu.com/p/103813542
func P2014选课() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n, k int
fmt.Fscan(in, &n, &k)
// 添加一个虚拟根节点,转换为选择k+1个节点的树形背包问题
DUMMY := n
graph := make([][]int, n+1)
scores := make([]int, n+1)
for i := 0; i < n; i++ {
var parent, score int
fmt.Fscan(in, &parent, &score)
parent--
if parent == -1 {
parent = DUMMY
}
graph[parent] = append(graph[parent], i)
scores[i] = score
}
dp := TreeKnapsackDpSquare2(graph, DUMMY, scores, k+1)
fmt.Fprintln(out, dp[k+1])
}
// https://www.luogu.com.cn/problem/CF815C
// CF815C Karen and Supermarket
// 有n件商品,每件有价格ci,优惠券di,
// 对于i>=2,使用di的条件为:xi的优惠券需要被使用
// 问初始金钱为money时 最多能买多少件商品? n<=5000,ci,di,money<=1e9
// !dp[u][j][0/1]是以u为根子树中,u用或者不用优惠券时,选j件物品需要的最小代价
//
// 因为使用优惠劵就必须买这件商品,我们可以将优惠劵的关系看成一棵树。
func CF815C() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
const INF int = 1e9 + 10
var n, money int
fmt.Fscan(in, &n, &money)
tree := make([][]int, n)
prices := make([]int, n)
coupons := make([]int, n)
for i := 0; i < n; i++ {
if i == 0 {
var price, coupon int
fmt.Fscan(in, &price, &coupon)
prices[i] = price
coupons[i] = coupon
} else {
var price, coupon, parent int
fmt.Fscan(in, &price, &coupon, &parent)
parent--
tree[parent] = append(tree[parent], i)
prices[i] = price
coupons[i] = coupon
}
}
subSize := make([]int, n)
var f func(int, int) [][2]int
f = func(cur, pre int) [][2]int {
subSize[cur] = 1
dp := make([][2]int, n+1)
for i := 0; i <= n; i++ {
dp[i][0] = INF
dp[i][1] = INF
}
dp[0][0] = 0
dp[1][0] = prices[cur]
dp[1][1] = prices[cur] - coupons[cur]
for _, next := range tree[cur] {
if next == pre {
continue
}
nextDp := f(next, cur)
// 当前节点可以不选, 所以是 j>=0
for j := subSize[cur]; j >= 0; j-- {
for w := 0; w <= subSize[next]; w++ {
dp[j+w][0] = min(dp[j+w][0], dp[j][0]+nextDp[w][0])
dp[j+w][1] = min(dp[j+w][1], dp[j][1]+nextDp[w][0])
dp[j+w][1] = min(dp[j+w][1], dp[j][1]+nextDp[w][1])
}
}
subSize[cur] += subSize[next]
}
return dp
}
rootDp := f(0, -1)
for i := n; i >= 0; i-- {
if rootDp[i][0] <= money || rootDp[i][1] <= money {
fmt.Fprintln(out, i)
return
}
}
}
// F - Components-连通块个数为i的导出子图数
// https://atcoder.jp/contests/abc287/tasks/abc287_f
// 给定一棵有n个点的树,在所有2^n−1的非空点集中,回答下列问题:
// !对于i∈[1,n],有多少个导出子图所形成的连通块个数恰好是i。
// 数量对 998244353取模。
// 1<=n<=5000
// 二乗の木DP(二乘木dp)
// https://snuke.hatenablog.com/entry/2019/01/15/211812
// 解:
// 合并子树的时候,如果点u和子树节点都选择的时候,连通块个数会减一,其余情况都不会
// 因此还要加上是否选择点 u的状态。
// !dp[i][k][0/1] 表示当前节点为i,当前连通块个数为k,当前节点是否被选中的状态下的方案数
func abc287F() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
const MOD int = 998244353
var n int
fmt.Fscan(in, &n)
edges := make([][2]int, n-1)
for i := 0; i < n-1; i++ {
fmt.Fscan(in, &edges[i][0], &edges[i][1])
edges[i][0]--
edges[i][1]--
}
components := func(n int, edges [][2]int) []int {
tree := make([][]int, n)
for i := 0; i < n-1; i++ {
u, v := edges[i][0], edges[i][1]
tree[u] = append(tree[u], v)
tree[v] = append(tree[v], u)
}
subSize := make([]int, n)
dp := make([][][2]int, n)
var dfs func(cur, pre int)
dfs = func(cur, pre int) {
subSize[cur] = 1
dp[cur] = make([][2]int, 2)
dp[cur][0][0] = 1
dp[cur][1][1] = 1
for _, next := range tree[cur] {
if next == pre {
continue
}
dfs(next, cur)
ndp := make([][2]int, subSize[cur]+subSize[next]+1) // 当前不选/当前选
dp1, dp2 := dp[cur], dp[next]
for i := 0; i <= subSize[cur]; i++ {
for j := 0; j <= subSize[next]; j++ {
ndp[i+j][0] += dp1[i][0] * (dp2[j][0] + dp2[j][1])
ndp[i+j][0] %= MOD
ndp[i+j][1] += dp1[i][1] * dp2[j][0]
ndp[i+j][1] %= MOD
if i+j-1 >= 0 {
ndp[i+j-1][1] += dp1[i][1] * dp2[j][1]
ndp[i+j-1][1] %= MOD
}
}
}
subSize[cur] += subSize[next]
dp[cur] = ndp
}
}
dfs(0, -1)
res := make([]int, n+1)
for i := 1; i <= n; i++ {
res[i] = (dp[0][i][0] + dp[0][i][1]) % MOD
}
return res
}
res := components(n, edges)
for i := 1; i <= n; i++ {
fmt.Fprintln(out, res[i])
}
}
// https://www.luogu.com.cn/remoteJudgeRedirect/atcoder/abc207_f
// [ABC207F] Tree Patrolling
// 类似二叉树监控
// 给出一棵有 n 个节点的树,每个点可能有一个警卫,每个警卫控制当前节点以及相邻节点。
// 对每个 k=0,1,2,⋯n 求出正好有 k 个节点被控制的方案数。n≤2000
//
// !dp[i][j][k] 表示以 i 为根的子树中,有 j 个节点被控制,此时 i 节点状态为 k
// k=0: 未被覆盖
// k=1: 自身有警卫
// k=2: 被某个儿子覆盖
func ABC207F() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
const MOD int = 1e9 + 7
var n int
fmt.Fscan(in, &n)
tree := make([][]int, n)
for i := 0; i < n-1; i++ {
var u, v int
fmt.Fscan(in, &u, &v)
u--
v--
tree[u] = append(tree[u], v)
tree[v] = append(tree[v], u)
}
subSize := make([]int, n)
dp := make([][][3]int, n)
var f func(int, int)
f = func(cur int, pre int) {
subSize[cur] = 1
dp[cur] = make([][3]int, 2)
dp[cur][0][0] = 1
dp[cur][1][1] = 1
for _, next := range tree[cur] {
if next == pre {
continue
}
f(next, cur)
ndp := make([][3]int, subSize[cur]+subSize[next]+2)
dp1, dp2 := dp[cur], dp[next]
for i := 0; i <= subSize[cur]; i++ {
for j := 0; j <= subSize[next]; j++ {
// 1.当前节点没被覆盖,儿子没被覆盖,转移后一定没被覆盖,被覆盖节点数不变
ndp[i+j][0] = (ndp[i+j][0] + dp1[i][0]*dp2[j][0]) % MOD
// 2.当前节点没被覆盖,儿子有警卫,转移后一定被覆盖,被覆盖节点数加1(自己被覆盖了)
ndp[i+j+1][2] = (ndp[i+j+1][2] + dp1[i][0]*dp2[j][1]) % MOD
// 3.当前节点没被覆盖,儿子被覆盖,转移后一定没被覆盖,被覆盖节点数不变(孙子有警卫对自己没有影响)
ndp[i+j][0] = (ndp[i+j][0] + dp1[i][0]*dp2[j][2]) % MOD
// 4.当前节点有警卫,儿子没被覆盖,转移后一定有警卫,被覆盖节点数加1(儿子被覆盖了)
ndp[i+j+1][1] = (ndp[i+j+1][1] + dp1[i][1]*dp2[j][0]) % MOD
// 5.当前节点有警卫,儿子有警卫,转移后一定有警卫,被覆盖节点数不变
ndp[i+j][1] = (ndp[i+j][1] + dp1[i][1]*dp2[j][1]) % MOD
// 6.当前节点有警卫,儿子被覆盖,转移后一定有警卫,被覆盖节点数不变
ndp[i+j][1] = (ndp[i+j][1] + dp1[i][1]*dp2[j][2]) % MOD
// 7.当前节点被覆盖,儿子没被覆盖,转移后一定被覆盖,被覆盖节点数不变
ndp[i+j][2] = (ndp[i+j][2] + dp1[i][2]*dp2[j][0]) % MOD
// 8.当前节点被覆盖,儿子有警卫,转移后一定被覆盖,被覆盖节点数不变
ndp[i+j][2] = (ndp[i+j][2] + dp1[i][2]*dp2[j][1]) % MOD
// 9.当前节点被覆盖,儿子被覆盖,转移后一定被覆盖,被覆盖节点数不变
ndp[i+j][2] = (ndp[i+j][2] + dp1[i][2]*dp2[j][2]) % MOD
}
}
subSize[cur] += subSize[next]
dp[cur] = ndp
}
}
f(0, -1)
rootDp := dp[0]
for i := 0; i <= n; i++ {
count := (rootDp[i][0] + rootDp[i][1] + rootDp[i][2]) % MOD
fmt.Fprintln(out, count)
}
}
// No.196 典型DP-涂黑k个顶点的方案数(树染色)
// https://yukicoder.me/problems/no/196
// 给定一棵n个点的树,每个顶点染黑或者白
// 求涂黑k个顶点的方案数模1e9+7,且满足黑色顶点的子树也是黑色
// n<=2000 0<=k<=n
// !dp[i][j] 表示以i为根的子树中,涂黑j个顶点的方案数
func yuki196() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
const MOD int = 1e9 + 7
var n, k int
fmt.Fscan(in, &n, &k)
tree := make([][]int, n)
for i := 0; i < n-1; i++ {
var u, v int
fmt.Fscan(in, &u, &v)
tree[u] = append(tree[u], v)
tree[v] = append(tree[v], u)
}
dp := make([][]int, n)
subSize := make([]int, n)
var f func(int, int)
f = func(cur int, pre int) {
subSize[cur] = 1
dp[cur] = make([]int, 2)
dp[cur][0] = 1
dp[cur][1] = 0
for _, next := range tree[cur] {
if next == pre {
continue
}
f(next, cur)
ndp := make([]int, subSize[cur]+subSize[next]+1)
for i := 0; i <= subSize[cur]; i++ {
for j := 0; j <= subSize[next]; j++ {
ndp[i+j] += dp[cur][i] * dp[next][j]
ndp[i+j] %= MOD
}
}
subSize[cur] += subSize[next]
dp[cur] = ndp
}
dp[cur][len(dp[cur])-1] = 1 // !涂黑当前节点
}
f(0, -1)
fmt.Fprintln(out, dp[0][k])
}
// P2015二叉苹果树
// https://www.luogu.com.cn/problem/P2015
// 给出一个 n 个节点的二叉树,每条边上有一个权值,
// 求最多选 m 条边(与根节点连通)的最大权值和是多少。
// dp[i][j] 表示以 i 为根的子树中保留 j 条边的最大权值和.
func P2015二叉苹果树() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n, k int
fmt.Fscan(in, &n, &k)
tree := make([][][2]int, n)
weights := make([]map[int]int, n)
for i := range weights {
weights[i] = make(map[int]int)
}
for i := 0; i < n-1; i++ {
var u, v, w int
fmt.Fscan(in, &u, &v, &w)
u--
v--
tree[u] = append(tree[u], [2]int{v, w})
tree[v] = append(tree[v], [2]int{u, w})
}
subSize := make([]int, n)
var f func(int, int) []int
f = func(cur int, pre int) []int {
subSize[cur] = 1
dp := make([]int, k+1)
for _, e := range tree[cur] {
next, weight := e[0], e[1]
if next == pre {
continue
}
nextDp := f(next, cur)
for i := subSize[cur]; i >= 1; i-- { // 当前节点必须选,所以是 i>=1
for j := 0; j <= subSize[next]; j++ {
if i+j > k {
break
}
dp[i+j] = max(dp[i+j], dp[i-1]+nextDp[j]+weight) // !注意这里的i-1
}
}
subSize[cur] += subSize[next]
}
return dp
}
rootDp := f(0, -1)
fmt.Fprintln(out, rootDp[k])
}
// O(n*k) dp, 二乘木dp
// !滚动dp的写法(推荐)
// 树形背包/依赖背包,选取maxSelect个节点,使得选取的节点的权值和最大.
//
// tree: 树的邻接表表示
// root: 根节点
// scores: 节点的分数
func TreeKnapsackDpSquare1(tree [][]int, root int, scores []int) []int {
n := len(tree)
dp := make([][]int, n) // dp[i][j] 表示以 i 为根的子树中选择 j 个节点的最大权值和
subSize := make([]int, n)
var f func(int, int)
f = func(cur int, pre int) {
subSize[cur] = 1
dp[cur] = make([]int, 2)
dp[cur][0] = 0
dp[cur][1] = scores[cur]
for _, next := range tree[cur] {
if next == pre {
continue
}
f(next, cur)
ndp := make([]int, subSize[cur]+subSize[next]+1)
// 当前节点必须选,所以是 i>=1
for i := 1; i <= subSize[cur]; i++ {
for j := 0; j <= subSize[next]; j++ {
ndp[i+j] = max(ndp[i+j], dp[cur][i]+dp[next][j])
}
}
subSize[cur] += subSize[next]
dp[cur] = ndp
}
}
f(root, -1)
return dp[root]
}
// O(n*k) dp, 二乘木dp
// !原地更新dp数组的写法
// 树形背包/依赖背包,选取maxSelect个节点,使得选取的节点的权值和最大.
//
// tree: 树的邻接表表示
// root: 根节点
// scores: 节点的分数
// maxSelect: 选择的节点数,0<=maxSelect<=n
func TreeKnapsackDpSquare2(tree [][]int, root int, scores []int, maxSelect int) []int {
n := len(tree)
subSize := make([]int, n)
// dp[i][j] 表示以 i 为根的子树中选择 j 个节点的最大权值和
var f func(int, int) []int
f = func(cur int, pre int) []int {
subSize[cur] = 1
dp := make([]int, maxSelect+1)
dp[0] = 0
dp[1] = scores[cur]
for _, next := range tree[cur] {
if next == pre {
continue
}
nextDp := f(next, cur)
for j := subSize[cur]; j >= 1; j-- { // 当前节点必须选,所以是 j>=1;原地更新背包
for w := 0; w <= subSize[next]; w++ {
if j+w > maxSelect {
break
}
dp[j+w] = max(dp[j+w], dp[j]+nextDp[w])
}
}
subSize[cur] += subSize[next]
}
return dp
}
dp := f(root, -1)
return dp
}
type Node = struct{ weight, value int }
// O(n*k^2) dp
// 树形背包/依赖背包,选取maxSelect个节点,使得选取的节点的权值和最大.
// nodes[i] 表示第 i 个节点的权值和分数.
func TreeKnapsackDp(tree [][]int, root int, nodes []Node, maxWeight int) []int {
var f func(int, int) []int
f = func(cur int, pre int) []int {
node := nodes[cur]
dp := make([]int, maxWeight+1) // dp[i] 表示选择容量为 i 时的最大价值
for i := node.weight; i <= maxWeight; i++ {
dp[i] = node.value // 根节点必须选
}
for _, next := range tree[cur] {
if next == pre {
continue
}
ndp := f(next, cur)
for j := maxWeight; j >= node.weight; j-- {
// 类似分组背包,枚举分给子树的容量 w,对应的子树的最大价值为 ndp[w]
// w 不可超过 j-node.weight,否则无法选择根节点
for w := 0; w <= j-node.weight; w++ {
dp[j] = max(dp[j], dp[j-w]+ndp[w])
}
}
}
return dp
}
return f(root, -1)
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func min32(a, b int32) int32 {
if a < b {
return a
}
return b
}