Skip to content

Commit 331a95f

Browse files
committed
update
1 parent 44cf4e1 commit 331a95f

File tree

1 file changed

+149
-9
lines changed

1 file changed

+149
-9
lines changed

docs/lectures/01_source_and_wave.md

Lines changed: 149 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -639,12 +639,6 @@ We have $\tau_{\text{min}} \simeq 400$s, $\tau_{\text{max}} \simeq 600$; and ass
639639
* $\tau_d = \frac{1}{2} (\tau_\text{max} + \tau_\text{min}) = 500$ s
640640
* $v_r = L/\tau_d = 1260/500 = 2.52$ km/s
641641

642-
---
643-
644-
645-
### The Haskell fault model
646-
647-
![20250401002831](https://raw.githubusercontent.com/zhuwq0/images/main/20250401002831.png)
648642

649643
---
650644

@@ -668,18 +662,94 @@ Anomalously fast ruptures sometimes exceed the local S-wave velocity and are ter
668662
How to quantify the size of an earthquake?
669663

670664
* For historical reasons the most well-known measure of earthquake size is the earthquake magnitude.
665+
* Derived from the largest amplitude that is recorded on seismograms.
666+
* There are now many different types of magnitude scales, but all are connected in some way to the earliest definitions of magnitude.
667+
668+
---
669+
670+
### Richter Magnitude (Local magnitude $M_L$)
671+
672+
The original magnitude scale is based on the maximum amplitude recorded on a standard Wood-Anderson torsion seismograph.
673+
674+
$$
675+
M_L = \log_{10} A(X) - \log_{10} A_0(X)
676+
$$
677+
$A_0$: the amplitude of the reference event
678+
$X$: the epicentral distance
679+
680+
![20250402232519 bg right:50% fit](https://raw.githubusercontent.com/zhuwq0/images/main/20250402232519.png)
681+
682+
----
683+
684+
### Richter Magnitude (Local magnitude $M_L$)
685+
686+
An approximate empirical formula has been derived for $\log_{10} A_0(X)$ at different ranges.
687+
The local magnitude can be calculated by
688+
$$
689+
M_L = \log_{10} A(X) + 2.56 \log_{10} X - 1.67
690+
$$
691+
where $A(X)$ is the displacement amplitude in microns (10$^{-6}$ m) and X is in kilometers.
692+
693+
* Events below about $M_L 3$ are generally not felt
694+
* Significant damage to structures in California begins to occur at about $M_L 5.5$
695+
* A $M_L 6.0$ earthquake implies amplitude 100 times greater than a $M_L 4.0$ event.
671696

672697
---
673698

699+
### Global earthquakes: body wave magnitude $m_b$
700+
701+
702+
$$
703+
m_b = \log_{10} (A/T) + Q(h, \Delta)
704+
$$
705+
706+
where A is the ground displacement in microns, T is the dominant period of the measured waves, $\Delta$ is the epicentral distance in degrees, and Q is an empirical function of range and event depth h.
674707

708+
* Why $A/T$?
709+
* h?
675710

676711
---
677712

713+
### Global earthquakes: surface wave magnitude $M_s$
714+
715+
For Rayleigh waves on vertical instruments:
716+
$$
717+
M_s = \log_{10} (A/T) + 1.66 \log_{10} \Delta + 3.30
718+
$$
719+
720+
Since the strongest Rayleigh wave arrivals are generally at a period of 20 s, this expression is often written as
721+
$$
722+
M_s = \log_{10} A_{20} + 2.46 \log_{10} \Delta + 2.0
723+
$$
724+
725+
* Note that this equation is applicable only to shallow events
726+
* surface wave amplitudes are greatly reduced for deep events.
727+
728+
---
729+
730+
### Magnitude saturation
731+
732+
![bg right:70% fit](https://raw.githubusercontent.com/zhuwq0/images/main/20250402233819.png)
733+
734+
---
735+
736+
737+
### The Haskell fault model
738+
739+
![20250331235242 height:250px](https://raw.githubusercontent.com/zhuwq0/images/main/20250331235242.png)
740+
741+
![20250401002831 height:300px](https://raw.githubusercontent.com/zhuwq0/images/main/20250401002831.png)
742+
743+
744+
---
678745
### Source spectra
679746

680-
A boxcar pulse in the time domain produces a sinc function in the frequency domain
747+
A boxcar pulse in the time domain produces a sinc function in the frequency domain: $\text{sinc}(x) = \frac{\sin(x)}{x}$
681748

682-
![20250401092155 height:400px](https://raw.githubusercontent.com/zhuwq0/images/main/20250401092155.png)
749+
<div style="display: flex; justify-content: center;">
750+
<img src="https://raw.githubusercontent.com/zhuwq0/images/main/20250401092155.png" width="68%">
751+
<img src="https://raw.githubusercontent.com/zhuwq0/images/main/20250403000646.png" width="30%">
752+
</div>
683753

684754
---
685755

@@ -705,6 +775,10 @@ where $G=\log g$.
705775

706776
We can approximate $\left|\operatorname{sinc} x\right| \simeq 1$ for $x<1$ and $1/x$ for $x>1$
707777

778+
$$
779+
\log |A(\omega)|-G = \log \left(M_0\right)+\log \left|\operatorname{sinc}\left(\omega \tau_r / 2\right)\right|+\log \left|\operatorname{sinc}\left(\omega \tau_d / 2\right)\right|
780+
$$
781+
708782
$$
709783
\begin{aligned} \log |A(\omega)|-G & =\log M_0, & & \omega<2 / \tau_d \\ & =\log M_0-\log \frac{\tau_d}{2}-\log \omega, & & 2 / \tau_d<\omega<2 / \tau_r \\ & =\log M_0-\log \frac{\tau_d \tau_r}{4}-2 \log \omega, & & 2 / \tau_r<\omega\end{aligned}
710784
$$
@@ -713,7 +787,73 @@ $$
713787

714788
### The amplitude spectrum for the Haskell fault model.
715789

716-
![bg right:65% fit](https://raw.githubusercontent.com/zhuwq0/images/main/20250401092815.png)
790+
$$
791+
\begin{aligned} \log |A(\omega)|-G & =\log M_0, & & \omega<2 / \tau_d \\ & =\log M_0-\log \frac{\tau_d}{2}-\log \omega, & & 2 / \tau_d<\omega<2 / \tau_r \\ & =\log M_0-\log \frac{\tau_d \tau_r}{4}-2 \log \omega, & & 2 / \tau_r<\omega\end{aligned}
792+
$$
793+
794+
![bg right:55% fit](https://raw.githubusercontent.com/zhuwq0/images/main/20250401092815.png)
795+
796+
---
797+
798+
### Magnitude saturation
799+
800+
![bg right:70% fit](https://raw.githubusercontent.com/zhuwq0/images/main/20250402233819.png)
801+
802+
---
803+
804+
### Moment magnitude $M_w$
805+
806+
The saturation of the and scales for large events helped motivate development of the moment magnitude $M_w$
807+
808+
$$
809+
M_w = \frac{2}{3} (\log_{10} M_0 - 9.1)
810+
$$
811+
where is the moment measured in N-m.
812+
813+
* The advantage of the scale is that it is clearly related to a physical property of the source and it does not saturate for even the largest earthquakes.
814+
* One unit increase in $M_w$ corresponds to a $10^{3/2} \approx 32$ times increase in the moment.
815+
* A $M_w 7$ earthquake releases about 1000 times more energy than a $M_w 5$ event.
816+
817+
---
818+
819+
### Magnitude as a function of moment
820+
821+
![20250402234333 height:450px](https://raw.githubusercontent.com/zhuwq0/images/main/20250402234333.png)
822+
823+
[USGS Magnitude Types](https://www.usgs.gov/programs/earthquake-hazards/magnitude-types); [Latest earthquake](https://earthquake.usgs.gov/earthquakes/eventpage/us7000pn9s/origin/magnitude)
824+
825+
---
826+
827+
![20250402235133 bg fit](https://raw.githubusercontent.com/zhuwq0/images/main/20250402235133.png)
828+
829+
830+
---
831+
832+
![20250402235213 bg fit](https://raw.githubusercontent.com/zhuwq0/images/main/20250402235213.png)
833+
834+
---
835+
836+
### The intensity scale
837+
838+
The local strength of ground shaking as determined by damage to structures and the perceptions of people who experienced the earthquake.
839+
840+
* One earthquake can have different intensities at different locations.
841+
842+
[USGS Latest Earthquakes](https://earthquake.usgs.gov/earthquakes/map/?extent=26.07652,-136.80176&extent=49.92294,-98.48145&range=month&listOnlyShown=true&settings=true&search=%7B%22name%22:%22Search%20Results%22,%22params%22:%7B%22starttime%22:%222020-12-02%2000:00:00%22,%22endtime%22:%222023-12-09%2023:59:59%22,%22maxlatitude%22:37.642,%22minlatitude%22:37.588,%22maxlongitude%22:-122.344,%22minlongitude%22:-122.412,%22orderby%22:%22time%22%7D%7D)
843+
844+
---
845+
846+
### The Mercalli intensity scale (MMI)
847+
848+
![20250403001052 height:500px](https://raw.githubusercontent.com/zhuwq0/images/main/20250403001052.png)
849+
850+
851+
---
852+
853+
### JMA intensity scale
854+
855+
![bg right:60% fit](https://raw.githubusercontent.com/zhuwq0/images/main/202504030012755.png)
856+
717857

718858
---
719859

0 commit comments

Comments
 (0)