|
| 1 | +#ifndef AMREX_GMRES_POISSON_H_ |
| 2 | +#define AMREX_GMRES_POISSON_H_ |
| 3 | +#include <AMReX_Config.H> |
| 4 | + |
| 5 | +#include <AMReX_GMRES.H> |
| 6 | +#include <utility> |
| 7 | + |
| 8 | +namespace amrex { |
| 9 | + |
| 10 | +/** |
| 11 | + * \brief Solve Poisson's equation using amrex GMRES class |
| 12 | + * |
| 13 | + * Refer to comments in amrex/Src/LinearSolvers/AMReX_GMRES.H |
| 14 | + * for details on function implementation requirements |
| 15 | + */ |
| 16 | +class GMRESPOISSON |
| 17 | +{ |
| 18 | +public: |
| 19 | + using RT = amrex::Real; // double or float |
| 20 | + using GM = GMRES<MultiFab,GMRESPOISSON>; |
| 21 | + |
| 22 | + explicit GMRESPOISSON (const BoxArray& ba, const DistributionMapping& dm, const Geometry& geom); |
| 23 | + |
| 24 | + /** |
| 25 | + * \brief Solve the linear system |
| 26 | + * |
| 27 | + * \param a_sol unknowns, i.e., x in A x = b. |
| 28 | + * \param a_rhs RHS, i.e., b in A x = b. |
| 29 | + * \param a_tol_rel relative tolerance. |
| 30 | + * \param a_tol_abs absolute tolerance. |
| 31 | + */ |
| 32 | + void solve (MultiFab& a_sol, MultiFab const& a_rhs, RT a_tol_rel, RT a_tol_abs); |
| 33 | + |
| 34 | + //! Sets verbosity. |
| 35 | + void setVerbose (int v) { m_gmres.setVerbose(v); } |
| 36 | + |
| 37 | + //! Get the GMRES object. |
| 38 | + GM& getGMRES () { return m_gmres; } |
| 39 | + |
| 40 | + //! Make MultiFab without ghost cells |
| 41 | + MultiFab makeVecRHS () const; |
| 42 | + |
| 43 | + //! Make MultiFab with ghost cells and set ghost cells to zero |
| 44 | + MultiFab makeVecLHS () const; |
| 45 | + |
| 46 | + RT norm2 (MultiFab const& mf) const; |
| 47 | + |
| 48 | + static void scale (MultiFab& mf, RT scale_factor); |
| 49 | + |
| 50 | + RT dotProduct (MultiFab const& mf1, MultiFab const& mf2) const; |
| 51 | + |
| 52 | + //! lhs = 0 |
| 53 | + static void setToZero (MultiFab& lhs); |
| 54 | + |
| 55 | + //! lhs = rhs |
| 56 | + static void assign (MultiFab& lhs, MultiFab const& rhs); |
| 57 | + |
| 58 | + //! lhs += a*rhs |
| 59 | + static void increment (MultiFab& lhs, MultiFab const& rhs, RT a); |
| 60 | + |
| 61 | + //! lhs = a*rhs_a + b*rhs_b |
| 62 | + static void linComb (MultiFab& lhs, RT a, MultiFab const& rhs_a, RT b, MultiFab const& rhs_b); |
| 63 | + |
| 64 | + //! lhs = L(rhs) |
| 65 | + void apply (MultiFab& lhs, MultiFab& rhs) const; |
| 66 | + |
| 67 | + void precond (MultiFab& lhs, MultiFab const& rhs) const; |
| 68 | + |
| 69 | + //! Control whether or not to use MLMG as preconditioner. |
| 70 | + bool usePrecond (bool new_flag) { return std::exchange(m_use_precond, new_flag); } |
| 71 | + |
| 72 | +private: |
| 73 | + GM m_gmres; |
| 74 | + BoxArray m_ba; |
| 75 | + DistributionMapping m_dm; |
| 76 | + Geometry m_geom; |
| 77 | + bool m_use_precond; |
| 78 | +}; |
| 79 | + |
| 80 | +GMRESPOISSON::GMRESPOISSON (const BoxArray& ba, const DistributionMapping& dm, const Geometry& geom) |
| 81 | + : m_ba(ba), m_dm(dm), m_geom(geom) |
| 82 | +{ |
| 83 | + m_gmres.define(*this); |
| 84 | +} |
| 85 | + |
| 86 | +auto GMRESPOISSON::makeVecRHS () const -> MultiFab |
| 87 | +{ |
| 88 | + return MultiFab(m_ba, m_dm, 1, 0); |
| 89 | +} |
| 90 | + |
| 91 | +auto GMRESPOISSON::makeVecLHS () const -> MultiFab |
| 92 | +{ |
| 93 | + return MultiFab(m_ba, m_dm, 1, 1); |
| 94 | +} |
| 95 | + |
| 96 | +auto GMRESPOISSON::norm2 (MultiFab const& mf) const -> RT |
| 97 | +{ |
| 98 | + return mf.norm2(); |
| 99 | +} |
| 100 | + |
| 101 | +void GMRESPOISSON::scale (MultiFab& mf, RT scale_factor) |
| 102 | +{ |
| 103 | + mf.mult(scale_factor); |
| 104 | +} |
| 105 | + |
| 106 | +auto GMRESPOISSON::dotProduct (MultiFab const& mf1, MultiFab const& mf2) const -> RT |
| 107 | +{ |
| 108 | + return MultiFab::Dot(mf1,0,mf2,0,1,0); |
| 109 | +} |
| 110 | + |
| 111 | +void GMRESPOISSON::setToZero (MultiFab& lhs) |
| 112 | +{ |
| 113 | + lhs.setVal(0.); |
| 114 | +} |
| 115 | + |
| 116 | +void GMRESPOISSON::assign (MultiFab& lhs, MultiFab const& rhs) |
| 117 | +{ |
| 118 | + MultiFab::Copy(lhs,rhs,0,0,1,0); |
| 119 | +} |
| 120 | + |
| 121 | +void GMRESPOISSON::increment (MultiFab& lhs, MultiFab const& rhs, RT a) |
| 122 | +{ |
| 123 | + MultiFab::Saxpy(lhs,a,rhs,0,0,1,0); |
| 124 | +} |
| 125 | + |
| 126 | +void GMRESPOISSON::linComb (MultiFab& lhs, RT a, MultiFab const& rhs_a, RT b, MultiFab const& rhs_b) |
| 127 | +{ |
| 128 | + MultiFab::LinComb(lhs,a,rhs_a,0,b,rhs_b,0,0,1,0); |
| 129 | +} |
| 130 | + |
| 131 | +void GMRESPOISSON::apply (MultiFab& lhs, MultiFab& rhs) const |
| 132 | +{ |
| 133 | + // apply matrix to rhs for output lhs |
| 134 | + rhs.FillBoundary(m_geom.periodicity()); |
| 135 | + |
| 136 | + const GpuArray<Real, AMREX_SPACEDIM> dx = m_geom.CellSizeArray(); |
| 137 | + |
| 138 | + for ( MFIter mfi(lhs,TilingIfNotGPU()); mfi.isValid(); ++mfi ) { |
| 139 | + |
| 140 | + const Box& bx = mfi.tilebox(); |
| 141 | + |
| 142 | + const Array4<const Real> & rhs_p = rhs.array(mfi); |
| 143 | + const Array4< Real> & lhs_p = lhs.array(mfi); |
| 144 | + |
| 145 | + amrex::ParallelFor(bx, [=] AMREX_GPU_DEVICE (int i, int j, int k) noexcept |
| 146 | + { |
| 147 | + lhs_p(i,j,k) = ( rhs_p(i+1,j,k) - 2.*rhs_p(i,j,k) + rhs_p(i-1,j,k) ) / (dx[0]*dx[0]) |
| 148 | + + ( rhs_p(i,j+1,k) - 2.*rhs_p(i,j,k) + rhs_p(i,j-1,k) ) / (dx[1]*dx[1]) |
| 149 | +#if (AMREX_SPACEDIM == 3) |
| 150 | + + ( rhs_p(i,j,k+1) - 2.*rhs_p(i,j,k) + rhs_p(i,j,k-1) ) / (dx[2]*dx[2]) |
| 151 | +#endif |
| 152 | + ; |
| 153 | + }); |
| 154 | + |
| 155 | + } |
| 156 | + |
| 157 | + |
| 158 | +} |
| 159 | + |
| 160 | +void GMRESPOISSON::precond (MultiFab& lhs, MultiFab const& rhs) const |
| 161 | +{ |
| 162 | + if (m_use_precond) { |
| 163 | + |
| 164 | + // in the preconditioner we use right-preconditioning to solve |
| 165 | + // lhs = P^inv(rhs), where P^inv approximates A^inv |
| 166 | + // Here we use Jacobi iterations to represent P^inv with an initial guess of lhs=0 |
| 167 | + |
| 168 | + const GpuArray<Real, AMREX_SPACEDIM> dx = m_geom.CellSizeArray(); |
| 169 | + |
| 170 | + amrex::Real fac = 0.; |
| 171 | + for (int d=0; d<AMREX_SPACEDIM; ++d) { fac -= 2./(dx[d]*dx[d]); } |
| 172 | + |
| 173 | + MultiFab tmp(m_ba, m_dm, 1, 1); |
| 174 | + auto const& tmp_ma = tmp.const_arrays(); |
| 175 | + auto const& rhs_ma = rhs.const_arrays(); |
| 176 | + auto const& lhs_ma = lhs.arrays(); |
| 177 | + |
| 178 | + lhs.setVal(0.); |
| 179 | + |
| 180 | + const int niters = 8; |
| 181 | + for (int iter = 0; iter < niters; ++iter) { |
| 182 | + |
| 183 | + MultiFab::Copy(tmp, lhs, 0, 0, 1, 0); |
| 184 | + tmp.FillBoundary(m_geom.periodicity()); |
| 185 | + |
| 186 | + ParallelFor(lhs, [=] AMREX_GPU_DEVICE (int b, int i, int j, int k) |
| 187 | + { |
| 188 | + auto const& tmp_ptr = tmp_ma[b]; |
| 189 | + auto ax = ( tmp_ptr(i+1,j,k) - 2.*tmp_ptr(i,j,k) + tmp_ptr(i-1,j,k) ) / (dx[0]*dx[0]) |
| 190 | + + ( tmp_ptr(i,j+1,k) - 2.*tmp_ptr(i,j,k) + tmp_ptr(i,j-1,k) ) / (dx[1]*dx[1]) |
| 191 | +#if (AMREX_SPACEDIM == 3) |
| 192 | + + ( tmp_ptr(i,j,k+1) - 2.*tmp_ptr(i,j,k) + tmp_ptr(i,j,k-1) ) / (dx[2]*dx[2]) |
| 193 | +#endif |
| 194 | + ; |
| 195 | + auto res = rhs_ma[b](i,j,k) - ax; |
| 196 | + |
| 197 | + lhs_ma[b](i,j,k) += res / fac * Real(2./3.); // 2/3: weighted jacobi |
| 198 | + |
| 199 | + }); |
| 200 | + Gpu::streamSynchronize(); |
| 201 | + |
| 202 | + } |
| 203 | + } else { |
| 204 | + MultiFab::Copy(lhs,rhs,0,0,1,0); |
| 205 | + } |
| 206 | +} |
| 207 | + |
| 208 | +void GMRESPOISSON::solve (MultiFab& a_sol, MultiFab const& a_rhs, RT a_tol_rel, RT a_tol_abs) |
| 209 | +{ |
| 210 | + m_gmres.solve(a_sol, a_rhs, a_tol_rel, a_tol_abs); |
| 211 | +} |
| 212 | + |
| 213 | +} |
| 214 | + |
| 215 | +#endif |
0 commit comments