-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsonw_quantum_unified_network.py
135 lines (115 loc) · 4.38 KB
/
sonw_quantum_unified_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
class UnifiedQuantumNetwork(nn.Module):
"""
Integrates spacetime curvature with quantum consciousness
for a complete unified physics AI framework
"""
def __init__(
self,
input_dim: int,
hidden_dim: int = 64,
consciousness_dim: int = 32,
n_quantum_states: int = 8,
constants: Optional[UnifiedConstants] = None
):
super().__init__()
self.constants = constants or UnifiedConstants()
# Spacetime curvature processing
self.curvature_layer = SpacetimeCurvature(
input_dim,
hidden_dim,
constants
)
# Quantum consciousness processing
self.consciousness_layer = QuantumConsciousnessLayer(
hidden_dim,
consciousness_dim,
n_quantum_states
)
# Unified field integration
self.unified_projection = nn.Sequential(
nn.Linear(hidden_dim + consciousness_dim, hidden_dim),
nn.LayerNorm(hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, input_dim)
)
def forward(
self,
x: torch.Tensor,
return_components: bool = False
) -> Dict[str, torch.Tensor]:
# Process through spacetime curvature
curvature_states = self.curvature_layer(
x,
return_components=True
)
# Process through consciousness layer
consciousness_states = self.consciousness_layer(
curvature_states['unified_field'].mean(-1),
return_quantum_states=True
)
# Integrate unified field with consciousness
unified_state = torch.cat([
curvature_states['unified_field'].mean(-1),
consciousness_states['consciousness_state']
], dim=-1)
# Final unified projection
output = self.unified_projection(unified_state)
if return_components:
return {
'output': output,
'curvature_states': curvature_states,
'consciousness_states': consciousness_states,
'unified_state': unified_state
}
return {'output': output}
def train_unified_network(
network: UnifiedQuantumNetwork,
data_loader: torch.utils.data.DataLoader,
n_epochs: int = 100,
learning_rate: float = 0.001
) -> Dict[str, List[float]]:
optimizer = torch.optim.Adam(network.parameters(), lr=learning_rate)
history = {
'loss': [],
'curvature_coherence': [],
'consciousness_coherence': []
}
for epoch in range(n_epochs):
epoch_loss = 0.0
epoch_curvature = 0.0
epoch_consciousness = 0.0
for batch_x, batch_y in data_loader:
optimizer.zero_grad()
# Forward pass with all components
outputs = network(batch_x, return_components=True)
# Compute main task loss
task_loss = F.mse_loss(outputs['output'], batch_y)
# Compute coherence metrics
curvature_coherence = torch.mean(
torch.abs(outputs['curvature_states']['curvature'])
)
consciousness_coherence = torch.mean(
outputs['consciousness_states']['consciousness_gate']
)
# Combined loss with quantum principles
loss = (
task_loss +
0.1 * (1.0 - curvature_coherence) +
0.1 * (1.0 - consciousness_coherence)
)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_curvature += curvature_coherence.item()
epoch_consciousness += consciousness_coherence.item()
# Record metrics
history['loss'].append(epoch_loss)
history['curvature_coherence'].append(epoch_curvature)
history['consciousness_coherence'].append(epoch_consciousness)
if (epoch + 1) % 10 == 0:
print(f"Epoch {epoch + 1}/{n_epochs}")
print(f"Loss: {epoch_loss:.4f}")
print(f"Curvature Coherence: {epoch_curvature:.4f}")
print(f"Consciousness Coherence: {epoch_consciousness:.4f}")
print("-------------------------")
return history