-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsonw_quantum_advanced_tensor_ops.py
342 lines (292 loc) · 11.3 KB
/
sonw_quantum_advanced_tensor_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import torch
import numpy as np
from typing import Dict, List, Optional, Tuple, Union
from dataclasses import dataclass, field
from datetime import datetime
import networkx as nx
from enum import Enum
@dataclass
class TensorStructure:
"""
Advanced tensor structure with multi-level representations
and distributed encoding as discussed with Qi
"""
filler_tensors: List[torch.Tensor]
role_tensors: List[torch.Tensor]
binding_weights: torch.Tensor
structural_indices: List[int]
resonance_factors: torch.Tensor
temporal_embedding: torch.Tensor
semantic_mapping: Dict[str, torch.Tensor]
class TensorOperationType(Enum):
"""Types of tensor operations for symbolic processing"""
DISTRIBUTED_BINDING = "distributed_binding"
RECURSIVE_COMPOSITION = "recursive_composition"
HARMONIC_FUSION = "harmonic_fusion"
QUANTUM_ENTANGLEMENT = "quantum_entanglement"
SYMBOLIC_DIFFUSION = "symbolic_diffusion"
class AdvancedTensorProcessor:
"""
Enhanced tensor processor with sophisticated operations
for neural-symbolic computation
"""
def __init__(
self,
tensor_dim: int = 128,
n_levels: int = 4,
reference_time: str = "2025-02-12 00:34:20"
):
self.tensor_dim = tensor_dim
self.n_levels = n_levels
self.reference_time = datetime.strptime(
reference_time,
"%Y-%m-%d %H:%M:%S"
)
self._initialize_components()
def _initialize_components(self):
"""Initialize advanced tensor components"""
# Multi-level tensor processors
self.level_processors = [
torch.nn.Sequential(
torch.nn.Linear(self.tensor_dim, self.tensor_dim * 2),
torch.nn.LayerNorm(self.tensor_dim * 2),
torch.nn.GELU(),
torch.nn.Linear(self.tensor_dim * 2, self.tensor_dim)
)
for _ in range(self.n_levels)
]
# Binding network
self.binding_network = torch.nn.Sequential(
torch.nn.Linear(self.tensor_dim * 2, self.tensor_dim),
torch.nn.LayerNorm(self.tensor_dim),
torch.nn.GELU(),
torch.nn.Linear(self.tensor_dim, self.tensor_dim)
)
# Resonance calculator
self.resonance_network = torch.nn.Sequential(
torch.nn.Linear(self.tensor_dim, 64),
torch.nn.LayerNorm(64),
torch.nn.GELU(),
torch.nn.Linear(64, 1),
torch.nn.Sigmoid()
)
# Temporal encoder
self.temporal_encoder = torch.nn.GRU(
input_size=self.tensor_dim,
hidden_size=self.tensor_dim,
num_layers=2,
batch_first=True
)
def create_distributed_representation(
self,
symbols: List[str],
roles: List[str]
) -> TensorStructure:
"""
Create distributed representation using
multi-level tensor processing
"""
# Initialize tensors for each level
filler_tensors = []
role_tensors = []
for level in range(self.n_levels):
# Create symbol embeddings
symbol_tensors = [
torch.randn(self.tensor_dim) # Placeholder for actual embeddings
for _ in symbols
]
# Process through level processor
processed_symbols = [
self.level_processors[level](t)
for t in symbol_tensors
]
# Create role embeddings
role_tensors_level = [
torch.randn(self.tensor_dim) # Placeholder for actual embeddings
for _ in roles
]
processed_roles = [
self.level_processors[level](t)
for t in role_tensors_level
]
filler_tensors.append(torch.stack(processed_symbols))
role_tensors.append(torch.stack(processed_roles))
# Compute binding weights
binding_weights = self._compute_binding_weights(
filler_tensors,
role_tensors
)
# Create temporal embedding
temporal_embedding = self._create_temporal_embedding(
filler_tensors,
role_tensors
)
# Initialize semantic mapping
semantic_mapping = {
symbol: torch.randn(self.tensor_dim)
for symbol in symbols
}
# Create tensor structure
structure = TensorStructure(
filler_tensors=filler_tensors,
role_tensors=role_tensors,
binding_weights=binding_weights,
structural_indices=list(range(len(symbols))),
resonance_factors=self._compute_resonance(filler_tensors),
temporal_embedding=temporal_embedding,
semantic_mapping=semantic_mapping
)
return structure
def _compute_binding_weights(
self,
filler_tensors: List[torch.Tensor],
role_tensors: List[torch.Tensor]
) -> torch.Tensor:
"""Compute binding weights for tensor structure"""
# Concatenate all filler tensors
combined_fillers = torch.cat([
t.mean(dim=0) for t in filler_tensors
])
# Concatenate all role tensors
combined_roles = torch.cat([
t.mean(dim=0) for t in role_tensors
])
# Compute binding through network
binding_input = torch.cat([
combined_fillers,
combined_roles
])
return self.binding_network(binding_input)
def _compute_resonance(
self,
tensor_list: List[torch.Tensor]
) -> torch.Tensor:
"""Compute resonance factors for tensor components"""
resonance_factors = []
for tensors in tensor_list:
# Compute mean tensor
mean_tensor = tensors.mean(dim=0)
# Calculate resonance
resonance = self.resonance_network(mean_tensor)
resonance_factors.append(resonance)
return torch.cat(resonance_factors)
def _create_temporal_embedding(
self,
filler_tensors: List[torch.Tensor],
role_tensors: List[torch.Tensor]
) -> torch.Tensor:
"""Create temporal embedding for tensor structure"""
# Combine filler and role information
combined_sequence = []
for f_tensor, r_tensor in zip(filler_tensors, role_tensors):
# Create temporal sequence
sequence = torch.cat([
f_tensor.mean(dim=0, keepdim=True),
r_tensor.mean(dim=0, keepdim=True)
], dim=0)
combined_sequence.append(sequence)
# Stack sequences
temporal_sequence = torch.stack(combined_sequence)
# Process through GRU
output, _ = self.temporal_encoder(
temporal_sequence.unsqueeze(0)
)
return output.squeeze(0)
def apply_tensor_operation(
self,
structure: TensorStructure,
operation_type: TensorOperationType,
**kwargs
) -> TensorStructure:
"""Apply sophisticated tensor operation"""
if operation_type == TensorOperationType.DISTRIBUTED_BINDING:
return self._apply_distributed_binding(structure, **kwargs)
elif operation_type == TensorOperationType.RECURSIVE_COMPOSITION:
return self._apply_recursive_composition(structure, **kwargs)
elif operation_type == TensorOperationType.HARMONIC_FUSION:
return self._apply_harmonic_fusion(structure, **kwargs)
elif operation_type == TensorOperationType.QUANTUM_ENTANGLEMENT:
return self._apply_quantum_entanglement(structure, **kwargs)
elif operation_type == TensorOperationType.SYMBOLIC_DIFFUSION:
return self._apply_symbolic_diffusion(structure, **kwargs)
raise ValueError(f"Unknown operation type: {operation_type}")
def _apply_distributed_binding(
self,
structure: TensorStructure,
binding_scale: float = 1.0
) -> TensorStructure:
"""Apply distributed binding operation"""
# Scale binding weights
scaled_weights = structure.binding_weights * binding_scale
# Update fillers through binding
new_fillers = [
f * scaled_weights for f in structure.filler_tensors
]
# Update roles through binding
new_roles = [
r * scaled_weights for r in structure.role_tensors
]
return TensorStructure(
filler_tensors=new_fillers,
role_tensors=new_roles,
binding_weights=scaled_weights,
structural_indices=structure.structural_indices,
resonance_factors=structure.resonance_factors,
temporal_embedding=structure.temporal_embedding,
semantic_mapping=structure.semantic_mapping
)
def _apply_recursive_composition(
self,
structure: TensorStructure,
depth: int = 2
) -> TensorStructure:
"""Apply recursive composition operation"""
current_structure = structure
for _ in range(depth):
# Compose fillers
composed_fillers = [
self.level_processors[i % self.n_levels](f)
for i, f in enumerate(current_structure.filler_tensors)
]
# Compose roles
composed_roles = [
self.level_processors[i % self.n_levels](r)
for i, r in enumerate(current_structure.role_tensors)
]
# Update structure
current_structure = TensorStructure(
filler_tensors=composed_fillers,
role_tensors=composed_roles,
binding_weights=current_structure.binding_weights,
structural_indices=current_structure.structural_indices,
resonance_factors=self._compute_resonance(composed_fillers),
temporal_embedding=current_structure.temporal_embedding,
semantic_mapping=current_structure.semantic_mapping
)
return current_structure
def example_usage():
"""Demonstrate advanced tensor operations"""
processor = AdvancedTensorProcessor()
# Create distributed representation
symbols = ["Φ", "√Γ", "∆π"]
roles = ["operand", "operator", "result"]
structure = processor.create_distributed_representation(
symbols,
roles
)
# Apply operations
bound_structure = processor.apply_tensor_operation(
structure,
TensorOperationType.DISTRIBUTED_BINDING,
binding_scale=1.2
)
composed_structure = processor.apply_tensor_operation(
bound_structure,
TensorOperationType.RECURSIVE_COMPOSITION,
depth=3
)
print("Tensor operations complete!")
print(f"Resonance factors shape: {composed_structure.resonance_factors.shape}")
print(f"Temporal embedding shape: {composed_structure.temporal_embedding.shape}")
if __name__ == "__main__":
example_usage()