@@ -590,13 +590,68 @@ Rupturing directly away from us: $\tau_{\alpha}(\text{away}) = L \left( \frac{1}
590590### Doppler effect
591591
592592
593- <video src =" https://www.youtube.com/embed/imoxDcn2Sgo?si=P_TER2KTW9rco1KS& ; start=8 " controls width = " 80% " ></video >
593+ <iframe width = " 100% " height = " 500px " src =" https://www.youtube.com/embed/imoxDcn2Sgo?si=P_TER2KTW9rco1KS& ; start=7 " title = " YouTube video player " frameborder = " 0 " allow = " accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share " referrerpolicy = " strict-origin-when-cross-origin " allowfullscreen ></iframe >
594594
595595---
596596
597597### General apparent rupture duration
598598
599- ![ 20250401000152 height:300px] ( https://raw.githubusercontent.com/zhuwq0/images/main/20250401000152.png )
599+ The apparent rupture duration for a seismic phase with local horizontal phase velocity $c$ at the observing station as
600+ $$
601+ \tau_c(\theta) = L \left( \frac{1}{v_r} - \frac{\cos \theta}{c} \right)
602+ $$
603+ where $\theta$ is the station azimuth relative to the rupture direction.
604+
605+ The changes in $\tau_c$ as a function of receiver location are termed directivity effects.
606+
607+ ---
608+
609+ ### Rupture Length
610+
611+ Since $\tau_ \text{max} = L \left( \frac{1}{v_r} - \frac{1}{c} \right)$ and $\tau_ \text{min} = L \left( \frac{1}{v_r} + \frac{1}{c} \right)$
612+ The rupture length $L$ is
613+ $$
614+ L = \frac{1}{2} (\tau_\text{max} - \tau_\text{min}){c}
615+ $$
616+ The true rupture duration is
617+ $$
618+ \tau_d = L/v_r = \frac{1}{2} (\tau_\text{max} + \tau_\text{min})
619+ $$
620+ The average rupture velocity is
621+ $$
622+ v_r = L/\tau_d = \frac{\tau_\text{max} - \tau_\text{min}}{\tau_\text{max} + \tau_\text{min}} c
623+ $$
624+
625+ ---
626+
627+ ### Example: 2004 Sumatra Earthquake Directivity
628+
629+ ![ 20250401002059 height:400px] ( https://raw.githubusercontent.com/zhuwq0/images/main/20250401002059.png )
630+ High-frequency (2–4 Hz) envelopes from teleseismic P-wave observations of the 2004 Sumatra earthquake.
631+
632+ ---
633+
634+ ### Example: 2004 Sumatra Earthquake Directivity
635+
636+ ![ 20250401002059 height:300px] ( https://raw.githubusercontent.com/zhuwq0/images/main/20250401002059.png )
637+ We have $\tau_ {\text{min}} \simeq 400$s, $\tau_ {\text{max}} \simeq 600$; and assume $c = 12.6 \text{ km/s}$, so:
638+ - $L = \frac{1}{2} (\tau_ \text{max} - \tau_ \text{min}){c} = 1/2 \times 200 \times 12.6 = 1260$ km
639+ - $\tau_d = \frac{1}{2} (\tau_ \text{max} + \tau_ \text{min}) = 500$ s
640+ - $v_r = L/\tau_d = 1260/500 = 2.52$ km/s
641+
642+ ---
643+
644+ ### Example: 2004 Sumatra Earthquake Directivity
645+
646+ ![ 20250401002059 height:400px] ( https://raw.githubusercontent.com/zhuwq0/images/main/20250401002059.png )
647+
648+
649+ ---
650+
651+ ### Rupture velocity
652+
653+ The rupture velocity is generally observed to be somewhat less than the shear-wave velocity for most earthquakes.
654+ Anomalously fast ruptures sometimes exceed the local S-wave velocity and are termed supershear ruptures.
600655
601656---
602657
0 commit comments