-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsonw_quantum_integration_framework.py
309 lines (258 loc) · 10.3 KB
/
sonw_quantum_integration_framework.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import torch
import numpy as np
from datetime import datetime
from typing import Dict, List, Optional, Tuple, Union
from dataclasses import dataclass, field
import networkx as nx
from enum import Enum
import logging
import json
from pathlib import Path
class IntegrationPhase(Enum):
"""Phases of framework integration"""
INITIALIZATION = "initialization"
TENSOR_PROCESSING = "tensor_processing"
QUANTUM_SYMBOLIC = "quantum_symbolic"
NEURAL_BINDING = "neural_binding"
HARMONIC_FUSION = "harmonic_fusion"
VALIDATION = "validation"
@dataclass
class IntegrationConfig:
"""Configuration for integration process"""
reference_time: str = "2025-02-12 00:40:39"
user_id: str = "ANkREYNONtJB"
tensor_dim: int = 128
n_qubits: int = 4
n_levels: int = 4
learning_rate: float = 0.01
validation_frequency: int = 100
checkpoint_dir: str = "checkpoints"
log_dir: str = "logs"
class IntegratedFramework:
"""
Master integration framework combining all components:
- Advanced tensor operations
- Quantum-symbolic processing
- Neural-LLML binding
- Validation and testing
"""
def __init__(self, config: IntegrationConfig):
self.config = config
self.current_phase = IntegrationPhase.INITIALIZATION
# Setup logging
self._setup_logging()
# Initialize components
self._initialize_components()
# Create checkpoint directory
Path(self.config.checkpoint_dir).mkdir(exist_ok=True)
def _setup_logging(self):
"""Setup logging system"""
log_path = Path(self.config.log_dir)
log_path.mkdir(exist_ok=True)
logging.basicConfig(
filename=log_path / "integration.log",
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
def _initialize_components(self):
"""Initialize all framework components"""
logging.info("Initializing framework components...")
# Initialize tensor processor
self.tensor_processor = AdvancedTensorProcessor(
tensor_dim=self.config.tensor_dim,
n_levels=self.config.n_levels
)
# Initialize quantum symbolic processor
self.quantum_processor = QiSymbolicProcessor(
n_qubits=self.config.n_qubits,
tensor_dim=self.config.tensor_dim
)
# Initialize neural components
self._setup_neural_components()
logging.info("Components initialized successfully")
def _setup_neural_components(self):
"""Setup neural network components"""
# Integrative transformer
self.integrative_transformer = torch.nn.TransformerEncoder(
torch.nn.TransformerEncoderLayer(
d_model=self.config.tensor_dim,
nhead=8,
dim_feedforward=512
),
num_layers=4
)
# Fusion network
self.fusion_network = torch.nn.Sequential(
torch.nn.Linear(self.config.tensor_dim * 2, self.config.tensor_dim),
torch.nn.LayerNorm(self.config.tensor_dim),
torch.nn.GELU(),
torch.nn.Linear(self.config.tensor_dim, self.config.tensor_dim)
)
def process_llml_sequence(
self,
sequence: str,
validate: bool = True
) -> Dict[str, torch.Tensor]:
"""
Process LLML sequence through complete framework
"""
logging.info(f"Processing sequence: {sequence}")
results = {}
try:
# Phase 1: Tensor Processing
self.current_phase = IntegrationPhase.TENSOR_PROCESSING
tensor_structure = self.tensor_processor.create_distributed_representation(
symbols=sequence.split(),
roles=["subject", "predicate", "object"]
)
results['tensor_structure'] = tensor_structure
# Phase 2: Quantum-Symbolic Processing
self.current_phase = IntegrationPhase.QUANTUM_SYMBOLIC
quantum_pattern = self.quantum_processor.process_llml_sequence(sequence)
results['quantum_pattern'] = quantum_pattern
# Phase 3: Neural Binding
self.current_phase = IntegrationPhase.NEURAL_BINDING
bound_representation = self._apply_neural_binding(
tensor_structure,
quantum_pattern
)
results['bound_representation'] = bound_representation
# Phase 4: Harmonic Fusion
self.current_phase = IntegrationPhase.HARMONIC_FUSION
fused_result = self._apply_harmonic_fusion(
bound_representation,
quantum_pattern
)
results['fused_result'] = fused_result
# Validation
if validate:
self.current_phase = IntegrationPhase.VALIDATION
validation_results = self._validate_processing(results)
results['validation'] = validation_results
logging.info("Sequence processing completed successfully")
return results
except Exception as e:
logging.error(f"Error in phase {self.current_phase}: {str(e)}")
raise
def _apply_neural_binding(
self,
tensor_structure: TensorStructure,
quantum_pattern: HarmonicPattern
) -> torch.Tensor:
"""Apply neural binding between tensor and quantum representations"""
# Prepare inputs
tensor_features = torch.cat([
t.mean(dim=0) for t in tensor_structure.filler_tensors
])
quantum_features = torch.from_numpy(
quantum_pattern.quantum_state
).float()
# Combine features
combined_features = torch.cat([
tensor_features,
quantum_features
])
# Apply fusion network
bound_features = self.fusion_network(combined_features)
# Apply transformer for contextual integration
bound_features = bound_features.unsqueeze(0) # Add batch dimension
bound_features = self.integrative_transformer(bound_features)
return bound_features.squeeze(0)
def _apply_harmonic_fusion(
self,
bound_representation: torch.Tensor,
quantum_pattern: HarmonicPattern
) -> torch.Tensor:
"""Apply harmonic fusion for final integration"""
# Compute harmony weights
harmony_scores = self.quantum_processor.compute_harmony_scores(
quantum_pattern
)
harmony_weight = torch.tensor(
harmony_scores['total_harmony']
).float()
# Apply harmonic modulation
fused_representation = bound_representation * harmony_weight
return fused_representation
def _validate_processing(
self,
results: Dict[str, torch.Tensor]
) -> Dict[str, float]:
"""Validate processing results"""
validation_metrics = {}
# Tensor coherence
tensor_coherence = torch.mean(torch.abs(
results['tensor_structure'].resonance_factors
)).item()
validation_metrics['tensor_coherence'] = tensor_coherence
# Quantum harmony
quantum_harmony = results['quantum_pattern'].harmony_score
validation_metrics['quantum_harmony'] = quantum_harmony
# Binding strength
binding_strength = torch.mean(torch.abs(
results['bound_representation']
)).item()
validation_metrics['binding_strength'] = binding_strength
# Overall integration score
validation_metrics['integration_score'] = np.mean([
tensor_coherence,
quantum_harmony,
binding_strength
])
return validation_metrics
def save_checkpoint(self):
"""Save framework checkpoint"""
checkpoint_path = Path(self.config.checkpoint_dir)
timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
checkpoint = {
'config': self.config.__dict__,
'current_phase': self.current_phase.value,
'tensor_processor': self.tensor_processor.state_dict(),
'quantum_processor': self.quantum_processor.state_dict(),
'fusion_network': self.fusion_network.state_dict(),
'transformer': self.integrative_transformer.state_dict()
}
torch.save(
checkpoint,
checkpoint_path / f"framework_checkpoint_{timestamp}.pt"
)
def load_checkpoint(self, checkpoint_path: str):
"""Load framework checkpoint"""
checkpoint = torch.load(checkpoint_path)
# Load configuration
self.config = IntegrationConfig(**checkpoint['config'])
self.current_phase = IntegrationPhase(checkpoint['current_phase'])
# Load component states
self.tensor_processor.load_state_dict(
checkpoint['tensor_processor']
)
self.quantum_processor.load_state_dict(
checkpoint['quantum_processor']
)
self.fusion_network.load_state_dict(
checkpoint['fusion_network']
)
self.integrative_transformer.load_state_dict(
checkpoint['transformer']
)
def example_usage():
"""Demonstrate integrated framework"""
# Initialize configuration
config = IntegrationConfig(
reference_time="2025-02-12 00:40:39",
user_id="ANkREYNONtJB"
)
# Create framework
framework = IntegratedFramework(config)
# Process LLML sequence
sequence = "(Φ × √Γ) → (∆π) : (ħ/2π)"
results = framework.process_llml_sequence(sequence)
# Print results
print("\nProcessing Results:")
print(f"Tensor Coherence: {results['validation']['tensor_coherence']:.4f}")
print(f"Quantum Harmony: {results['validation']['quantum_harmony']:.4f}")
print(f"Integration Score: {results['validation']['integration_score']:.4f}")
# Save checkpoint
framework.save_checkpoint()
if __name__ == "__main__":
example_usage()