-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathLoserTree.go
173 lines (160 loc) · 5.49 KB
/
LoserTree.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
// https://oi-wiki.org/ds/loser-tree/
// https://grafana.com/blog/2024/04/23/the-loser-tree-data-structure-how-to-optimize-merges-and-make-your-programs-run-faster/
// https://leetcode.cn/problems/merge-k-sorted-lists/description/ 合并k个有序链表
// https://pkg.go.dev/github.com/grafana/phlare/pkg/util/loser#New 带有Close方法的LoserTree
// https://www.youtube.com/watch?v=rJfvv_c9mYU 用于日志存储项目grafana/loki中合并有序日志
// https://www.cise.ufl.edu/~sahni/cop3530/slides/lec252.pdf
//
// 败者树,一种为多路归并排序设计的高效数据结构.
// 使用败者树实现快速合并,optimize sorting and merging
// !不过感觉这个和堆实现的多路归并差别不大,理论上 loser tree 常数小一点.
//
// LoserTree(Tournament Tree) data structure, for fast k-way merge
// Loser tree, from https://en.wikipedia.org/wiki/K-way_merge_algorithm#Tournament_Tree
//
// api:
// func NewLoserTree[E any](iters []Iterator[E], maxVal E, less func(E, E) bool) *LoserTree[E] {
// func (t *LoserTree[E]) Winner() E
// func (t *LoserTree[E]) Next() bool
// func (t *LoserTree[E]) Push(iter Iterator[E])
//
// Loser tree, from https://en.wikipedia.org/wiki/K-way_merge_algorithm#Tournament_Tree
package main
type Iterator[E any] interface {
Next() bool // Advances and returns true if there is a value at this new position.
Value() E
}
type Node[E any] struct {
index int // This is the loser for all nodes except the 0th, where it is the winner.
value E // Value copied from the loser node, or winner for node 0.
items Iterator[E] // Only populated for leaf nodes.
}
// A loser tree is a binary tree laid out such that nodes N and N+1 have parent N/2.
// We store M leaf nodes in positions M...2M-1, and M-1 internal nodes in positions 1..M-1.
// Node 0 is a special node, containing the winner of the contest.
type LoserTree[E any] struct {
maxVal E
less func(E, E) bool
nodes []Node[E]
}
func NewLoserTree[E any](iters []Iterator[E], maxVal E, less func(E, E) bool) *LoserTree[E] {
offset := len(iters)
t := LoserTree[E]{
maxVal: maxVal,
less: less,
nodes: make([]Node[E], offset*2),
}
for i, s := range iters {
t.nodes[i+offset].items = s
t.moveNext(i + offset) // Must call Next on each item so that At() has a value.
}
if offset > 0 {
t.nodes[0].index = -1 // flag to be initialized on first call to Next().
}
return &t
}
func (t *LoserTree[E]) Winner() Iterator[E] {
return t.nodes[t.nodes[0].index].items
}
func (t *LoserTree[E]) Next() bool {
if len(t.nodes) == 0 {
return false
}
if t.nodes[0].index == -1 { // If tree has not been initialized yet, do that.
t.initialize()
return t.nodes[t.nodes[0].index].index != -1
}
if t.nodes[t.nodes[0].index].index == -1 { // already exhausted
return false
}
t.moveNext(t.nodes[0].index)
t.replayGames(t.nodes[0].index)
return t.nodes[t.nodes[0].index].index != -1
}
// Add a new sequence to the merge set
func (t *LoserTree[E]) Push(iter Iterator[E]) {
// First, see if we can replace one that was previously finished.
for newPos := len(t.nodes) / 2; newPos < len(t.nodes); newPos++ {
if t.nodes[newPos].index == -1 {
t.nodes[newPos].index = newPos
t.nodes[newPos].items = iter
t.moveNext(newPos)
t.nodes[0].index = -1 // flag for re-initialize on next call to Next()
return
}
}
// We need to expand the tree. Pick the next biggest power of 2 to amortise resizing cost.
size := 1
for ; size <= len(t.nodes)/2; size *= 2 {
}
newPos := size + len(t.nodes)/2
newNodes := make([]Node[E], size*2)
// Copy data over and fix up the indexes.
for i, n := range t.nodes[len(t.nodes)/2:] {
newNodes[i+size] = n
newNodes[i+size].index = i + size
}
t.nodes = newNodes
t.nodes[newPos].index = newPos
t.nodes[newPos].items = iter
// Mark all the empty nodes we have added as finished.
for i := newPos + 1; i < len(t.nodes); i++ {
t.nodes[i].index = -1
var zero E
t.nodes[i].value = zero
}
t.moveNext(newPos)
t.nodes[0].index = -1 // flag for re-initialize on next call to Next()
}
func (t *LoserTree[E]) initialize() {
winners := make([]int, len(t.nodes))
// Initialize leaf nodes as winners to start.
for i := len(t.nodes) / 2; i < len(t.nodes); i++ {
winners[i] = i
}
for i := len(t.nodes) - 2; i > 0; i -= 2 {
// At each stage the winners play each other, and we record the loser in the node.
loser, winner := t.playGame(winners[i], winners[i+1])
p := parent(i)
t.nodes[p].index = loser
t.nodes[p].value = t.nodes[loser].value
winners[p] = winner
}
t.nodes[0].index = winners[1]
t.nodes[0].value = t.nodes[winners[1]].value
}
func (t *LoserTree[E]) moveNext(index int) bool {
n := &t.nodes[index]
if n.items.Next() {
n.value = n.items.Value()
return true
}
n.value = t.maxVal
n.index = -1
return false
}
// Starting at pos, re-consider all values up to the root.
func (t *LoserTree[E]) replayGames(pos int) {
// At the start, pos is a leaf node, and is the winner at that level.
n := parent(pos)
for n != 0 {
if t.less(t.nodes[n].value, t.nodes[pos].value) {
loser := pos
// Record pos as the loser here, and the old loser is the new winner.
pos = t.nodes[n].index
t.nodes[n].index = loser
t.nodes[n].value = t.nodes[loser].value
}
n = parent(n)
}
// pos is now the winner; store it in node 0.
t.nodes[0].index = pos
t.nodes[0].value = t.nodes[pos].value
}
func (t *LoserTree[E]) playGame(a, b int) (loser, winner int) {
if t.less(t.nodes[a].value, t.nodes[b].value) {
return b, a
}
return a, b
}
func parent(i int) int { return i / 2 }