-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsonw_quantum_advanced_circuits.py
281 lines (236 loc) · 8.78 KB
/
sonw_quantum_advanced_circuits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import tensorflow as tf
import numpy as np
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit_aer import Aer
from qiskit.circuit.library import (
QFT, PhaseEstimation, RealAmplitudes,
EfficientSU2, ZZFeatureMap
)
from qiskit.quantum_info import Operator, random_statevector
from typing import Dict, List, Optional, Tuple
class AdvancedQuantumCircuits:
"""
Advanced quantum circuit implementations with
parametric architecture and self-optimization
"""
def __init__(
self,
n_qubits: int = 4,
depth: int = 3,
learning_rate: float = 0.01
):
self.n_qubits = n_qubits
self.depth = depth
self.learning_rate = learning_rate
self.simulator = Aer.get_backend('aer_simulator')
# Initialize parametric circuits
self.variational_form = RealAmplitudes(
n_qubits,
reps=depth
)
self.feature_map = ZZFeatureMap(
n_qubits,
reps=2
)
def create_superposition_circuit(
self,
state_vector: np.ndarray,
entanglement_type: str = 'circular'
) -> QuantumCircuit:
"""Creates advanced superposition with controlled entanglement"""
qc = QuantumCircuit(self.n_qubits)
# Initialize to custom state
normalized_state = state_vector / np.linalg.norm(state_vector)
angles = 2 * np.arccos(np.abs(normalized_state))
# Apply sophisticated initialization
for i in range(self.n_qubits):
qc.ry(angles[i], i)
qc.rz(np.pi/2, i)
# Add entanglement based on type
if entanglement_type == 'circular':
for i in range(self.n_qubits):
qc.cx(i, (i + 1) % self.n_qubits)
elif entanglement_type == 'full':
for i in range(self.n_qubits):
for j in range(i + 1, self.n_qubits):
qc.cx(i, j)
elif entanglement_type == 'adaptive':
# Adaptive entanglement based on state correlations
correlations = np.outer(normalized_state, normalized_state)
threshold = np.mean(correlations)
for i in range(self.n_qubits):
for j in range(i + 1, self.n_qubits):
if correlations[i,j] > threshold:
qc.cx(i, j)
return qc
def create_resonance_circuit(
self,
frequencies: np.ndarray,
phases: Optional[np.ndarray] = None
) -> QuantumCircuit:
"""Creates quantum resonance circuit with frequency encoding"""
qc = QuantumCircuit(self.n_qubits)
if phases is None:
phases = np.zeros_like(frequencies)
# Apply frequency encoding
for i in range(self.n_qubits):
qc.h(i) # Create superposition
qc.rz(frequencies[i], i) # Frequency encoding
qc.rx(phases[i], i) # Phase encoding
# Add resonant coupling
for i in range(self.n_qubits - 1):
qc.rzz(frequencies[i] * frequencies[i+1], i, i+1)
return qc
def create_quantum_fourier_circuit(
self,
input_state: np.ndarray
) -> QuantumCircuit:
"""Creates QFT circuit with enhanced phase estimation"""
qc = QuantumCircuit(self.n_qubits)
# Initialize input state
normalized_state = input_state / np.linalg.norm(input_state)
qc.initialize(normalized_state, range(self.n_qubits))
# Apply QFT
qft = QFT(self.n_qubits)
qc.compose(qft, inplace=True)
# Add phase estimation
phase_est = PhaseEstimation(
num_evaluation_qubits=2,
unitary=RealAmplitudes(self.n_qubits-2, reps=1)
)
qc.compose(phase_est, inplace=True)
return qc
def create_variational_circuit(
self,
parameters: np.ndarray,
input_state: np.ndarray
) -> QuantumCircuit:
"""Creates variational quantum circuit with feature mapping"""
qc = QuantumCircuit(self.n_qubits)
# Apply feature mapping
feature_circuit = self.feature_map.assign_parameters(input_state)
qc.compose(feature_circuit, inplace=True)
# Apply variational form
var_circuit = self.variational_form.assign_parameters(parameters)
qc.compose(var_circuit, inplace=True)
return qc
def create_error_resilient_circuit(
self,
input_state: np.ndarray,
error_rates: Optional[np.ndarray] = None
) -> QuantumCircuit:
"""Creates error-resilient circuit with dynamic error mitigation"""
qc = QuantumCircuit(self.n_qubits)
if error_rates is None:
error_rates = np.ones(self.n_qubits) * 0.01
# Apply error-resilient encoding
for i in range(self.n_qubits):
# Add error detection ancilla
qc.h(i)
qc.rzz(error_rates[i], i, (i+1) % self.n_qubits)
# Apply main computation
normalized_state = input_state / np.linalg.norm(input_state)
for i in range(self.n_qubits):
qc.ry(normalized_state[i], i)
# Add error correction
for i in range(self.n_qubits):
qc.measure_xx(i, (i+1) % self.n_qubits)
return qc
class QuantumResonanceCircuit(tf.keras.layers.Layer):
"""
Enhanced quantum resonance layer with advanced circuits
"""
def __init__(
self,
units: int,
n_qubits: int = 4,
depth: int = 3,
**kwargs
):
super().__init__(**kwargs)
self.units = units
self.n_qubits = n_qubits
self.depth = depth
# Initialize quantum circuits
self.quantum_circuits = AdvancedQuantumCircuits(
n_qubits=n_qubits,
depth=depth
)
def build(self, input_shape):
# Quantum-classical interface
self.encoder = self.add_weight(
shape=(input_shape[-1], 2**self.n_qubits),
initializer='orthogonal',
trainable=True,
name='encoder'
)
self.decoder = self.add_weight(
shape=(2**self.n_qubits, self.units),
initializer='orthogonal',
trainable=True,
name='decoder'
)
# Variational parameters
self.variational_params = self.add_weight(
shape=(self.depth, 2**self.n_qubits),
initializer='random_normal',
trainable=True,
name='variational_params'
)
def process_quantum_state(
self,
encoded_state: tf.Tensor
) -> tf.Tensor:
# Convert to numpy for quantum circuit processing
state_np = encoded_state.numpy()
# Create superposition circuit
qc_super = self.quantum_circuits.create_superposition_circuit(
state_np,
entanglement_type='adaptive'
)
# Create resonance circuit
frequencies = np.abs(state_np)
phases = np.angle(state_np)
qc_res = self.quantum_circuits.create_resonance_circuit(
frequencies,
phases
)
# Create variational circuit
qc_var = self.quantum_circuits.create_variational_circuit(
self.variational_params.numpy(),
state_np
)
# Combine circuits
qc = qc_super.compose(qc_res)
qc = qc.compose(qc_var)
# Add error resilience
qc_error = self.quantum_circuits.create_error_resilient_circuit(
state_np
)
qc = qc.compose(qc_error)
# Execute circuit
job = self.quantum_circuits.simulator.run(qc, shots=1000)
result = job.result()
counts = result.get_counts()
# Convert to probabilities
probs = np.zeros(2**self.n_qubits)
for bitstring, count in counts.items():
idx = int(bitstring, 2)
probs[idx] = count / 1000
return tf.convert_to_tensor(probs, dtype=tf.float32)
def call(
self,
inputs: tf.Tensor,
training: bool = None
) -> tf.Tensor:
# Encode classical information
quantum_state = tf.matmul(inputs, self.encoder)
# Process through quantum circuits
quantum_outputs = tf.map_fn(
self.process_quantum_state,
quantum_state,
dtype=tf.float32
)
# Decode quantum results
classical_output = tf.matmul(quantum_outputs, self.decoder)
return classical_output