|
| 1 | +#!/usr/bin/env python3 |
| 2 | + |
| 3 | +""" |
| 4 | +Plot temperature and species fractions versus density from state_over_time.txt using Plotly. |
| 5 | +""" |
| 6 | + |
| 7 | +from __future__ import annotations |
| 8 | + |
| 9 | +import argparse |
| 10 | +from pathlib import Path |
| 11 | +from typing import Sequence |
| 12 | + |
| 13 | +import pandas as pd |
| 14 | +import plotly.graph_objects as go |
| 15 | +import plotly.io as pio |
| 16 | +from plotly.subplots import make_subplots |
| 17 | + |
| 18 | + |
| 19 | +def parse_header(path: Path) -> Sequence[str]: |
| 20 | + """Extract column names from the leading comment line.""" |
| 21 | + with path.open("r", encoding="ascii") as handle: |
| 22 | + for line in handle: |
| 23 | + stripped = line.strip() |
| 24 | + if not stripped: |
| 25 | + continue |
| 26 | + if stripped.startswith("#"): |
| 27 | + return stripped.lstrip("#").split() |
| 28 | + # If no comment header is present, fall back to whitespace split. |
| 29 | + return stripped.split() |
| 30 | + raise ValueError(f"Could not find a header row in {path}") |
| 31 | + |
| 32 | + |
| 33 | +def load_state_data(path: Path) -> pd.DataFrame: |
| 34 | + columns = parse_header(path) |
| 35 | + # Skip the header we just parsed and load the remainder. |
| 36 | + return pd.read_csv( |
| 37 | + path, |
| 38 | + delim_whitespace=True, |
| 39 | + skiprows=1, |
| 40 | + names=columns, |
| 41 | + comment="#", |
| 42 | + ) |
| 43 | + |
| 44 | + |
| 45 | +def plot_state(path: Path, output: Path | None) -> None: |
| 46 | + data = load_state_data(path) |
| 47 | + |
| 48 | + required_columns = {"Density", "Temperature"} |
| 49 | + missing = required_columns - set(data.columns) |
| 50 | + if missing: |
| 51 | + missing_cols = ", ".join(sorted(missing)) |
| 52 | + raise KeyError(f"Missing required column(s): {missing_cols}") |
| 53 | + |
| 54 | + density = data["Density"] |
| 55 | + temperature = data["Temperature"] |
| 56 | + species_cols = [ |
| 57 | + col for col in data.columns if col not in {"Time", "Density", "Temperature"} |
| 58 | + ] |
| 59 | + |
| 60 | + if not species_cols: |
| 61 | + raise ValueError("No species fraction columns found in input data.") |
| 62 | + |
| 63 | + if (density <= 0).any(): |
| 64 | + raise ValueError("Density contains non-positive values; cannot use log scale.") |
| 65 | + if (temperature <= 0).any(): |
| 66 | + raise ValueError("Temperature contains non-positive values; cannot use log scale.") |
| 67 | + |
| 68 | + fig = make_subplots( |
| 69 | + rows=2, |
| 70 | + cols=1, |
| 71 | + shared_xaxes=True, |
| 72 | + vertical_spacing=0.08, |
| 73 | + subplot_titles=( |
| 74 | + "Temperature vs. Density", |
| 75 | + "Species Fractions vs. Density", |
| 76 | + ), |
| 77 | + ) |
| 78 | + |
| 79 | + fig.add_trace( |
| 80 | + go.Scatter( |
| 81 | + x=density, |
| 82 | + y=temperature, |
| 83 | + mode="lines", |
| 84 | + name="Temperature", |
| 85 | + hovertemplate=( |
| 86 | + "Density: %{x:.3e}<br>Temperature: %{y:.3e}<extra>Temperature</extra>" |
| 87 | + ), |
| 88 | + ), |
| 89 | + row=1, |
| 90 | + col=1, |
| 91 | + ) |
| 92 | + |
| 93 | + for column in species_cols: |
| 94 | + series = data[column] |
| 95 | + positive_mask = series > 0 |
| 96 | + if positive_mask.any(): |
| 97 | + fig.add_trace( |
| 98 | + go.Scatter( |
| 99 | + x=density[positive_mask], |
| 100 | + y=series[positive_mask], |
| 101 | + mode="lines", |
| 102 | + name=column, |
| 103 | + hovertemplate=( |
| 104 | + "Species: " |
| 105 | + + column |
| 106 | + + "<br>Density: %{x:.3e}" |
| 107 | + + "<br>Fraction: %{y:.3e}<extra></extra>" |
| 108 | + ), |
| 109 | + ), |
| 110 | + row=2, |
| 111 | + col=1, |
| 112 | + ) |
| 113 | + |
| 114 | + fig.update_xaxes(type="log", row=1, col=1) |
| 115 | + fig.update_xaxes(type="log", title_text="Density", row=2, col=1) |
| 116 | + fig.update_yaxes(type="log", title_text="Temperature", row=1, col=1) |
| 117 | + fig.update_yaxes(type="log", title_text="Species Fraction", row=2, col=1) |
| 118 | + |
| 119 | + fig.update_layout( |
| 120 | + height=800, |
| 121 | + legend_title_text="Species", |
| 122 | + hovermode="x unified", |
| 123 | + margin=dict(l=70, r=200, t=80, b=60), |
| 124 | + ) |
| 125 | + |
| 126 | + if output: |
| 127 | + output.parent.mkdir(parents=True, exist_ok=True) |
| 128 | + pio.write_html(fig, file=str(output), include_plotlyjs="cdn", full_html=True) |
| 129 | + else: |
| 130 | + fig.show() |
| 131 | + |
| 132 | + |
| 133 | +def main() -> None: |
| 134 | + parser = argparse.ArgumentParser( |
| 135 | + description="Plot temperature and species fractions versus density." |
| 136 | + ) |
| 137 | + parser.add_argument( |
| 138 | + "--input", |
| 139 | + type=Path, |
| 140 | + default=Path("state_over_time.txt"), |
| 141 | + help="Path to the state_over_time.txt file (default: state_over_time.txt).", |
| 142 | + ) |
| 143 | + parser.add_argument( |
| 144 | + "--output", |
| 145 | + type=Path, |
| 146 | + default=None, |
| 147 | + help="Optional output path for saving the Plotly figure as HTML.", |
| 148 | + ) |
| 149 | + args = parser.parse_args() |
| 150 | + |
| 151 | + plot_state(args.input, args.output) |
| 152 | + |
| 153 | + |
| 154 | +if __name__ == "__main__": |
| 155 | + main() |
0 commit comments