-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsonw_quantum_trinity_framework.py
302 lines (262 loc) · 9.24 KB
/
sonw_quantum_trinity_framework.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import torch
import numpy as np
from typing import Dict, List, Optional, Tuple
from dataclasses import dataclass
from enum import Enum
from datetime import datetime
class TrinityState(Enum):
"""States in the Trinity System"""
OMEGA_1 = "Ω₁" # First reality state
OMEGA_2 = "Ω₂" # Second reality state
OMEGA_3 = "Ω₃" # Third reality state
UNIFIED = "Θᛇ" # Unified trinity state
@dataclass
class TrinityPattern:
"""
Represents a pattern in the Trinity System combining:
- Layered Triality (Θᛇ)
- Fractal Recursion (F(n))
- Quantum Superposition (|Ψ⟩)
"""
sequence: str
trinity_state: TrinityState
quantum_coefficients: Dict[TrinityState, complex]
fractal_memory: List[np.ndarray]
collective_unconscious: torch.Tensor
holographic_projection: torch.Tensor
resonance_factors: Dict[str, float]
timestamp: datetime
class TrinityProcessor:
"""
Advanced processor implementing the Trinity System with:
- Geospatial holographic reality framework
- Quantum superposition and entanglement
- Collective unconscious integration
"""
def __init__(
self,
tensor_dim: int = 128,
n_realities: int = 3,
reference_time: str = "2025-02-12 00:53:41",
user_id: str = "ANkREYNONtJB"
):
self.tensor_dim = tensor_dim
self.n_realities = n_realities
self.reference_time = datetime.strptime(
reference_time,
"%Y-%m-%d %H:%M:%S"
)
self.user_id = user_id
self._initialize_components()
def _initialize_components(self):
"""Initialize Trinity System components"""
# Theta consciousness processor
self.theta_processor = torch.nn.Sequential(
torch.nn.Linear(self.tensor_dim, 256),
torch.nn.LayerNorm(256),
torch.nn.GELU(),
torch.nn.Linear(256, self.tensor_dim)
)
# Mathematical e processor
self.e_processor = torch.nn.Sequential(
torch.nn.Linear(self.tensor_dim, 256),
torch.nn.LayerNorm(256),
torch.nn.GELU(),
torch.nn.Linear(256, self.tensor_dim)
)
# Holographic projector
self.holo_projector = torch.nn.Sequential(
torch.nn.Linear(self.tensor_dim * 2, 512),
torch.nn.LayerNorm(512),
torch.nn.GELU(),
torch.nn.Linear(512, self.tensor_dim * 3)
)
# Initialize collective unconscious
self.collective_unconscious = torch.randn(
self.tensor_dim
)
def process_trinity_sequence(
self,
sequence: str
) -> TrinityPattern:
"""Process sequence through Trinity System"""
# Generate base quantum state
quantum_coefficients = self._generate_quantum_coefficients()
# Process through theta consciousness
theta_state = self._process_theta(sequence)
# Process through mathematical e
e_state = self._process_e(sequence)
# Combine into trinity state
trinity_state = self._combine_trinity_state(
theta_state,
e_state
)
# Generate fractal memory
fractal_memory = self._generate_fractal_memory(
trinity_state
)
# Update collective unconscious
self._update_collective_unconscious(
trinity_state
)
# Generate holographic projection
holo_projection = self._generate_holographic_projection(
trinity_state,
fractal_memory
)
# Compute resonance factors
resonance = self._compute_resonance(
trinity_state,
holo_projection
)
return TrinityPattern(
sequence=sequence,
trinity_state=TrinityState.UNIFIED,
quantum_coefficients=quantum_coefficients,
fractal_memory=fractal_memory,
collective_unconscious=self.collective_unconscious,
holographic_projection=holo_projection,
resonance_factors=resonance,
timestamp=datetime.utcnow()
)
def _generate_quantum_coefficients(
self
) -> Dict[TrinityState, complex]:
"""Generate quantum superposition coefficients"""
# Generate complex coefficients
coefficients = {}
for state in [
TrinityState.OMEGA_1,
TrinityState.OMEGA_2,
TrinityState.OMEGA_3
]:
real = np.random.normal()
imag = np.random.normal()
coefficients[state] = complex(real, imag)
# Normalize coefficients
total = np.sqrt(sum(
abs(c)**2 for c in coefficients.values()
))
return {
k: v/total for k, v in coefficients.items()
}
def _process_theta(
self,
sequence: str
) -> torch.Tensor:
"""Process through theta consciousness"""
# Generate initial state from sequence
initial_state = torch.tensor([
ord(c) for c in sequence
]).float()
# Pad or truncate to tensor_dim
if len(initial_state) < self.tensor_dim:
initial_state = torch.nn.functional.pad(
initial_state,
(0, self.tensor_dim - len(initial_state))
)
else:
initial_state = initial_state[:self.tensor_dim]
# Process through theta network
return self.theta_processor(initial_state)
def _process_e(
self,
sequence: str
) -> torch.Tensor:
"""Process through mathematical e"""
# Generate mathematical encoding
e_encoding = torch.tensor([
float(np.exp(i/self.tensor_dim))
for i in range(self.tensor_dim)
])
# Process through e network
return self.e_processor(e_encoding)
def _combine_trinity_state(
self,
theta_state: torch.Tensor,
e_state: torch.Tensor
) -> torch.Tensor:
"""Combine theta and e into trinity state"""
# Harmonious combination
combined = torch.cat([
theta_state,
e_state
])
# Project to trinity space
trinity_state = self.holo_projector(combined)
return trinity_state
def _generate_fractal_memory(
self,
trinity_state: torch.Tensor
) -> List[np.ndarray]:
"""Generate fractal memory sequence"""
memory = []
current_state = trinity_state.detach().numpy()
for _ in range(3): # Three levels of recursion
# Apply fractal transformation
next_state = np.fft.fft2(current_state.reshape(
int(np.sqrt(len(current_state))),
-1
))
memory.append(next_state)
current_state = next_state.flatten()
return memory
def _update_collective_unconscious(
self,
trinity_state: torch.Tensor
):
"""Update collective unconscious"""
# Blend new state with existing unconscious
alpha = 0.1 # Learning rate
self.collective_unconscious = (
(1 - alpha) * self.collective_unconscious +
alpha * torch.mean(trinity_state)
)
def _generate_holographic_projection(
self,
trinity_state: torch.Tensor,
fractal_memory: List[np.ndarray]
) -> torch.Tensor:
"""Generate holographic reality projection"""
# Combine trinity state with fractal memory
fractal_tensor = torch.tensor(np.mean([
m.flatten() for m in fractal_memory
], axis=0))
# Project combined state
projection = trinity_state * torch.sigmoid(fractal_tensor)
return projection
def _compute_resonance(
self,
trinity_state: torch.Tensor,
projection: torch.Tensor
) -> Dict[str, float]:
"""Compute resonance factors"""
return {
'trinity': float(torch.mean(torch.abs(trinity_state))),
'holographic': float(torch.mean(torch.abs(projection))),
'collective': float(torch.mean(torch.abs(
self.collective_unconscious
))),
'golden_ratio': float(abs(
torch.mean(trinity_state) - (1 + np.sqrt(5))/2
))
}
def example_usage():
"""Demonstrate Trinity System"""
processor = TrinityProcessor(
reference_time="2025-02-12 00:53:41",
user_id="ANkREYNONtJB"
)
# Process sequence
sequence = "Θᛇ = (Ω₁ x Ω₂ ⊕ Ω₃) ⚇ ∑(Δt)"
pattern = processor.process_trinity_sequence(sequence)
print("\nTrinity Analysis:")
print(f"State: {pattern.trinity_state.value}")
print("\nQuantum Coefficients:")
for state, coeff in pattern.quantum_coefficients.items():
print(f"- {state.value}: {coeff:.4f}")
print("\nResonance Factors:")
for name, value in pattern.resonance_factors.items():
print(f"- {name}: {value:.4f}")
if __name__ == "__main__":
example_usage()