@@ -2532,7 +2532,6 @@ def RBsymChk(RBsym,cubic,coefNames,L=18):
25322532
25332533def GenRBCoeff (sytsym ,RBsym ,L ):
25342534 '''imposes rigid body symmetry on spherical harmonics terms
2535- Key problem is noncubic RB symmetries in cubic site symmetries & vice versa.
25362535
25372536 :param str sytsym: atom position site symmetry symbol
25382537 :param str RBsym: molecular point symmetry symbol
@@ -2543,11 +2542,14 @@ def GenRBCoeff(sytsym,RBsym,L):
25432542 coefNames = []
25442543 coefSgns = []
25452544 cubic = False
2546- if sytsym in ['23' ,'m3' ,'432' ,'-43m' ,'m3m' ]:
2545+ rbSym = sytsym
2546+ if RBsym :
2547+ rbSym = RBsym
2548+ if rbSym in ['23' ,'m3' ,'432' ,'-43m' ,'m3m' ]:
25472549 cubic = True
25482550 for iord in range (1 ,L + 1 ):
25492551 for n in range (- iord ,iord + 1 ):
2550- rbChk ,sgn = RBChk (sytsym ,iord ,n )
2552+ rbChk ,sgn = RBChk (rbSym ,iord ,n )
25512553 if rbChk :
25522554 if cubic :
25532555 coefNames .append ('C(%d,%d)c' % (iord ,n ))
@@ -2556,7 +2558,7 @@ def GenRBCoeff(sytsym,RBsym,L):
25562558 coefSgns .append (sgn )
25572559 if RBsym == '1' :
25582560 return coefNames ,coefSgns
2559- newNames ,newSgns = RBsymChk (RBsym ,cubic ,coefNames ,L )
2561+ newNames ,newSgns = RBsymChk (rbSym ,cubic ,coefNames ,L )
25602562 return newNames ,newSgns
25612563
25622564def GenShCoeff (sytsym ,L ):
0 commit comments