-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_userdp.py
268 lines (230 loc) · 12.6 KB
/
main_userdp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from helper import *
import copy
from local_train import FLTrain_UserDPFL
from opacus import PrivacyEngine
import config
import random
import numpy as np
import time
import yaml
import utils.csv_record as csv_record
from image_helper import ImageHelper
import test
import torch
import logging
import datetime
import argparse
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
os.environ["CUDA_VISIBLE_DEVICES"] = "5"
logger = logging.getLogger("logger")
def set_random_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
random.seed(seed)
np.random.seed(seed)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str,
default="mnist_params_ceracc.yaml")
parser.add_argument(
"--is_poison",
action="store_true",
help='perform attacks'
)
parser.add_argument("--num_adv", type=int, default=0)
parser.add_argument("--adv_method", type=str, default='backdoor',
choices=['labelflip', 'backdoor']
)
parser.add_argument("--n_runs", type=int, default=1,
help='number of runs for Monte Carlo Approximation'
)
parser.add_argument("--scale_factor", type=int, default=0)
parser.add_argument("--fl_aggregation", type=str, default="fedavg",
choices=['fedavg', 'rfa', 'krum', 'mkrum',
'bulyan', 'median', 'trmean'],
help='Aggregation method'
)
parser.add_argument("--pre_path", type=str, default="saved_models")
parser.add_argument("--dpfl", type=str, default="max_model",
choices=['median_per_layer', 'max_per_layer',
'max_model', 'median_model'],
help="User-level DPFL mechanism for fedavg: a fixed max value v.s. medium norm as clipping threshold; layer norm v.s. whole model norm clipping")
args = parser.parse_args()
print(args)
with open(args.config, 'r') as f:
params_loaded = yaml.load(f, Loader=yaml.FullLoader)
dataset = params_loaded['type']
if args.is_poison:
args.pre_path = f"saved_models/{dataset}_userdp_{args.adv_method}_adv{args.num_adv}"
else:
args.pre_path = f"saved_models/{dataset}_userdp"
args_dict = vars(args)
params_loaded.update(args_dict)
if params_loaded['is_poison'] == True: # if performing poisoning attack
params_loaded['adversary_list'] = list(
range(1, params_loaded['num_adv'] + 1))
# if performing distributed poisoning attacks, split the backdoor pixels
if params_loaded['dba'] == True:
pattern = params_loaded['poison_pattern']
per_pixel = int(len(pattern)/len(params_loaded['adversary_list']))
print(per_pixel)
for i in range(len(params_loaded['adversary_list'])-1):
adv_name = params_loaded['adversary_list'][i]
params_loaded[str(
adv_name)+'_poison_pattern'] = pattern[i*per_pixel:per_pixel*(i+1)]
print(str(adv_name)+'_poison_pattern',
params_loaded[str(adv_name)+'_poison_pattern'])
i = len(params_loaded['adversary_list'])-1
adv_name = params_loaded['adversary_list'][i]
params_loaded[str(adv_name) +
'_poison_pattern'] = pattern[i*per_pixel:-1]
print(str(adv_name)+'_poison_pattern',
params_loaded[str(adv_name)+'_poison_pattern'])
set_random_seed(0) # fix the seed for create local datasets
current_time = datetime.datetime.now().strftime('%b.%d_%H.%M.%S')
if params_loaded['type'] == config.TYPE_CIFAR or params_loaded['type'] == config.TYPE_MNIST:
helper = ImageHelper(current_time=current_time, params=params_loaded,
name=params_loaded.get('name', params_loaded['type']))
helper.load_data()
else:
helper = None
logger.info(f'Datasets are not supported')
exit(0)
logger.info(f'load data done')
for run_idx in range(0, params_loaded['n_runs']):
logger.info(f'start run number:{run_idx}')
torch.cuda.empty_cache()
set_random_seed(run_idx) # set the pre-defined seed for dp randomness
helper.create_model()
logger.info(f'create model done')
if params_loaded['withDP'] == True:
g_optimizer = torch.optim.SGD(
helper.target_model.parameters(), lr=helper.params['lr'])
global_privacy_engine = PrivacyEngine(
helper.target_model,
batch_size=params_loaded['no_models'], # selected clients num
# total number of clients
sample_size=params_loaded['number_of_total_participants'],
alphas=[
1 + x / 10.0 for x in range(1, 100)] + list(range(12, 64)),
noise_multiplier=params_loaded['noise_multiplier'],
max_grad_norm=params_loaded['max_clip_norm']) # for weight norm
global_privacy_engine.attach(g_optimizer)
# Create models
if helper.params['is_poison']:
logger.info(
f"Poison following participants: {(helper.params['adversary_list'])}")
# save parameters:
with open(f'{helper.folder_path}/params.yaml', 'w') as f:
yaml.dump(helper.params, f)
for epoch in range(helper.start_epoch, helper.params['epochs'] + 1):
agent_name_keys = np.random.choice(range(params_loaded['number_of_total_participants']),
max(params_loaded['no_models'], 1),
replace=False)
n_attacker_round = 0
for agent_name_key in agent_name_keys:
if helper.params['is_poison'] and agent_name_key in helper.params['adversary_list']:
n_attacker_round += 1
start_time = time.time()
submit_params_update_dict, num_samples_dict, num_poisoned_samples_dict = FLTrain_UserDPFL(
helper=helper,
logger=logger,
start_epoch=epoch,
local_model=helper.local_model,
target_model=helper.target_model,
is_poison=helper.params['is_poison'],
agent_name_keys=agent_name_keys)
if helper.params['fl_aggregation'] == 'fedavg':
logger.info(f"DPFL methods: {helper.params['dpfl']}")
if helper.params['dpfl'] == 'median_model':
clip_norm = helper.compute_median_norm(
submit_params_update_dict, agent_name_keys)
helper.fedavg_clientdp(submit_params_update_dict,
agent_name_keys,
clip_norm=clip_norm,
target_model=helper.target_model)
elif helper.params['dpfl'] == 'median_per_layer':
clip_norm = helper.compute_median_norm_per_layer(
submit_params_update_dict, agent_name_keys)
helper.fedavg_clientdp_per_layer(submit_params_update_dict,
agent_name_keys,
layers_clip_norm=clip_norm,
target_model=helper.target_model)
elif helper.params['dpfl'] == 'max_per_layer':
clip_norm = helper.set_max_norm_per_layer(
submit_params_update_dict, agent_name_keys, helper.params['max_clip_norm'])
helper.fedavg_clientdp_per_layer(submit_params_update_dict,
agent_name_keys,
layers_clip_norm=clip_norm,
target_model=helper.target_model)
else:
clip_norm = helper.params['max_clip_norm']
helper.fedavg_clientdp(submit_params_update_dict,
agent_name_keys,
clip_norm=clip_norm,
target_model=helper.target_model)
else:
if helper.params['fl_aggregation'] == 'rfa':
maxiter = helper.params['geom_median_maxiter']
updates = dict()
for name_key in agent_name_keys:
updates[name_key] = (num_samples_dict[name_key], copy.deepcopy(
submit_params_update_dict[name_key]))
num_oracle_calls, is_updated, names, weights, alphas = helper.geometric_median_update(
helper.target_model, updates, maxiter=maxiter)
else:
user_grads = []
for agent_name_key in agent_name_keys:
param_grad = flatten(
submit_params_update_dict[agent_name_key])
user_grads = param_grad[None, :] if len(user_grads) == 0 else torch.cat(
(user_grads, param_grad[None, :]), 0)
if helper.params['fl_aggregation'] == 'krum' or helper.params['fl_aggregation'] == 'mkrum':
multi_k = True if helper.params['fl_aggregation'] == 'mkrum' else False
agg_grads, krum_candidate = multi_krum(
user_grads, n_attacker_round, multi_k=multi_k)
elif helper.params['fl_aggregation'] == 'bulyan':
agg_grads, krum_candidate = bulyan(
user_grads, n_attacker_round)
elif helper.params['fl_aggregation'] == 'median':
agg_grads = torch.median(user_grads, dim=0)[0]
elif helper.params['fl_aggregation'] == 'trmean':
agg_grads = tr_mean(user_grads, n_attacker_round)
agg_params_update = unflatten(
agg_grads, submit_params_update_dict[agent_name_keys[0]])
for name, layer in helper.target_model.state_dict().items():
if 'num_batches_tracked' in name:
continue
layer.add_(agg_params_update[name])
epoch_loss, epoch_acc, epoch_corret, epoch_total = test.clean_test(helper=helper, epoch=epoch,
model=helper.target_model)
p_epoch_loss = 0
epoch_acc_p = 0
if params_loaded['is_poison'] == True:
p_epoch_loss, epoch_acc_p, epoch_corret, epoch_total = test.poison_test(helper=helper,
epoch=epoch,
model=helper.target_model)
if helper.params['record_p'] == True:
csv_record.posiontest_result.append(
["global", epoch, p_epoch_loss, epoch_acc_p])
if params_loaded['withDP'] == True:
global_privacy_engine.steps = epoch # assign the epoch
epsilon, best_alpha = global_privacy_engine.get_privacy_spent(
params_loaded['delta'])
epsilon = round(epsilon, 4) # 4 digit
logger.info('___GlobalDP, epoch: {}, accuracy: {:.4f} epsilon: {:.4f}, clip norm: {:.4f}, noise_mul:{} delta: {} for alpha: {}'
.format(epoch, epoch_acc, epsilon, clip_norm, params_loaded['noise_multiplier'], params_loaded['delta'], best_alpha))
csv_record.dp_result.append([epoch, epsilon, epoch_acc, epoch_loss,
p_epoch_loss, epoch_acc_p])
else:
csv_record.dp_result.append([epoch, 0.0, epoch_acc, epoch_loss,
p_epoch_loss, epoch_acc_p])
if epoch == helper.start_epoch:
logger.info(
f'Done one epoch in {time.time() - start_time} sec.')
helper.save_model_for_certify(epoch=epoch, run_idx=run_idx)
csv_record.save_result_csv(helper.folder_path, run_idx=run_idx)
csv_record.clear_csv()