-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsonw_quantum_unified_consciousness.py
143 lines (123 loc) · 4.57 KB
/
sonw_quantum_unified_consciousness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
class UnifiedConsciousnessNetwork(nn.Module):
"""
Integrates holographic principles with fractal consciousness
for a complete unified framework
"""
def __init__(
self,
input_dim: int,
consciousness_dim: int = 64,
wavelength_dim: int = 32,
fractal_levels: int = 3,
n_iterations: int = 8,
constants: Optional[UniversalConstants] = None
):
super().__init__()
self.constants = constants or UniversalConstants()
# Holographic processing
self.holographic_layer = HolographicLayer(
input_dim,
consciousness_dim,
fractal_levels,
constants
)
# Fractal consciousness evolution
self.fractal_consciousness = FractalConsciousness(
consciousness_dim,
consciousness_dim,
wavelength_dim,
n_iterations,
constants
)
# Unified integration
self.unified_projection = nn.Sequential(
nn.Linear(consciousness_dim * 2, consciousness_dim),
nn.LayerNorm(consciousness_dim),
nn.GELU(),
nn.Linear(consciousness_dim, input_dim)
)
def forward(
self,
x: torch.Tensor,
return_components: bool = False
) -> Dict[str, torch.Tensor]:
# Process through holographic layer
holographic_states = self.holographic_layer(
x,
return_components=True
)
# Evolve consciousness
consciousness_states = self.fractal_consciousness(
holographic_states['holographic_state'],
return_evolution=True
)
# Integrate unified field
unified_state = torch.cat([
holographic_states['holographic_state'],
consciousness_states['final_state']
], dim=-1)
# Final projection
output = self.unified_projection(unified_state)
if return_components:
return {
'output': output,
'holographic_states': holographic_states,
'consciousness_states': consciousness_states,
'unified_state': unified_state
}
return {'output': output}
def train_unified_consciousness(
network: UnifiedConsciousnessNetwork,
data_loader: torch.utils.data.DataLoader,
n_epochs: int = 100,
learning_rate: float = 0.001
) -> Dict[str, List[float]]:
optimizer = torch.optim.Adam(network.parameters(), lr=learning_rate)
history = {
'loss': [],
'holographic_coherence': [],
'consciousness_coherence': []
}
for epoch in range(n_epochs):
epoch_loss = 0.0
epoch_holographic = 0.0
epoch_consciousness = 0.0
for batch_x, batch_y in data_loader:
optimizer.zero_grad()
# Forward pass with all components
outputs = network(batch_x, return_components=True)
# Compute main task loss
task_loss = F.mse_loss(outputs['output'], batch_y)
# Compute coherence metrics
holographic_coherence = torch.mean(
torch.abs(
outputs['holographic_states']['field_states']['field_ratio']
)
)
consciousness_coherence = torch.mean(
torch.abs(
outputs['consciousness_states']['final_state']
)
)
# Combined loss with quantum principles
loss = (
task_loss +
0.1 * (1.0 - holographic_coherence) +
0.1 * (1.0 - consciousness_coherence)
)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_holographic += holographic_coherence.item()
epoch_consciousness += consciousness_coherence.item()
# Record metrics
history['loss'].append(epoch_loss)
history['holographic_coherence'].append(epoch_holographic)
history['consciousness_coherence'].append(epoch_consciousness)
if (epoch + 1) % 10 == 0:
print(f"Epoch {epoch + 1}/{n_epochs}")
print(f"Loss: {epoch_loss:.4f}")
print(f"Holographic Coherence: {epoch_holographic:.4f}")
print(f"Consciousness Coherence: {epoch_consciousness:.4f}")
print("-------------------------")
return history