|
| 1 | +import os |
| 2 | +from datetime import timedelta |
| 3 | + |
| 4 | +import megatron.core.parallel_state as ps |
| 5 | +import torch |
| 6 | +from torch._C._distributed_c10d import PrefixStore |
| 7 | +from torch.distributed import rendezvous |
| 8 | + |
| 9 | + |
| 10 | +class TestModel(torch.nn.Module): |
| 11 | + def __init__( |
| 12 | + self, |
| 13 | + input_dim: int, |
| 14 | + output_dim: int, |
| 15 | + num_layers: int, |
| 16 | + bias: bool, |
| 17 | + shared_embedding: bool = False, |
| 18 | + ): |
| 19 | + super().__init__() |
| 20 | + self.layers = torch.nn.ModuleList( |
| 21 | + [torch.nn.Linear(input_dim, output_dim, bias) for _ in range(num_layers)] |
| 22 | + ) |
| 23 | + if shared_embedding: |
| 24 | + self.layers[-1].weight.shared_embedding = True |
| 25 | + |
| 26 | + |
| 27 | +class Utils: |
| 28 | + |
| 29 | + world_size = int(os.getenv("WORLD_SIZE", 1)) |
| 30 | + rank = int(os.getenv("LOCAL_RANK", 0)) |
| 31 | + inited = False |
| 32 | + store = None |
| 33 | + |
| 34 | + @staticmethod |
| 35 | + def initialize_distributed(): |
| 36 | + |
| 37 | + os.environ.pop("NVTE_FLASH_ATTN", None) |
| 38 | + os.environ.pop("NVTE_FUSED_ATTN", None) |
| 39 | + os.environ.pop("NVTE_UNFUSED_ATTN", None) |
| 40 | + |
| 41 | + if not torch.distributed.is_initialized() and Utils.rank >= 0: |
| 42 | + print( |
| 43 | + f"Initializing torch.distributed with rank: {Utils.rank}, " f"world_size: {Utils.world_size}" |
| 44 | + ) |
| 45 | + torch.cuda.set_device(Utils.rank % torch.cuda.device_count()) |
| 46 | + init_method = "tcp://" |
| 47 | + master_ip = os.getenv("MASTER_ADDR", "localhost") |
| 48 | + master_port = os.getenv("MASTER_PORT", "6000") |
| 49 | + init_method += master_ip + ":" + master_port |
| 50 | + rendezvous_iterator = rendezvous( |
| 51 | + init_method, Utils.rank, Utils.world_size, timeout=timedelta(minutes=1) |
| 52 | + ) |
| 53 | + store, rank, world_size = next(rendezvous_iterator) |
| 54 | + store.set_timeout(timedelta(minutes=1)) |
| 55 | + |
| 56 | + # Use a PrefixStore to avoid accidental overrides of keys used by |
| 57 | + # different systems (e.g. RPC) in case the store is multi-tenant. |
| 58 | + store = PrefixStore("default_pg", store) |
| 59 | + Utils.store = store |
| 60 | + |
| 61 | + torch.distributed.init_process_group( |
| 62 | + backend="nccl", world_size=Utils.world_size, rank=Utils.rank, store=store |
| 63 | + ) |
| 64 | + |
| 65 | + torch.distributed.barrier() |
| 66 | + Utils.inited = True |
| 67 | + |
| 68 | + @staticmethod |
| 69 | + def set_world_size(world_size=None, rank=None): |
| 70 | + Utils.world_size = torch.cuda.device_count() if world_size is None else world_size |
| 71 | + if torch.distributed.is_initialized() and Utils.world_size != torch.distributed.get_world_size(): |
| 72 | + torch.distributed.destroy_process_group() |
| 73 | + |
| 74 | + if rank is None: |
| 75 | + Utils.rank = int(os.environ["LOCAL_RANK"]) |
| 76 | + if Utils.rank >= Utils.world_size: |
| 77 | + Utils.rank = -1 |
| 78 | + else: |
| 79 | + Utils.rank = rank |
| 80 | + |
| 81 | + @staticmethod |
| 82 | + def destroy_model_parallel(): |
| 83 | + os.environ.pop("NVTE_FLASH_ATTN", None) |
| 84 | + os.environ.pop("NVTE_FUSED_ATTN", None) |
| 85 | + os.environ.pop("NVTE_UNFUSED_ATTN", None) |
| 86 | + if not Utils.inited: |
| 87 | + return |
| 88 | + torch.distributed.barrier() |
| 89 | + ps.destroy_model_parallel() |
| 90 | + Utils.inited = False |
| 91 | + |
| 92 | + @staticmethod |
| 93 | + def initialize_model_parallel( |
| 94 | + tensor_model_parallel_size=1, |
| 95 | + pipeline_model_parallel_size=1, |
| 96 | + virtual_pipeline_model_parallel_size=None, |
| 97 | + **kwargs, |
| 98 | + ): |
| 99 | + # Need to unset these variables to make sure previous |
| 100 | + # tests setting them doesn't interfere current test. |
| 101 | + os.environ.pop("NVTE_FLASH_ATTN", None) |
| 102 | + os.environ.pop("NVTE_FUSED_ATTN", None) |
| 103 | + os.environ.pop("NVTE_UNFUSED_ATTN", None) |
| 104 | + |
| 105 | + ps.destroy_model_parallel() |
| 106 | + Utils.initialize_distributed() |
| 107 | + ps.initialize_model_parallel( |
| 108 | + tensor_model_parallel_size, |
| 109 | + pipeline_model_parallel_size, |
| 110 | + virtual_pipeline_model_parallel_size, |
| 111 | + **kwargs, |
| 112 | + ) |
| 113 | + Utils.inited = True |
| 114 | + |
| 115 | + @staticmethod |
| 116 | + def fake_initialize_model_parallel( |
| 117 | + tensor_model_parallel_size=1, |
| 118 | + pipeline_model_parallel_size=1, |
| 119 | + virtual_pipeline_model_parallel_size=None, |
| 120 | + expert_model_parallel_size=1, |
| 121 | + ): |
| 122 | + """Used for layer-wise UT as a proxy for NeMo-style intialization.""" |
| 123 | + ps.set_tensor_model_parallel_world_size(tensor_model_parallel_size) |
| 124 | + ps.set_tensor_model_parallel_rank(0) |
| 125 | + |
| 126 | + ps.set_expert_model_parallel_world_size(expert_model_parallel_size) |
| 127 | + ps.set_expert_model_parallel_rank(0) |
| 128 | + if virtual_pipeline_model_parallel_size is not None: |
| 129 | + ps.set_virtual_pipeline_model_parallel_world_size(virtual_pipeline_model_parallel_size) |
| 130 | + ps.set_virtual_pipeline_model_parallel_rank(0) |
| 131 | + |
| 132 | + ps.set_pipeline_model_parallel_world_size(pipeline_model_parallel_size) |
0 commit comments