-
Notifications
You must be signed in to change notification settings - Fork 13
Open
Description
hi @asolin @wil-j-wil !!
Really interested in the models and i am trying to set up the models on the new dataset.
can you please just review the below to see if what I'm doing makes sense.
import sys
sys.path.insert(0, '../')
import numpy as np
from jax.experimental import optimizers
import matplotlib.pyplot as plt
import time
from sde_gp import SDEGP
import approximate_inference as approx_inf
import priors
import likelihoods
from utils import softplus_list, plot
from sklearn.preprocessing import StandardScaler
plot_intermediate = False
import yfinance as yf
Y = np.array(yf.download("SPY", start="2008-01-01", end="2020-12-30")['Close'])
X=np.linspace(1,100,len(Y)).reshape(len(Y),1)
Y=Y.reshape(len(Y),1)
print('loading data ...')
#D = np.loadtxt('../../data/mcycle.csv', delimiter=',')
#X = D[:, 1:2]
#Y = D[:, 2:]
N = X.shape[0]
# Standardize
X_scaler = StandardScaler().fit(X)
y_scaler = StandardScaler().fit(Y)
Xall = X_scaler.transform(X)
Yall = y_scaler.transform(Y)
# Load cross-validation indices
cvind = np.loadtxt('../experiments/heteroscedastic/cvind.csv').astype(int)
# 10-fold cross-validation setup
nt = np.floor(cvind.shape[0]/10).astype(int)
cvind = np.reshape(cvind[:10*nt], (10, nt))
np.random.seed(123)
fold = 0
# Get training and test indices
test = cvind[fold, :]
train = np.setdiff1d(cvind, test)
# Set training and test data
X = Xall[train, :]
Y = Yall[train, :]
XT = Xall[test, :]
YT = Yall[test, :]
plt.figure(1, figsize=(12, 5))
plt.clf()
plt.plot(X_scaler.inverse_transform(X), y_scaler.inverse_transform(Y), 'k.', label='train')
plt.plot(X_scaler.inverse_transform(XT), y_scaler.inverse_transform(YT), 'r.', label='test')
plt.legend()
plt.xlabel('time (milliseconds)')
plt.ylabel('accelerometer reading');Metadata
Metadata
Assignees
Labels
No labels