-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsonw_quantum_visualization.py
291 lines (259 loc) · 9.17 KB
/
sonw_quantum_visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import torch
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import seaborn as sns
from typing import Dict, List, Optional, Tuple
import plotly.graph_objects as go
import plotly.express as px
from IPython.display import HTML, display
class QuantumStateVisualizer:
"""
Comprehensive visualization tools for quantum states,
spacetime curvature, and consciousness integration
"""
def __init__(self, figure_size: Tuple[int, int] = (12, 8)):
self.figure_size = figure_size
plt.style.use('dark_background') # For better quantum visualization
def visualize_curvature(
self,
curvature_states: Dict[str, torch.Tensor],
save_path: Optional[str] = None
) -> None:
"""
Visualize spacetime curvature components in 3D
"""
fig = plt.figure(figsize=self.figure_size)
ax = fig.add_subplot(111, projection='3d')
# Extract curvature data
curvature = curvature_states['curvature'].detach().cpu().numpy()
field = curvature_states['field_interaction'].detach().cpu().numpy()
# Create mesh grid
x = np.linspace(-2, 2, curvature.shape[1])
y = np.linspace(-2, 2, curvature.shape[2])
X, Y = np.meshgrid(x, y)
# Plot curvature surface
surf = ax.plot_surface(
X, Y, curvature[0].T,
cmap='plasma',
linewidth=0,
antialiased=True
)
# Add field vectors
field_skip = 2
ax.quiver(
X[::field_skip, ::field_skip],
Y[::field_skip, ::field_skip],
curvature[0, ::field_skip, ::field_skip].T,
field[0, 0, ::field_skip, ::field_skip].T,
field[0, 1, ::field_skip, ::field_skip].T,
field[0, 2, ::field_skip, ::field_skip].T,
length=0.1,
normalize=True,
color='white'
)
ax.set_xlabel('Spacetime X')
ax.set_ylabel('Spacetime Y')
ax.set_zlabel('Curvature')
plt.colorbar(surf)
if save_path:
plt.savefig(save_path)
plt.show()
def visualize_consciousness(
self,
consciousness_states: Dict[str, torch.Tensor],
save_path: Optional[str] = None
) -> None:
"""
Visualize quantum consciousness states and entanglement
"""
# Create interactive consciousness state visualization
fig = go.Figure()
# Extract consciousness data
holographic = consciousness_states['holographic_state'].detach().cpu().numpy()
quantum_sup = consciousness_states['quantum_superposition'].detach().cpu().numpy()
entanglement = consciousness_states['entanglement_weights'].detach().cpu().numpy()
# Add holographic state trace
fig.add_trace(go.Surface(
z=holographic,
colorscale='Viridis',
name='Holographic State'
))
# Add quantum superposition
fig.add_trace(go.Scatter3d(
x=quantum_sup[:, 0],
y=quantum_sup[:, 1],
z=quantum_sup[:, 2],
mode='markers',
marker=dict(
size=8,
color=quantum_sup[:, 0],
colorscale='Plasma',
opacity=0.8
),
name='Quantum States'
))
# Add entanglement connections
for i in range(entanglement.shape[1]):
for j in range(entanglement.shape[2]):
if entanglement[0, i, j] > 0.1: # Show strong entanglements
fig.add_trace(go.Scatter3d(
x=[quantum_sup[i, 0], quantum_sup[j, 0]],
y=[quantum_sup[i, 1], quantum_sup[j, 1]],
z=[quantum_sup[i, 2], quantum_sup[j, 2]],
mode='lines',
line=dict(
color=f'rgba(255,255,255,{entanglement[0,i,j]})',
width=2
),
name=f'Entanglement {i}-{j}'
))
fig.update_layout(
title='Quantum Consciousness States',
scene=dict(
xaxis_title='Dimension 1',
yaxis_title='Dimension 2',
zaxis_title='Dimension 3'
),
width=800,
height=800
)
if save_path:
fig.write_html(save_path)
fig.show()
def visualize_unified_field(
self,
network_outputs: Dict[str, torch.Tensor],
save_path: Optional[str] = None
) -> None:
"""
Visualize the complete unified field including both
curvature and consciousness components
"""
# Create subplot figure
fig = plt.figure(figsize=(20, 10))
# Plot curvature component
ax1 = fig.add_subplot(121, projection='3d')
curvature = network_outputs['curvature_states']['curvature'].detach().cpu().numpy()
x = np.linspace(-2, 2, curvature.shape[1])
y = np.linspace(-2, 2, curvature.shape[2])
X, Y = np.meshgrid(x, y)
surf1 = ax1.plot_surface(
X, Y, curvature[0].T,
cmap='plasma',
linewidth=0,
antialiased=True
)
ax1.set_title('Spacetime Curvature')
# Plot consciousness component
ax2 = fig.add_subplot(122, projection='3d')
consciousness = network_outputs['consciousness_states']['consciousness_state'].detach().cpu().numpy()
quantum_sup = network_outputs['consciousness_states']['quantum_superposition'].detach().cpu().numpy()
# Plot consciousness surface
surf2 = ax2.plot_surface(
X, Y, consciousness[0].reshape(X.shape),
cmap='viridis',
linewidth=0,
antialiased=True
)
# Add quantum state markers
ax2.scatter(
quantum_sup[:, 0],
quantum_sup[:, 1],
quantum_sup[:, 2],
c='white',
marker='o',
s=50
)
ax2.set_title('Quantum Consciousness Field')
plt.tight_layout()
if save_path:
plt.savefig(save_path)
plt.show()
def animate_evolution(
self,
network: torch.nn.Module,
input_sequence: torch.Tensor,
fps: int = 30,
duration: int = 10
) -> HTML:
"""
Create an animated visualization of the unified field evolution
"""
frames = []
fig = go.Figure()
with torch.no_grad():
for t in range(input_sequence.shape[0]):
outputs = network(input_sequence[t:t+1], return_components=True)
# Extract unified field components
curvature = outputs['curvature_states']['curvature'][0].cpu().numpy()
consciousness = outputs['consciousness_states']['consciousness_state'][0].cpu().numpy()
# Create frame
frame = go.Frame(
data=[
go.Surface(
z=curvature,
colorscale='plasma',
showscale=False
),
go.Surface(
z=consciousness.reshape(curvature.shape),
colorscale='viridis',
showscale=False
)
],
name=f'frame{t}'
)
frames.append(frame)
# Add frames to figure
fig.frames = frames
# Add play button
fig.update_layout(
updatemenus=[{
'type': 'buttons',
'showactive': False,
'buttons': [{
'label': 'Play',
'method': 'animate',
'args': [None, {
'frame': {'duration': 1000/fps, 'redraw': True},
'fromcurrent': True,
'transition': {'duration': 0}
}]
}]
}]
)
return HTML(fig.to_html())
def visualize_training_progress(
history: Dict[str, List[float]],
save_path: Optional[str] = None
) -> None:
"""
Visualize training metrics over time
"""
plt.figure(figsize=(15, 5))
# Plot loss
plt.subplot(131)
plt.plot(history['loss'], label='Total Loss')
plt.title('Training Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
# Plot coherence metrics
plt.subplot(132)
plt.plot(
history['curvature_coherence'],
label='Curvature Coherence'
)
plt.plot(
history['consciousness_coherence'],
label='Consciousness Coherence'
)
plt.title('Coherence Metrics')
plt.xlabel('Epoch')
plt.ylabel('Coherence')
plt.legend()
plt.tight_layout()
if save_path:
plt.savefig(save_path)
plt.show()