-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path04_train_model.py
477 lines (400 loc) · 15.7 KB
/
04_train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
import wandb
import torch
from torch import nn
import json
import numpy as np
import datetime
import pandas as pd
from tqdm import tqdm
import time
import argparse
import random
import csv
from models.build_model import build_model
from training_params.loss import Loss
from training_params.optimizer import Optimizer
from data2 import dataloader
from evaluation.micro_accuracy_batch import MicroAccuracyBatch
from evaluation.micro_accuracy_batch import add_batch_microacc, final_microacc
from evaluation.macro_accuracy_batch import MacroAccuracyBatch
from evaluation.macro_accuracy_batch import (
add_batch_macroacc,
final_macroacc,
taxon_accuracy,
)
from evaluation.confusion_matrix_data import confusion_matrix_data
from evaluation.confusion_data_conversion import ConfusionDataConvert
print("\n\n---- CUDA tests ----------\n\n")
print(torch.zeros(1).cuda())
print(torch.cuda.is_available())
print("\n\n---------------------------\n\n")
def train_model(args):
"""main function for training"""
config_file = args.config_file
f = open(config_file)
config_data = json.load(f)
#print(json.dumps(config_data, indent=3))
#print(config_data["training"]["wandb"]["project"])
# Initialize wandb
wandb.init(
project=config_data["training"]["wandb"]["project"],
entity=config_data["training"]["wandb"]["entity"],
tags="pytorch"
)
wandb.init(settings=wandb.Settings(start_method="fork"))
image_resize = config_data["training"]["image_resize"]
batch_size = config_data["training"]["batch_size"]
label_list = config_data["dataset"]["label_info"]
epochs = config_data["training"]["epochs"]
loss_name = config_data["training"]["loss"]["name"]
early_stop = config_data["training"]["early_stopping"]
start_val_los = config_data["training"]["start_val_loss"]
label_read = json.load(open(label_list))
# species_list = label_read["species_list"]
# genus_list = label_read["genus_list"]
# family_list = label_read["family_list"]
# no_species_cl = config_data["model"]["species_num_classes"]
# no_genus_cl = config_data["model"]["genus_num_classes"]
# no_family_cl = config_data["model"]["family_num_classes"]
model_type = config_data["model"]["type"]
preprocess_mode = config_data["model"]["preprocess_mode"]
opt_name = config_data["training"]["optimizer"]["name"]
learning_rate = config_data["training"]["optimizer"]["learning_rate"]
momentum = config_data["training"]["optimizer"]["momentum"]
mod_save_pth = config_data["training"]["model_save_path"]
mod_name = config_data["training"]["model_name"]
mod_ver = config_data["training"]["version"]
DTSTR = datetime.datetime.now()
DTSTR = DTSTR.strftime("%Y-%m-%d-%H-%M")
save_path = (
mod_save_pth + mod_name + "_" + mod_ver + "_" + model_type + "_" + DTSTR + ".pt"
)
print("Saving model to: " + save_path)
taxon_hierar = config_data["dataset"]["taxon_hierarchy"]
label_info = config_data["dataset"]["label_info"]
if (torch.cuda.is_available()):
device = "cuda"
else:
device = "cpu"
# # try torch.backends.mps.is_available()
# try:
# torch.backends.mps.is_available()
# except Exception:
# print('not M1 arm')
# else:
# device = "mps"
print(device)
model = build_model(config_data)
# Making use of multiple GPUs
if device == "cuda" and torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
model = nn.DataParallel(model)
model = model.to(device)
# Loading Data
# Training data loader
train_dataloader = dataloader.build_webdataset_pipeline(
sharedurl=args.train_webdataset_url,
input_size=image_resize,
batch_size=batch_size,
is_training=True,
num_workers=args.dataloader_num_workers,
preprocess_mode=preprocess_mode,
)
# Validation data loader
val_dataloader = dataloader.build_webdataset_pipeline(
sharedurl=args.val_webdataset_url,
input_size=image_resize,
batch_size=batch_size,
is_training=False,
num_workers=args.dataloader_num_workers,
preprocess_mode=preprocess_mode,
)
# Testing data loader
test_dataloader = dataloader.build_webdataset_pipeline(
sharedurl=args.test_webdataset_url,
input_size=image_resize,
batch_size=batch_size,
is_training=False,
num_workers=args.dataloader_num_workers,
preprocess_mode=preprocess_mode,
)
print("Checkpoint: Data loaded")
# Loading Loss function and Optimizer
loss_func = Loss(loss_name).func()
optimizer = Optimizer(opt_name, model, learning_rate, momentum).func()
# Model Training
lowest_val_loss = start_val_los
early_stp_count = 0
with open(mod_save_pth + mod_name + "_" + mod_ver + "_epoch_accuracy.csv", "w") as fp:
wr = csv.writer(fp, dialect='excel')
wr.writerow(["train_micro_species_top1", "train_micro_genus_top1", "train_micro_family_top1",
"val_micro_species_top1", "val_micro_genus_top1", "val_micro_family_top1",
"epoch"
])
for epoch in tqdm(range(epochs)): #range(0, 2)):
train_loss = 0
train_batch_cnt = 0
val_loss = 0
val_batch_cnt = 0
s_time = time.time()
global_microacc_data_train = None
global_microacc_data_val = None
# model training on training dataset
print("Checkpoint: About to train the model")
model.train()
for image_batch, label_batch in train_dataloader:
image_batch, label_batch = image_batch.to(
device, non_blocking=True
), label_batch.to(device, non_blocking=True)
optimizer.zero_grad()
# forward + backward + optimize
outputs = model(image_batch)
t_loss = loss_func(outputs, label_batch)
t_loss.backward()
optimizer.step()
train_loss += t_loss.item()
# micro-accuracy calculation
micro_accuracy_train = MicroAccuracyBatch(
outputs, label_batch, label_info, taxon_hierar
).batch_accuracy()
global_microacc_data_train = add_batch_microacc(
global_microacc_data_train, micro_accuracy_train
)
train_batch_cnt += 1
train_loss = train_loss / train_batch_cnt
print("Checkpoint: Model trained")
# model evaluation on validation dataset
print("Checkpoint: Evaluating the model")
model.eval()
for image_batch, label_batch in val_dataloader:
image_batch, label_batch = image_batch.to(
device, non_blocking=True
), label_batch.to(device, non_blocking=True)
outputs = model(image_batch)
v_loss = loss_func(outputs, label_batch)
val_loss += v_loss.item()
# micro-accuracy calculation
micro_accuracy_val = MicroAccuracyBatch(
outputs, label_batch, label_info, taxon_hierar
).batch_accuracy()
global_microacc_data_val = add_batch_microacc(
global_microacc_data_val, micro_accuracy_val
)
val_batch_cnt += 1
val_loss = val_loss / val_batch_cnt
print("Checkpoint: Model evaluated")
if val_loss < lowest_val_loss:
if torch.cuda.device_count() > 1:
torch.save(
# {
# "epoch": epoch,
# "model_state_dict": model.module.state_dict(),
# "optimizer_state_dict": optimizer.state_dict(),
# "train_loss": train_loss,
# "val_loss": val_loss,
# },
model,
save_path,
)
torch.save(
{
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
save_path.replace(".pt", "_state.pt"),
)
else:
torch.save(
# {
# "epoch": epoch,
# "model_state_dict": model.state_dict(),
# "optimizer_state_dict": optimizer.state_dict(),
# "train_loss": train_loss,
# "val_loss": val_loss,
# },
model,
save_path,
)
torch.save(
{
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
},
save_path.replace(".pt", "_state.pt"),
)
lowest_val_loss = val_loss
early_stp_count = 0
else:
early_stp_count += 1
# logging metrics
wandb.log(
{"training loss": train_loss, "validation loss": val_loss, "epoch": epoch}
)
final_micro_accuracy_train = final_microacc(global_microacc_data_train)
final_micro_accuracy_val = final_microacc(global_microacc_data_val)
epoch_log = {
"train_micro_species_top1": final_micro_accuracy_train[
"micro_species_top1"
],
"train_micro_genus_top1": final_micro_accuracy_train[
"micro_genus_top1"
],
"train_micro_family_top1": final_micro_accuracy_train[
"micro_family_top1"
],
"val_micro_species_top1": final_micro_accuracy_val[
"micro_species_top1"
],
"val_micro_genus_top1": final_micro_accuracy_val["micro_genus_top1"],
"val_micro_family_top1": final_micro_accuracy_val["micro_family_top1"],
"epoch": epoch,
}
wandb.log(epoch_log)
# append to csv
with open(mod_save_pth + mod_name + "_" + mod_ver + "_epoch_accuracy.csv", "a") as fp:
wr = csv.writer(fp, dialect='excel')
wr.writerow(list(epoch_log.values()))
e_time = (time.time() - s_time) / 60 # time taken in minutes
wandb.log({"time per epoch": e_time, "epoch": epoch})
if early_stp_count >= early_stop:
break
wandb.log_artifact(save_path, name=mod_name, type="models")
model.eval()
global_microacc_data = None
global_macroacc_data = None
global_confusion_data_sp = None
global_confusion_data_g = None
global_confusion_data_f = None
print("Checkpoint: Prediction on test data started ...")
with torch.no_grad():
for image_batch, label_batch in test_dataloader:
image_batch, label_batch = image_batch.to(device), label_batch.to(device)
predictions = model(image_batch)
# micro-accuracy calculation
micro_accuracy = MicroAccuracyBatch(
predictions, label_batch, label_info, taxon_hierar
).batch_accuracy()
global_microacc_data = add_batch_microacc(
global_microacc_data, micro_accuracy
)
# macro-accuracy calculation
macro_accuracy = MacroAccuracyBatch(
predictions, label_batch, label_info, taxon_hierar
).batch_accuracy()
global_macroacc_data = add_batch_macroacc(
global_macroacc_data, macro_accuracy
)
# confusion matrix
(
sp_label_batch,
sp_predictions,
g_label_batch,
g_predictions,
f_label_batch,
f_predictions,
) = ConfusionDataConvert(
predictions, label_batch, label_info, taxon_hierar
).converted_data()
global_confusion_data_sp = confusion_matrix_data(
global_confusion_data_sp, [sp_label_batch, sp_predictions]
)
global_confusion_data_g = confusion_matrix_data(
global_confusion_data_g, [g_label_batch, g_predictions]
)
global_confusion_data_f = confusion_matrix_data(
global_confusion_data_f, [f_label_batch, f_predictions]
)
final_micro_accuracy = final_microacc(global_microacc_data)
final_macro_accuracy, taxon_acc = final_macroacc(global_macroacc_data)
tax_accuracy = taxon_accuracy(taxon_acc, label_read)
# saving evaluation data to file
confdata_pd_f = pd.DataFrame(
{
"F_Truth": global_confusion_data_f[0].reshape(-1),
"F_Prediction": global_confusion_data_f[1].reshape(-1),
}
)
confdata_pd_g = pd.DataFrame(
{
"G_Truth": global_confusion_data_g[0].reshape(-1),
"G_Prediction": global_confusion_data_g[1].reshape(-1),
}
)
confdata_pd_sp = pd.DataFrame(
{
"S_Truth": global_confusion_data_sp[0].reshape(-1),
"S_Prediction": global_confusion_data_sp[1].reshape(-1),
}
)
confdata_pd = pd.concat([confdata_pd_f, confdata_pd_g, confdata_pd_sp], axis=1)
confdata_pd.to_csv(mod_save_pth + mod_name + "_" + mod_ver + "_confusion-data.csv", index=False)
with open(
mod_save_pth + mod_name + "_" + mod_ver + "_micro-accuracy.json", "w"
) as outfile:
json.dump(final_micro_accuracy, outfile)
with open(
mod_save_pth + mod_name + "_" + mod_ver + "_macro-accuracy.json", "w"
) as outfile:
json.dump(final_macro_accuracy, outfile)
with open(
mod_save_pth + mod_name + "_" + mod_ver + "_taxon-accuracy.json", "w"
) as outfile:
json.dump(tax_accuracy, outfile)
wandb.log({"final micro accuracy": final_micro_accuracy})
wandb.log({"final macro accuracy": final_macro_accuracy})
wandb.log({"configuration": config_data})
wandb.log({"tax accuracy": tax_accuracy})
# label_f = tf.keras.utils.to_categorical(
# global_confusion_data_f[0], num_classes=no_family_cl
# )
# pred_f = tf.keras.utils.to_categorical(
# global_confusion_data_f[1], num_classes=no_family_cl
# )
wandb.finish()
def set_random_seed(random_seed):
"""set random seed for reproducibility"""
random.seed(random_seed)
np.random.seed(random_seed)
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
torch.backends.cudnn.deterministic = True
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--train_webdataset_url",
help="path to webdataset tar files for training",
required=True,
)
parser.add_argument(
"--val_webdataset_url",
help="path to webdataset tar files for validation",
required=True,
)
parser.add_argument(
"--test_webdataset_url",
help="path to webdataset tar files for testing",
required=True,
)
parser.add_argument(
"--config_file",
help="path to configuration file containing training information",
required=True,
)
parser.add_argument(
"--dataloader_num_workers",
help="number of cpus available",
required=True,
type=int,
)
parser.add_argument(
"--random_seed",
help="random seed for reproducible experiments",
default=42,
type=int,
)
args = parser.parse_args()
set_random_seed(args.random_seed)
print("G")
train_model(args)