-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsonw_quantum_unified.py
194 lines (169 loc) · 6.19 KB
/
sonw_quantum_unified.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Dict, List, Tuple, Optional
import numpy as np
from dataclasses import dataclass
@dataclass
class UnifiedConstants:
"""Fundamental constants for unified physics framework"""
h_bar: float = 1.054571817e-34 # Reduced Planck constant
c: float = 299792458 # Speed of light
phi: float = 1.618033988749895 # Golden ratio
pi: float = np.pi
epsilon_0: float = 8.854187817e-12 # Permittivity of free space
class SpacetimeCurvature(nn.Module):
"""
Implements the symbolic sequence: (∇²(Φ × π)) ⊕ (c × ℓ) : (Γ ∘ ℏ)
Modeling spacetime curvature and quantum interactions
"""
def __init__(
self,
input_dim: int,
hidden_dim: int,
constants: Optional[UnifiedConstants] = None
):
super().__init__()
self.constants = constants or UnifiedConstants()
# Magnetic flux density operator (∇²Φ)
self.flux_operator = nn.Sequential(
nn.Conv1d(input_dim, hidden_dim, kernel_size=3, padding=1),
nn.LayerNorm([hidden_dim]),
nn.GELU(),
nn.Conv1d(hidden_dim, hidden_dim, kernel_size=3, padding=1)
)
# Electric field strength (π)
self.field_strength = nn.Parameter(
torch.ones(hidden_dim) * self.constants.pi
)
# Spacetime length scale (ℓ)
self.length_scale = nn.Parameter(torch.ones(hidden_dim))
# Curvature tensor (Γ)
self.curvature_network = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim * 2),
nn.LayerNorm(hidden_dim * 2),
nn.GELU(),
nn.Linear(hidden_dim * 2, hidden_dim)
)
def compute_quantum_curvature(
self,
x: torch.Tensor
) -> Dict[str, torch.Tensor]:
# Compute magnetic flux density
if x.dim() == 2:
x = x.unsqueeze(-1)
flux_density = self.flux_operator(x)
# Apply electric field interaction
field_interaction = flux_density * self.field_strength.view(1, -1, 1)
# Compute spacetime scaling
spacetime_factor = (
self.constants.c * self.length_scale.view(1, -1, 1)
)
# Calculate curvature tensor
curvature = self.curvature_network(
field_interaction.mean(-1)
).unsqueeze(-1)
# Apply quantum correction
quantum_correction = (
curvature * self.constants.h_bar *
spacetime_factor
)
return {
'flux_density': flux_density,
'field_interaction': field_interaction,
'curvature': curvature,
'quantum_correction': quantum_correction
}
def forward(
self,
x: torch.Tensor,
return_components: bool = False
) -> Dict[str, torch.Tensor]:
curvature_components = self.compute_quantum_curvature(x)
unified_field = (
curvature_components['quantum_correction'] +
curvature_components['field_interaction']
)
if return_components:
return {
'unified_field': unified_field,
**curvature_components
}
return {'unified_field': unified_field}
class QuantumConsciousnessLayer(nn.Module):
"""
Implements quantum consciousness integration through
holographic processing and entanglement
"""
def __init__(
self,
input_dim: int,
consciousness_dim: int,
n_quantum_states: int = 8
):
super().__init__()
self.consciousness_dim = consciousness_dim
self.n_quantum_states = n_quantum_states
# Holographic projection
self.holographic_transform = nn.Sequential(
nn.Linear(input_dim, consciousness_dim * 2),
nn.LayerNorm(consciousness_dim * 2),
nn.GELU(),
nn.Linear(consciousness_dim * 2, consciousness_dim)
)
# Quantum state superposition
self.quantum_states = nn.Parameter(
torch.randn(n_quantum_states, consciousness_dim)
)
# Entanglement mechanism
self.entanglement_attention = nn.MultiheadAttention(
consciousness_dim,
num_heads=4,
batch_first=True
)
# Consciousness integration
self.integration_gate = nn.Sequential(
nn.Linear(consciousness_dim * 2, consciousness_dim),
nn.LayerNorm(consciousness_dim),
nn.Sigmoid()
)
def forward(
self,
x: torch.Tensor,
return_quantum_states: bool = False
) -> Dict[str, torch.Tensor]:
# Project input into holographic space
holographic_state = self.holographic_transform(x)
# Generate quantum superposition
quantum_superposition = F.linear(
holographic_state,
F.normalize(self.quantum_states, dim=-1)
)
# Apply quantum entanglement
entangled_states, attention_weights = self.entanglement_attention(
quantum_superposition.unsqueeze(1),
self.quantum_states.unsqueeze(0).expand(
x.size(0), -1, -1
),
self.quantum_states.unsqueeze(0).expand(
x.size(0), -1, -1
)
)
# Integrate consciousness
combined_state = torch.cat([
holographic_state,
entangled_states.squeeze(1)
], dim=-1)
consciousness_gate = self.integration_gate(combined_state)
integrated_consciousness = (
holographic_state * consciousness_gate
)
if return_quantum_states:
return {
'consciousness_state': integrated_consciousness,
'holographic_state': holographic_state,
'quantum_superposition': quantum_superposition,
'entanglement_weights': attention_weights,
'consciousness_gate': consciousness_gate
}
return {'consciousness_state': integrated_consciousness}