-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathInterpolacion_Polinomial
179 lines (157 loc) · 4.06 KB
/
Interpolacion_Polinomial
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Alexis Mendoza Valencia
# Estudiante Tecnológico de Monterrey, campus guadalajara
# Metodo Polinomio de interpolación
"""
Este metodo se utiliza cuando tenemos valores de X y Y y buscamos
un tercer valor. Creamos una matriz de la forma Ax = b
A es la matriz de sumatorias de X,
x son los valores de a0, a1, ..., an
b son los valores de y0, y1
Encontramos la inversa de A e igualeamos
x = Ainversa * b
"""
import matplotlib.pyplot as plt
import numpy as np
def createMatrix(m ,n ,v):
C = []
for i in range(m):
C.append([v ] *n)
return C
def getDimensions(A):
return (len(A) ,len(A[0]))
def copyMatrix(B):
m ,n = getDimensions(B)
A = createMatrix(m ,n ,0)
for i in range(m):
for j in range(n):
A[i][j] = B[i][j]
return A
def sumaMatrix(A ,B):
Am ,An = getDimensions(A)
Bm ,Bn = getDimensions(B)
if Am != Bm or An != Bn:
print("Error las dimensiones deben ser iguales")
return []
C = createMatrix(Am ,An ,0)
for i in range(Am):
for j in range(An):
C[i][j] = A[i][j] + B[i][j]
return C
def restaMatrix(A ,B):
Am ,An = getDimensions(A)
Bm ,Bn = getDimensions(B)
if Am != Bm or An != Bn:
print("Error las dimensiones deben ser iguales")
return []
C = createMatrix(Am ,An ,0)
for i in range(Am):
for j in range(An):
C[i][j] = A[i][j] - B[i][j]
return C
def multMatrix(A ,B):
Am ,An = getDimensions(A)
Bm ,Bn = getDimensions(B)
if An != Bm:
print("Error las dimensiones deben ser conformable")
return []
C = createMatrix(Am ,Bn ,0)
for i in range(Am):
for j in range(Bn):
for k in range(An):
C[i][j] += A[i][k] * B[k][j]
return C
def getAdyacente(A ,r ,c):
Am ,An = getDimensions(A)
C = createMatrix(Am -1 , An -1,0)
for i in range(Am):
if i == r:
continue
for j in range(An):
if j == c:
continue
ci = 0
cj = 0
if(i < r):
ci = i
else:
ci = i - 1
if(j < c):
cj = j
else:
cj = j - 1
C[ci][cj] = A[i][j]
return C
def detMatrix(A):
m ,n = getDimensions(A)
if m != n:
print("La matriz no es cuadrada")
return []
if m == 1:
return A[0][0]
if m == 2:
return A[0][0 ] *A[1][1] - A[1][0 ] *A[0][1]
det = 0
for j in range(m):
det += ((-1 )**j ) *A[0][j ] *detMatrix(getAdyacente(A ,0 ,j))
return det
def getMatrizTranspuesta(A):
m ,n = getDimensions(A)
C = createMatrix(n ,m ,0)
for i in range(m):
for j in range(n):
C[j][i] = A[i][j]
return C
def getMatrizAdjunta(A):
m ,n = getDimensions(A)
if m != n:
print("La matriz no es cuadrada")
return []
C = createMatrix(m ,n ,0)
for i in range(m):
for j in range(n):
C[i][j] = ((-1 )**( i +j) ) *detMatrix(getAdyacente(A ,i ,j))
return C
def getMatrizInversa(A):
m ,n = getDimensions(A)
if m != n:
print("La matriz no es cuadrada")
return []
detA = detMatrix(A)
if detA == 0:
print("La matriz no tiene inversa")
return []
At = getMatrizTranspuesta(A)
adjA = getMatrizAdjunta(At)
invDetA = 1/ detA
C = createMatrix(m, n, 0)
for i in range(m):
for j in range(n):
C[i][j] = invDetA * adjA[i][j]
return C
def evalPolinomio(coef, x):
y = []
coef = np.asarray(coef)
for i in range(len(x)):
y.append(0)
for c in range(len(coef)):
y[i] += (x[i] ** c) * coef[c]
return y
x = [10, 20, 30]
y = createMatrix(3, 1, 0)
y[0] = [0.1763]
y[1] = [0.3640]
y[2] = [0.5774]
n = 3
A = createMatrix(n, n, 0)
for i in range(n):
for j in range(n):
A[i][j] = x[i] ** j
print(A)
invA = getMatrizInversa(A)
B = multMatrix(invA, y)
print(B)
plt.plot(x, y, 'ro')
x2 = np.linspace(10, 30, 100)
y2 = evalPolinomio(B, x2)
plt.plot(x2, y2)
plt.show()