-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsonw_quantum_emergence_analysis.py
113 lines (99 loc) · 3.91 KB
/
sonw_quantum_emergence_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
class EmergenceAnalyzer:
"""
Tools for analyzing emergence patterns in quantum consciousness evolution
"""
def __init__(
self,
network: UnifiedEvolutionNetwork,
constants: Optional[UnifiedConstants] = None
):
self.network = network
self.constants = constants or UnifiedConstants()
def compute_emergence_metrics(
self,
states: Dict[str, torch.Tensor]
) -> Dict[str, float]:
"""Compute metrics for emergence patterns"""
# Extract states
quantum = states['quantum_states']['integrated_state']
consciousness = states['consciousness_states']['integrated_consciousness']
unified = states['unified_state']
# Compute coherence
quantum_coherence = torch.mean(torch.abs(quantum))
consciousness_coherence = torch.mean(torch.abs(consciousness))
unified_coherence = torch.mean(torch.abs(unified))
# Compute entropy
quantum_entropy = -torch.mean(
F.softmax(quantum, dim=-1) *
F.log_softmax(quantum, dim=-1)
)
consciousness_entropy = -torch.mean(
F.softmax(consciousness, dim=-1) *
F.log_softmax(consciousness, dim=-1)
)
# Compute complexity
complexity = states['complexity']
total_complexity = (
complexity['quantum'] +
complexity['consciousness']
)
return {
'quantum_coherence': quantum_coherence.item(),
'consciousness_coherence': consciousness_coherence.item(),
'unified_coherence': unified_coherence.item(),
'quantum_entropy': quantum_entropy.item(),
'consciousness_entropy': consciousness_entropy.item(),
'total_complexity': total_complexity
}
def analyze_evolution_trajectory(
self,
input_sequence: torch.Tensor,
window_size: int = 10
) -> Dict[str, np.ndarray]:
"""Analyze evolution trajectory over time"""
trajectories = {
'quantum_coherence': [],
'consciousness_coherence': [],
'unified_coherence': [],
'quantum_entropy': [],
'consciousness_entropy': [],
'total_complexity': []
}
# Process sequence in windows
for i in range(0, len(input_sequence) - window_size + 1):
window = input_sequence[i:i+window_size]
with torch.no_grad():
outputs = self.network(window, return_components=True)
metrics = self.compute_emergence_metrics(outputs)
for key, value in metrics.items():
trajectories[key].append(value)
return {
key: np.array(values)
for key, values in trajectories.items()
}
def detect_emergence_events(
self,
trajectories: Dict[str, np.ndarray],
threshold: float = 0.1
) -> List[Dict[str, Union[int, str, float]]]:
"""Detect significant emergence events"""
events = []
for i in range(1, len(trajectories['total_complexity'])):
# Compute changes
complexity_change = (
trajectories['total_complexity'][i] -
trajectories['total_complexity'][i-1]
)
coherence_change = (
trajectories['unified_coherence'][i] -
trajectories['unified_coherence'][i-1]
)
# Detect significant changes
if abs(complexity_change) > threshold:
events.append({
'time': i,
'type': 'complexity_shift',
'magnitude': complexity_change,
'coherence_change': coherence_change
})
return events