forked from apache/beam
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfileio.py
953 lines (769 loc) · 31.8 KB
/
fileio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""``PTransforms`` for manipulating files in Apache Beam.
Provides reading ``PTransform``\\s, ``MatchFiles``,
``MatchAll``, that produces a ``PCollection`` of records representing a file
and its metadata; and ``ReadMatches``, which takes in a ``PCollection`` of file
metadata records, and produces a ``PCollection`` of ``ReadableFile`` objects.
These transforms currently do not support splitting by themselves.
Writing to Files
================
The transforms in this file include ``WriteToFiles``, which allows you to write
a ``beam.PCollection`` to files, and gives you many options to customize how to
do this.
The ``WriteToFiles`` transform supports bounded and unbounded PCollections
(i.e. it can be used both batch and streaming pipelines). For streaming
pipelines, it currently does not have support for multiple trigger firings
on the same window.
File Naming
-----------
One of the parameters received by ``WriteToFiles`` is a function specifying how
to name the files that are written. This is a function that takes in the
following parameters:
- window
- pane
- shard_index
- total_shards
- compression
- destination
It should return a file name that is unique for a combination of these
parameters.
The default naming strategy is to name files
in the format
`$prefix-$start-$end-$pane-$shard-of-$numShards$suffix$compressionSuffix`,
where:
- `$prefix` is, by default, `"output"`.
- `$start` and `$end` are the boundaries of the window for the data being
written. These are omitted if we're using the Global window.
- `$pane` is the index for the number of firing for a window.
- `$shard` and `$numShards` are the current shard number, and the total number
of shards for this window firing.
- `$suffix` is, by default, an empty string, but it can be set by the user via
``default_file_naming``.
Dynamic Destinations
--------------------
If the elements in the input ``beam.PCollection`` can be partitioned into groups
that should be treated differently (e.g. some events are to be stored as CSV,
while some others are to be stored as Avro files), it is possible to do this
by passing a `destination` parameter to ``WriteToFiles``. Something like the
following::
my_pcollection | beam.io.fileio.WriteToFiles(
path='/my/file/path',
destination=lambda record: 'avro' if record['type'] == 'A' else 'csv',
sink=lambda dest: AvroSink() if dest == 'avro' else CsvSink(),
file_naming=beam.io.fileio.destination_prefix_naming())
In this transform, depending on the type of a record, it will be written down to
a destination named `'avro'`, or `'csv'`. The value returned by the
`destination` call is then passed to the `sink` call, to determine what sort of
sink will be used for each destination. The return type of the `destination`
parameter can be anything, as long as elements can be grouped by it.
"""
# pytype: skip-file
import collections
import logging
import os
import random
import uuid
from collections import namedtuple
from functools import partial
from typing import TYPE_CHECKING
from typing import Any
from typing import BinaryIO # pylint: disable=unused-import
from typing import Callable
from typing import DefaultDict
from typing import Dict
from typing import Iterable
from typing import List
from typing import Tuple
from typing import Union
import apache_beam as beam
from apache_beam.io import filesystem
from apache_beam.io import filesystems
from apache_beam.io.filesystem import BeamIOError
from apache_beam.io.filesystem import CompressionTypes
from apache_beam.options.pipeline_options import GoogleCloudOptions
from apache_beam.options.value_provider import StaticValueProvider
from apache_beam.options.value_provider import ValueProvider
from apache_beam.transforms.periodicsequence import PeriodicImpulse
from apache_beam.transforms.userstate import CombiningValueStateSpec
from apache_beam.transforms.window import FixedWindows
from apache_beam.transforms.window import GlobalWindow
from apache_beam.transforms.window import IntervalWindow
from apache_beam.utils.timestamp import MAX_TIMESTAMP
from apache_beam.utils.timestamp import Timestamp
if TYPE_CHECKING:
from apache_beam.transforms.window import BoundedWindow
__all__ = [
'EmptyMatchTreatment',
'MatchFiles',
'MatchAll',
'MatchContinuously',
'ReadableFile',
'ReadMatches',
'WriteToFiles'
]
_LOGGER = logging.getLogger(__name__)
FileMetadata = namedtuple("FileMetadata", "mime_type compression_type")
CreateFileMetadataFn = Callable[[str, str], FileMetadata]
class EmptyMatchTreatment(object):
"""How to treat empty matches in ``MatchAll`` and ``MatchFiles`` transforms.
If empty matches are disallowed, an error will be thrown if a pattern does not
match any files."""
ALLOW = 'ALLOW'
DISALLOW = 'DISALLOW'
ALLOW_IF_WILDCARD = 'ALLOW_IF_WILDCARD'
@staticmethod
def allow_empty_match(pattern, setting):
if setting == EmptyMatchTreatment.ALLOW:
return True
elif setting == EmptyMatchTreatment.ALLOW_IF_WILDCARD and '*' in pattern:
return True
elif setting == EmptyMatchTreatment.DISALLOW:
return False
else:
raise ValueError(setting)
class _MatchAllFn(beam.DoFn):
def __init__(self, empty_match_treatment):
self._empty_match_treatment = empty_match_treatment
def process(self, file_pattern: str) -> List[filesystem.FileMetadata]:
# TODO: Should we batch the lookups?
match_results = filesystems.FileSystems.match([file_pattern])
match_result = match_results[0]
if (not match_result.metadata_list and
not EmptyMatchTreatment.allow_empty_match(file_pattern,
self._empty_match_treatment)):
raise BeamIOError(
'Empty match for pattern %s. Disallowed.' % file_pattern)
return match_result.metadata_list
class MatchFiles(beam.PTransform):
"""Matches a file pattern using ``FileSystems.match``.
This ``PTransform`` returns a ``PCollection`` of matching files in the form
of ``FileMetadata`` objects."""
def __init__(
self,
file_pattern: str,
empty_match_treatment=EmptyMatchTreatment.ALLOW_IF_WILDCARD):
self._file_pattern = file_pattern
self._empty_match_treatment = empty_match_treatment
def expand(self, pcoll) -> beam.PCollection[filesystem.FileMetadata]:
return pcoll.pipeline | beam.Create([self._file_pattern]) | MatchAll(
empty_match_treatment=self._empty_match_treatment)
class MatchAll(beam.PTransform):
"""Matches file patterns from the input PCollection via ``FileSystems.match``.
This ``PTransform`` returns a ``PCollection`` of matching files in the form
of ``FileMetadata`` objects."""
def __init__(self, empty_match_treatment=EmptyMatchTreatment.ALLOW):
self._empty_match_treatment = empty_match_treatment
def expand(
self,
pcoll: beam.PCollection,
) -> beam.PCollection[filesystem.FileMetadata]:
return pcoll | beam.ParDo(_MatchAllFn(self._empty_match_treatment))
class ReadableFile(object):
"""A utility class for accessing files."""
def __init__(self, metadata, compression=None):
self.metadata = metadata
self._compression = compression
def open(self, mime_type='text/plain', compression_type=None):
compression = (
compression_type or self._compression or
filesystems.CompressionTypes.AUTO)
return filesystems.FileSystems.open(
self.metadata.path, mime_type=mime_type, compression_type=compression)
def read(self, mime_type='application/octet-stream'):
return self.open(mime_type).read()
def read_utf8(self):
return self.open().read().decode('utf-8')
class _ReadMatchesFn(beam.DoFn):
def __init__(self, compression, skip_directories):
self._compression = compression
self._skip_directories = skip_directories
def process(
self,
file_metadata: Union[str, filesystem.FileMetadata],
) -> Iterable[ReadableFile]:
metadata = (
filesystem.FileMetadata(file_metadata, 0) if isinstance(
file_metadata, str) else file_metadata)
if ((metadata.path.endswith('/') or metadata.path.endswith('\\')) and
self._skip_directories):
return
elif metadata.path.endswith('/') or metadata.path.endswith('\\'):
raise BeamIOError(
'Directories are not allowed in ReadMatches transform.'
'Found %s.' % metadata.path)
# TODO: Mime type? Other arguments? Maybe arguments passed in to transform?
yield ReadableFile(metadata, self._compression)
class MatchContinuously(beam.PTransform):
"""Checks for new files for a given pattern every interval.
This ``PTransform`` returns a ``PCollection`` of matching files in the form
of ``FileMetadata`` objects.
MatchContinuously is experimental. No backwards-compatibility
guarantees.
Matching continuously scales poorly, as it is stateful, and requires storing
file ids in memory. In addition, because it is memory-only, if a pipeline is
restarted, already processed files will be reprocessed. Consider an alternate
technique, such as Pub/Sub Notifications
(https://cloud.google.com/storage/docs/pubsub-notifications)
when using GCS if possible.
"""
def __init__(
self,
file_pattern,
interval=360.0,
has_deduplication=True,
start_timestamp=Timestamp.now(),
stop_timestamp=MAX_TIMESTAMP,
match_updated_files=False,
apply_windowing=False,
empty_match_treatment=EmptyMatchTreatment.ALLOW):
"""Initializes a MatchContinuously transform.
Args:
file_pattern: The file path to read from.
interval: Interval at which to check for files in seconds.
has_deduplication: Whether files already read are discarded or not.
start_timestamp: Timestamp for start file checking.
stop_timestamp: Timestamp after which no more files will be checked.
match_updated_files: (When has_deduplication is set to True) whether match
file with timestamp changes.
apply_windowing: Whether each element should be assigned to
individual window. If false, all elements will reside in global window.
"""
self.file_pattern = file_pattern
self.interval = interval
self.has_deduplication = has_deduplication
self.start_ts = start_timestamp
self.stop_ts = stop_timestamp
self.match_upd = match_updated_files
self.apply_windowing = apply_windowing
self.empty_match_treatment = empty_match_treatment
_LOGGER.warning(
'Matching Continuously is stateful, and can scale poorly. '
'Consider using Pub/Sub Notifications '
'(https://cloud.google.com/storage/docs/pubsub-notifications) '
'if possible')
def expand(self, pbegin) -> beam.PCollection[filesystem.FileMetadata]:
# invoke periodic impulse
impulse = pbegin | PeriodicImpulse(
start_timestamp=self.start_ts,
stop_timestamp=self.stop_ts,
fire_interval=self.interval)
# match file pattern periodically
match_files = (
impulse
| 'GetFilePattern' >> beam.Map(lambda x: self.file_pattern)
| MatchAll(self.empty_match_treatment))
# apply deduplication strategy if required
if self.has_deduplication:
# Making a Key Value so each file has its own state.
match_files = match_files | 'ToKV' >> beam.Map(lambda x: (x.path, x))
if self.match_upd:
match_files = match_files | 'RemoveOldAlreadyRead' >> beam.ParDo(
_RemoveOldDuplicates())
else:
match_files = match_files | 'RemoveAlreadyRead' >> beam.ParDo(
_RemoveDuplicates())
# apply windowing if required. Apply at last because deduplication relies on
# the global window.
if self.apply_windowing:
match_files = match_files | beam.WindowInto(FixedWindows(self.interval))
return match_files
class ReadMatches(beam.PTransform):
"""Converts each result of MatchFiles() or MatchAll() to a ReadableFile.
This helps read in a file's contents or obtain a file descriptor."""
def __init__(self, compression=None, skip_directories=True):
self._compression = compression
self._skip_directories = skip_directories
def expand(
self,
pcoll: beam.PCollection[Union[str, filesystem.FileMetadata]],
) -> beam.PCollection[ReadableFile]:
return pcoll | beam.ParDo(
_ReadMatchesFn(self._compression, self._skip_directories))
class FileSink(object):
"""Specifies how to write elements to individual files in ``WriteToFiles``.
A Sink class must implement the following:
- The ``open`` method, which initializes writing to a file handler (it is not
responsible for opening the file handler itself).
- The ``write`` method, which writes an element to the file that was passed
in ``open``.
- The ``flush`` method, which flushes any buffered state. This is most often
called before closing a file (but not exclusively called in that
situation). The sink is not responsible for closing the file handler.
A Sink class can override the following:
- The ``create_metadata`` method, which creates all metadata passed to
Filesystems.create.
"""
def create_metadata(
self, destination: str, full_file_name: str) -> FileMetadata:
return FileMetadata(
mime_type="application/octet-stream",
compression_type=CompressionTypes.AUTO)
def open(self, fh):
# type: (BinaryIO) -> None
raise NotImplementedError
def write(self, record):
raise NotImplementedError
def flush(self):
raise NotImplementedError
@beam.typehints.with_input_types(str)
class TextSink(FileSink):
"""A sink that encodes utf8 elements, and writes to file handlers.
This sink simply calls file_handler.write(record.encode('utf8') + '\n') on all
records that come into it.
"""
def open(self, fh):
self._fh = fh
def write(self, record):
self._fh.write(record.encode('utf8'))
self._fh.write(b'\n')
def flush(self):
self._fh.flush()
def prefix_naming(prefix):
return default_file_naming(prefix)
_DEFAULT_FILE_NAME_TEMPLATE = (
'{prefix}-{start}-{end}-{pane}-'
'{shard:05d}-of-{total_shards:05d}'
'{suffix}{compression}')
def _format_shard(
window, pane, shard_index, total_shards, compression, prefix, suffix):
kwargs = {
'prefix': prefix,
'start': '',
'end': '',
'pane': '',
'shard': 0,
'total_shards': 0,
'suffix': '',
'compression': ''
}
if total_shards is not None and shard_index is not None:
kwargs['shard'] = int(shard_index)
kwargs['total_shards'] = int(total_shards)
if window != GlobalWindow():
kwargs['start'] = window.start.to_utc_datetime().isoformat()
kwargs['end'] = window.end.to_utc_datetime().isoformat()
# TODO(https://github.com/apache/beam/issues/18721): Add support for PaneInfo
# If the PANE is the ONLY firing in the window, we don't add it.
#if pane and not (pane.is_first and pane.is_last):
# kwargs['pane'] = pane.index
if suffix:
kwargs['suffix'] = suffix
if compression:
kwargs['compression'] = '.%s' % compression
# Remove separators for unused template parts.
format = _DEFAULT_FILE_NAME_TEMPLATE
if shard_index is None:
format = format.replace('-{shard:05d}', '')
if total_shards is None:
format = format.replace('-of-{total_shards:05d}', '')
for name, value in kwargs.items():
if value in (None, ''):
format = format.replace('-{%s}' % name, '')
return format.format(**kwargs)
FileNaming = Callable[[Any, Any, int, int, Any, str, str], str]
def destination_prefix_naming(suffix=None) -> FileNaming:
def _inner(window, pane, shard_index, total_shards, compression, destination):
prefix = str(destination)
return _format_shard(
window, pane, shard_index, total_shards, compression, prefix, suffix)
return _inner
def default_file_naming(prefix, suffix=None) -> FileNaming:
def _inner(window, pane, shard_index, total_shards, compression, destination):
return _format_shard(
window, pane, shard_index, total_shards, compression, prefix, suffix)
return _inner
def single_file_naming(prefix, suffix=None) -> FileNaming:
def _inner(window, pane, shard_index, total_shards, compression, destination):
assert shard_index in (0, None), shard_index
assert total_shards in (1, None), total_shards
return _format_shard(window, pane, None, None, compression, prefix, suffix)
return _inner
_FileResult = collections.namedtuple(
'FileResult', [
'file_name',
'shard_index',
'total_shards',
'window',
'pane',
'destination'
])
# Adding a class to contain PyDoc.
class FileResult(_FileResult):
"""A descriptor of a file that has been written."""
pass
class WriteToFiles(beam.PTransform):
r"""Write the incoming PCollection to a set of output files.
The incoming ``PCollection`` may be bounded or unbounded.
**Note:** For unbounded ``PCollection``\s, this transform does not support
multiple firings per Window (due to the fact that files are named only by
their destination, and window, at the moment).
"""
# We allow up to 20 different destinations to be written in a single bundle.
# Too many files will add memory pressure to the worker, so we let it be 20.
MAX_NUM_WRITERS_PER_BUNDLE = 20
DEFAULT_SHARDING = 5
def __init__(
self,
path,
file_naming=None,
destination=None,
temp_directory=None,
sink=None,
shards=None,
output_fn=None,
max_writers_per_bundle=MAX_NUM_WRITERS_PER_BUNDLE):
"""Initializes a WriteToFiles transform.
Args:
path (str, ValueProvider): The directory to write files into.
file_naming (callable): A callable that takes in a window, pane,
shard_index, total_shards and compression; and returns a file name.
destination (callable): If this argument is provided, the sink parameter
must also be a callable.
temp_directory (str, ValueProvider): To ensure atomicity in the transform,
the output is written into temporary files, which are written to a
directory that is meant to be temporary as well. Once the whole output
has been written, the files are moved into their final destination, and
given their final names. By default, the temporary directory will be
within the temp_location of your pipeline.
sink (callable, ~apache_beam.io.fileio.FileSink): The sink to use to write
into a file. It should implement the methods of a ``FileSink``. Pass a
class signature or an instance of FileSink to this parameter. If none is
provided, a ``TextSink`` is used.
shards (int): The number of shards per destination and trigger firing.
max_writers_per_bundle (int): The number of writers that can be open
concurrently in a single worker that's processing one bundle.
"""
self.path = (
path if isinstance(path, ValueProvider) else StaticValueProvider(
str, path))
self.file_naming_fn = file_naming or default_file_naming('output')
self.destination_fn = self._get_destination_fn(destination)
self._temp_directory = temp_directory
self.sink_fn = self._get_sink_fn(sink)
self.shards = shards or WriteToFiles.DEFAULT_SHARDING
self.output_fn = output_fn or (lambda x: x)
self._max_num_writers_per_bundle = max_writers_per_bundle
@staticmethod
def _get_sink_fn(input_sink):
# type: (...) -> Callable[[Any], FileSink]
if isinstance(input_sink, type) and issubclass(input_sink, FileSink):
return lambda x: input_sink()
elif isinstance(input_sink, FileSink):
kls = input_sink.__class__
return lambda x: kls()
elif callable(input_sink):
return input_sink
else:
return lambda x: TextSink()
@staticmethod
def _get_destination_fn(destination):
# type: (...) -> Callable[[Any], str]
if isinstance(destination, ValueProvider):
return lambda elm: destination.get()
elif callable(destination):
return destination
else:
return lambda elm: destination
def expand(self, pcoll):
p = pcoll.pipeline
if not self._temp_directory:
temp_location = (
p.options.view_as(GoogleCloudOptions).temp_location or
self.path.get())
dir_uid = str(uuid.uuid4())
self._temp_directory = StaticValueProvider(
str, filesystems.FileSystems.join(temp_location, '.temp%s' % dir_uid))
_LOGGER.info('Added temporary directory %s', self._temp_directory.get())
output = (
pcoll
| beam.ParDo(
_WriteUnshardedRecordsFn(
base_path=self._temp_directory,
destination_fn=self.destination_fn,
sink_fn=self.sink_fn,
max_writers_per_bundle=self._max_num_writers_per_bundle)).
with_outputs(
_WriteUnshardedRecordsFn.SPILLED_RECORDS,
_WriteUnshardedRecordsFn.WRITTEN_FILES))
written_files_pc = output[_WriteUnshardedRecordsFn.WRITTEN_FILES]
spilled_records_pc = output[_WriteUnshardedRecordsFn.SPILLED_RECORDS]
more_written_files_pc = (
spilled_records_pc
| beam.ParDo(
_AppendShardedDestination(self.destination_fn, self.shards))
| "GroupRecordsByDestinationAndShard" >> beam.GroupByKey()
| beam.ParDo(
_WriteShardedRecordsFn(
self._temp_directory, self.sink_fn, self.shards)))
files_by_destination_pc = (
(written_files_pc, more_written_files_pc)
| beam.Flatten()
| beam.Map(lambda file_result: (file_result.destination, file_result))
| "GroupTempFilesByDestination" >> beam.GroupByKey())
# Now we should take the temporary files, and write them to the final
# destination, with their proper names.
file_results = (
files_by_destination_pc
| beam.ParDo(
_MoveTempFilesIntoFinalDestinationFn(
self.path, self.file_naming_fn, self._temp_directory)))
return file_results
def _create_writer(
base_path,
writer_key: Tuple[str, IntervalWindow],
create_metadata_fn: CreateFileMetadataFn,
):
try:
filesystems.FileSystems.mkdirs(base_path)
except IOError:
# Directory already exists.
pass
destination = writer_key[0]
# The file name has a prefix determined by destination+window, along with
# a random string. This allows us to retrieve orphaned files later on.
file_name = '%s_%s' % (abs(hash(writer_key)), uuid.uuid4())
full_file_name = filesystems.FileSystems.join(base_path, file_name)
metadata = create_metadata_fn(destination, full_file_name)
return full_file_name, filesystems.FileSystems.create(
full_file_name,
**metadata._asdict())
class _MoveTempFilesIntoFinalDestinationFn(beam.DoFn):
def __init__(self, path, file_naming_fn, temp_dir):
self.path = path
self.file_naming_fn = file_naming_fn
self.temporary_directory = temp_dir
def process(self, element, w=beam.DoFn.WindowParam):
destination = element[0]
# list of FileResult objects for temp files
temp_file_results = list(element[1])
# list of FileResult objects for final files
final_file_results = []
for i, r in enumerate(temp_file_results):
# TODO(pabloem): Handle compression for files.
final_file_name = self.file_naming_fn(
r.window, r.pane, i, len(temp_file_results), '', destination)
final_file_results.append(
FileResult(
final_file_name,
i,
len(temp_file_results),
r.window,
r.pane,
destination))
move_from = [f.file_name for f in temp_file_results]
move_to = [f.file_name for f in final_file_results]
_LOGGER.info(
'Moving temporary files %s to dir: %s as %s',
map(os.path.basename, move_from),
self.path.get(),
move_to)
try:
filesystems.FileSystems.mkdirs(self.path.get())
except IOError as e:
cause = repr(e)
if 'FileExistsError' not in cause:
# Usually harmless. Especially if see FileExistsError so no need to log
_LOGGER.debug('Fail to create dir for final destination: %s', cause)
try:
filesystems.FileSystems.rename(
move_from,
[filesystems.FileSystems.join(self.path.get(), f) for f in move_to])
except BeamIOError:
# This error is not serious, because it may happen on a retry of the
# bundle. We simply log it.
_LOGGER.debug(
'Exception occurred during moving files: %s. This may be due to a'
' bundle being retried.',
move_from)
yield from final_file_results
_LOGGER.debug(
'Checking orphaned temporary files for destination %s and window %s',
destination,
w)
writer_key = (destination, w)
self._check_orphaned_files(writer_key)
def _check_orphaned_files(self, writer_key):
try:
prefix = filesystems.FileSystems.join(
self.temporary_directory.get(), str(abs(hash(writer_key))))
match_result = filesystems.FileSystems.match(['%s*' % prefix])
orphaned_files = [m.path for m in match_result[0].metadata_list]
if len(orphaned_files) > 0:
_LOGGER.info(
'Some files may be left orphaned in the temporary folder: %s. '
'This may be a result of insufficient permissions to delete'
'these temp files.',
orphaned_files)
except BeamIOError as e:
_LOGGER.info('Exceptions when checking orphaned files: %s', e)
class _WriteShardedRecordsFn(beam.DoFn):
def __init__(self,
base_path,
sink_fn, # type: Callable[[Any], FileSink]
shards # type: int
):
self.base_path = base_path
self.sink_fn = sink_fn
self.shards = shards
def process(
self, element, w=beam.DoFn.WindowParam, pane=beam.DoFn.PaneInfoParam):
destination_and_shard = element[0]
destination = destination_and_shard[0]
shard = destination_and_shard[1]
records = element[1]
sink = self.sink_fn(destination)
full_file_name, writer = _create_writer(
base_path=self.base_path.get(),
writer_key=(destination, w),
create_metadata_fn=sink.create_metadata)
sink.open(writer)
for r in records:
sink.write(r)
sink.flush()
writer.close()
_LOGGER.info(
'Writing file %s for destination %s and shard %s',
full_file_name,
destination,
repr(shard))
yield FileResult(
full_file_name,
shard_index=shard,
total_shards=self.shards,
window=w,
pane=pane,
destination=destination)
class _AppendShardedDestination(beam.DoFn):
def __init__(
self,
destination, # type: Callable[[Any], str]
shards # type: int
):
self.destination_fn = destination
self.shards = shards
# We start the shards for a single destination at an arbitrary point.
self._shard_counter = collections.defaultdict(
lambda: random.randrange(self.shards)) # type: DefaultDict[str, int]
def _next_shard_for_destination(self, destination):
self._shard_counter[destination] = ((self._shard_counter[destination] + 1) %
self.shards)
return self._shard_counter[destination]
def process(self, record):
destination = self.destination_fn(record)
shard = self._next_shard_for_destination(destination)
yield ((destination, shard), record)
class _WriteUnshardedRecordsFn(beam.DoFn):
SPILLED_RECORDS = 'spilled_records'
WRITTEN_FILES = 'written_files'
_writers_and_sinks = None # type: Dict[Tuple[str, BoundedWindow], Tuple[BinaryIO, FileSink]]
_file_names = None # type: Dict[Tuple[str, BoundedWindow], str]
def __init__(
self,
base_path,
destination_fn,
sink_fn,
max_writers_per_bundle=WriteToFiles.MAX_NUM_WRITERS_PER_BUNDLE):
self.base_path = base_path
self.destination_fn = destination_fn
self.sink_fn = sink_fn
self.max_num_writers_per_bundle = max_writers_per_bundle
def start_bundle(self):
self._writers_and_sinks = {}
self._file_names = {}
def process(
self, record, w=beam.DoFn.WindowParam, pane=beam.DoFn.PaneInfoParam):
destination = self.destination_fn(record)
writer, sink = self._get_or_create_writer_and_sink(destination, w)
if not writer:
return [beam.pvalue.TaggedOutput(self.SPILLED_RECORDS, record)]
else:
sink.write(record)
def _get_or_create_writer_and_sink(self, destination, window):
"""Returns a tuple of writer, sink."""
writer_key = (destination, window)
if writer_key in self._writers_and_sinks:
return self._writers_and_sinks.get(writer_key)
elif len(self._writers_and_sinks) >= self.max_num_writers_per_bundle:
# The writer does not exist, and we have too many writers already.
return None, None
else:
# The writer does not exist, but we can still create a new one.
sink = self.sink_fn(destination)
full_file_name, writer = _create_writer(
base_path=self.base_path.get(),
writer_key=writer_key,
create_metadata_fn=sink.create_metadata)
sink.open(writer)
self._writers_and_sinks[writer_key] = (writer, sink)
self._file_names[writer_key] = full_file_name
return self._writers_and_sinks[writer_key]
def finish_bundle(self):
for key, (writer, sink) in self._writers_and_sinks.items():
sink.flush()
writer.close()
file_result = FileResult(self._file_names[key],
shard_index=-1,
total_shards=0,
window=key[1],
pane=None, # TODO(pabloem): get the pane info
destination=key[0])
yield beam.pvalue.TaggedOutput(
self.WRITTEN_FILES,
beam.transforms.window.WindowedValue(
file_result,
timestamp=key[1].start,
windows=[key[1]] # TODO(pabloem) HOW DO WE GET THE PANE
))
class _RemoveDuplicates(beam.DoFn):
"""Internal DoFn that filters out filenames already seen (even though the file
has updated)."""
COUNT_STATE = CombiningValueStateSpec('count', combine_fn=sum)
def process(
self,
element: Tuple[str, filesystem.FileMetadata],
count_state=beam.DoFn.StateParam(COUNT_STATE)
) -> Iterable[filesystem.FileMetadata]:
path = element[0]
file_metadata = element[1]
counter = count_state.read()
if counter == 0:
count_state.add(1)
_LOGGER.debug('Generated entry for file %s', path)
yield file_metadata
else:
_LOGGER.debug('File %s was already read, seen %d times', path, counter)
class _RemoveOldDuplicates(beam.DoFn):
"""Internal DoFn that filters out filenames already seen and timestamp
unchanged."""
TIME_STATE = CombiningValueStateSpec(
'count', combine_fn=partial(max, default=0.0))
def process(
self,
element: Tuple[str, filesystem.FileMetadata],
time_state=beam.DoFn.StateParam(TIME_STATE)
) -> Iterable[filesystem.FileMetadata]:
path = element[0]
file_metadata = element[1]
new_ts = file_metadata.last_updated_in_seconds
old_ts = time_state.read()
if old_ts < new_ts:
time_state.add(new_ts)
_LOGGER.debug('Generated entry for file %s', path)
yield file_metadata
else:
_LOGGER.debug('File %s was already read', path)