|
| 1 | +############################################################################### |
| 2 | +# Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved. |
| 3 | +# |
| 4 | +# See LICENSE for license information. |
| 5 | +############################################################################### |
| 6 | + |
| 7 | +import argparse |
| 8 | +import itertools |
| 9 | +from datetime import datetime |
| 10 | +from typing import Tuple |
| 11 | + |
| 12 | +import torch |
| 13 | +from git import List |
| 14 | +from tqdm import tqdm |
| 15 | + |
| 16 | +from primus.tools.benchmark.gemm_bench import profile_gemm |
| 17 | +from primus.tools.report import write_table_simple |
| 18 | +from primus.tools.utils import gather_records, is_rank_0 |
| 19 | + |
| 20 | +MODEL_CONFIGS = { |
| 21 | + "Deepseek_V2_Lite": { |
| 22 | + "seqlen": 4096, |
| 23 | + "hidden_size": 2048, |
| 24 | + "intermediate_size": 10944, |
| 25 | + "kv_lora_rank": 512, |
| 26 | + "moe_intermediate_size": 1408, |
| 27 | + "num_attention_heads": 16, |
| 28 | + "num_experts_per_tok": 6, |
| 29 | + "n_routed_experts": 64, |
| 30 | + "n_shared_experts": 2, |
| 31 | + "q_lora_rank": None, |
| 32 | + "qk_nope_head_dim": 128, |
| 33 | + "qk_rope_head_dim": 64, |
| 34 | + "v_head_dim": 128, |
| 35 | + "vocab_size": 102400, |
| 36 | + }, |
| 37 | + "Deepseek_V2": { |
| 38 | + "seqlen": 4096, |
| 39 | + "hidden_size": 5120, |
| 40 | + "intermediate_size": 12288, |
| 41 | + "kv_lora_rank": 512, |
| 42 | + "moe_intermediate_size": 1536, |
| 43 | + "num_attention_heads": 128, |
| 44 | + "num_experts_per_tok": 6, |
| 45 | + "n_routed_experts": 160, |
| 46 | + "n_shared_experts": 2, |
| 47 | + "q_lora_rank": 1536, |
| 48 | + "qk_nope_head_dim": 128, |
| 49 | + "qk_rope_head_dim": 64, |
| 50 | + "v_head_dim": 128, |
| 51 | + "vocab_size": 102400, |
| 52 | + }, |
| 53 | + "Deepseek_V3": { |
| 54 | + "seqlen": 4096, |
| 55 | + "hidden_size": 7168, |
| 56 | + "intermediate_size": 18432, |
| 57 | + "kv_lora_rank": 512, |
| 58 | + "moe_intermediate_size": 2048, |
| 59 | + "num_attention_heads": 128, |
| 60 | + "num_experts_per_tok": 8, |
| 61 | + "n_routed_experts": 256, |
| 62 | + "n_shared_experts": 1, |
| 63 | + "q_lora_rank": 1536, |
| 64 | + "qk_nope_head_dim": 128, |
| 65 | + "qk_rope_head_dim": 64, |
| 66 | + "v_head_dim": 128, |
| 67 | + "vocab_size": 129280, |
| 68 | + }, |
| 69 | +} |
| 70 | + |
| 71 | + |
| 72 | +def add_gemm_parser(parser: argparse.ArgumentParser): |
| 73 | + parser.add_argument("--model", default=None, help="Model name (Deepseek_V2, Deepseek_V3, etc.)") |
| 74 | + parser.add_argument("--seqlen", type=int, default=4096) |
| 75 | + parser.add_argument("--hidden-size", type=int, default=4096) |
| 76 | + parser.add_argument("--intermediate-size", type=int, default=12288) |
| 77 | + parser.add_argument("--kv-lora-rank", type=int, default=512) |
| 78 | + parser.add_argument("--moe-intermediate-size", type=int, default=1536) |
| 79 | + parser.add_argument("--num-attention-heads", type=int, default=64) |
| 80 | + parser.add_argument("--num-experts-per-tok", type=int, default=6) |
| 81 | + parser.add_argument("--n-routed-experts", type=int, default=128) |
| 82 | + parser.add_argument("--n-shared-experts", type=int, default=2) |
| 83 | + parser.add_argument("--q-lora-rank", type=int, default=None) |
| 84 | + parser.add_argument("--qk-nope-head-dim", type=int, default=128) |
| 85 | + parser.add_argument("--qk-rope-head-dim", type=int, default=64) |
| 86 | + parser.add_argument("--v-head-dim", type=int, default=128) |
| 87 | + parser.add_argument("--vocab-size", type=int, default=128256) |
| 88 | + parser.add_argument("--dtype", choices=["bf16", "fp16"], default="bf16") |
| 89 | + parser.add_argument("--mbs", type=int, default=1) |
| 90 | + parser.add_argument("--duration", type=int, default=3, help="Benchmark duration per shape (sec)") |
| 91 | + parser.add_argument("--output-file", default="./gemm-deepseek_report.md") |
| 92 | + parser.add_argument("--append", action="store_true", help="Append to existing report") |
| 93 | + return parser |
| 94 | + return parser |
| 95 | + |
| 96 | + |
| 97 | +def profile_fwd(m, n, k, dtype, duration): |
| 98 | + return profile_gemm(m, n, k, dtype, False, True, duration) |
| 99 | + |
| 100 | + |
| 101 | +def profile_wgrad(m, n, k, dtype, duration): |
| 102 | + return profile_gemm(n, k, m, dtype, True, False, duration) |
| 103 | + |
| 104 | + |
| 105 | +def profile_dgrad(m, n, k, dtype, duration): |
| 106 | + return profile_gemm(m, k, n, dtype, False, False, duration) |
| 107 | + |
| 108 | + |
| 109 | +def build_preamble(args, shapes: List[Tuple[str, List[int]]]) -> str: |
| 110 | + lines = [ |
| 111 | + "# DeepSeek GEMM Benchmark Report", |
| 112 | + "", |
| 113 | + f"- Model: {args.model or 'Custom'}", |
| 114 | + f"- Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", |
| 115 | + f"- Duration per shape: {args.duration}s", |
| 116 | + "", |
| 117 | + "## Configuration", |
| 118 | + f"- seqlen: {args.seqlen}", |
| 119 | + f"- hidden_size: {args.hidden_size}", |
| 120 | + f"- intermediate_size: {args.intermediate_size}", |
| 121 | + f"- kv_lora_rank: {args.kv_lora_rank}", |
| 122 | + f"- moe_intermediate_size: {args.moe_intermediate_size}", |
| 123 | + f"- num_attention_heads: {args.num_attention_heads}", |
| 124 | + f"- num_experts_per_tok: {args.num_experts_per_tok}", |
| 125 | + f"- n_routed_experts: {args.n_routed_experts}", |
| 126 | + f"- n_shared_experts: {args.n_shared_experts}", |
| 127 | + f"- q_lora_rank: {args.q_lora_rank}", |
| 128 | + f"- dtype: {args.dtype}", |
| 129 | + "", |
| 130 | + "## GEMM Shapes (M, N, K)", |
| 131 | + ] |
| 132 | + for name, (m, n, k) in shapes: |
| 133 | + lines.append(f"- {name}: ({m}, {n}, {k})") |
| 134 | + lines += ["", "## Phases", "- fwd", "- wgrad", "- dgrad", ""] |
| 135 | + return "\n".join(lines) |
| 136 | + |
| 137 | + |
| 138 | +def run_gemm_benchmark(args): |
| 139 | + if args.model: |
| 140 | + model_lower_map = {k.lower(): k for k in MODEL_CONFIGS.keys()} |
| 141 | + model_key = args.model.lower() |
| 142 | + |
| 143 | + if model_key not in model_lower_map: |
| 144 | + raise ValueError( |
| 145 | + f"[ERROR] Unknown model '{args.model}'. Supported models: {', '.join(MODEL_CONFIGS.keys())}" |
| 146 | + ) |
| 147 | + |
| 148 | + true_key = model_lower_map[model_key] |
| 149 | + cfg = MODEL_CONFIGS[true_key] |
| 150 | + args.model = true_key # 规范化模型名 |
| 151 | + for k, v in cfg.items(): |
| 152 | + setattr(args, k, v) |
| 153 | + else: |
| 154 | + print("[INFO] No model specified. Using CLI-provided parameters.") |
| 155 | + |
| 156 | + dtype_map = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp34": torch.float32} |
| 157 | + dtype = dtype_map[args.dtype] |
| 158 | + |
| 159 | + q_head_dim = args.qk_nope_head_dim + args.qk_rope_head_dim |
| 160 | + shape_defs = [] |
| 161 | + |
| 162 | + # q-proj |
| 163 | + if args.q_lora_rank is None: |
| 164 | + shape_defs.append(("attn_q", [args.seqlen, args.num_attention_heads * q_head_dim, args.hidden_size])) |
| 165 | + else: |
| 166 | + shape_defs.append(("attn_q_down", [args.seqlen, args.q_lora_rank, args.hidden_size])) |
| 167 | + shape_defs.append( |
| 168 | + ("attn_q_up", [args.seqlen, args.num_attention_heads * q_head_dim, args.q_lora_rank]) |
| 169 | + ) |
| 170 | + |
| 171 | + # kv projections |
| 172 | + shape_defs += [ |
| 173 | + ("attn_kv_down", [args.seqlen, args.kv_lora_rank + args.qk_rope_head_dim, args.hidden_size]), |
| 174 | + ( |
| 175 | + "attn_kv_up", |
| 176 | + [ |
| 177 | + args.seqlen, |
| 178 | + args.num_attention_heads * (args.qk_nope_head_dim + args.v_head_dim), |
| 179 | + args.kv_lora_rank, |
| 180 | + ], |
| 181 | + ), |
| 182 | + ("attn_out", [args.seqlen, args.hidden_size, args.num_attention_heads * args.v_head_dim]), |
| 183 | + ("router", [args.seqlen, args.n_routed_experts, args.hidden_size]), |
| 184 | + ] |
| 185 | + |
| 186 | + # shared experts |
| 187 | + if args.n_shared_experts > 0: |
| 188 | + shape_defs.append(("shared_gateup", [args.seqlen, args.intermediate_size * 2, args.hidden_size])) |
| 189 | + shape_defs.append(("shared_down", [args.seqlen, args.hidden_size, args.intermediate_size])) |
| 190 | + |
| 191 | + # routed experts (balance) |
| 192 | + balance_seq = int(args.seqlen * args.num_experts_per_tok // args.n_routed_experts) |
| 193 | + shape_defs.append(("moe_gateup", [balance_seq, args.moe_intermediate_size * 2, args.hidden_size])) |
| 194 | + shape_defs.append(("moe_down", [balance_seq, args.hidden_size, args.moe_intermediate_size])) |
| 195 | + |
| 196 | + # vocab |
| 197 | + shape_defs.append(("vocab", [args.seqlen, args.vocab_size, args.hidden_size])) |
| 198 | + |
| 199 | + func_defs = [ |
| 200 | + ("fwd", profile_fwd), |
| 201 | + ("wgrad", profile_wgrad), |
| 202 | + ("dgrad", profile_dgrad), |
| 203 | + ] |
| 204 | + |
| 205 | + record = {} |
| 206 | + for (phase, shape), (tag, func) in tqdm( |
| 207 | + itertools.product(shape_defs, func_defs), |
| 208 | + total=len(shape_defs) * len(func_defs), |
| 209 | + desc=f"[DeepSeek GEMM] {args.model or 'Custom'}", |
| 210 | + ): |
| 211 | + m, n, k = [args.mbs * shape[0], shape[1], shape[2]] |
| 212 | + |
| 213 | + res = func(m, n, k, dtype, args.duration) |
| 214 | + summary = ( |
| 215 | + f"{res['tflops']:.2f}TF/s / " |
| 216 | + f"{res['bandwidth_gbps']:.2f}GB/s / " |
| 217 | + f"{res['avg_time_ms']:.6f}s / " |
| 218 | + f"AI={res['arith_intensity']:.2f}" |
| 219 | + ) |
| 220 | + record[f"{phase}_{tag}"] = summary |
| 221 | + |
| 222 | + gathered = gather_records(record) |
| 223 | + if is_rank_0(): |
| 224 | + all_keys = set().union(*(r.keys() for r in gathered)) |
| 225 | + header = ["host", "world", "rank"] + sorted( |
| 226 | + [k for k in all_keys if k not in {"host", "rank", "world"}] |
| 227 | + ) |
| 228 | + |
| 229 | + rows = [[r.get(col, "") for col in header] for r in gathered] |
| 230 | + |
| 231 | + preamble = build_preamble(args, shape_defs) |
| 232 | + |
| 233 | + append = getattr(args, "append", False) |
| 234 | + |
| 235 | + write_table_simple( |
| 236 | + header=header, |
| 237 | + rows=rows, |
| 238 | + output_file=args.output_file or f"benchmark_gemm_dense_{args.model}.md", |
| 239 | + append=append, |
| 240 | + preamble=preamble if not append else None, |
| 241 | + ) |
| 242 | + |
| 243 | + print(f"[✔] DeepSeek GEMM benchmark finished. Results saved to {args.output_file}") |
| 244 | + |
| 245 | + |
| 246 | +def build_gemm_dense_parser() -> argparse.ArgumentParser: |
| 247 | + """ |
| 248 | + Build a standalone parser for local execution. |
| 249 | + """ |
| 250 | + parser = argparse.ArgumentParser(description="DEEPSEEK-GEMM benchmark") |
| 251 | + add_gemm_parser(parser) |
| 252 | + return parser |
| 253 | + |
| 254 | + |
| 255 | +if __name__ == "__main__": |
| 256 | + parser = build_gemm_dense_parser() |
| 257 | + args = parser.parse_args() |
| 258 | + run_gemm_benchmark(args) |
0 commit comments