Skip to content

SSIM metric #3

@igv

Description

@igv

Use MAD (Mean Absolute Deviation) pooling, it's more accurate than mean pooling with SSIM metric (I, honestly, would trust PSNR more than SSIM with mean pooling).
This is what I'm using for evaluation (using >2 scale levels doesn't make much of a difference):

import sys
from PIL import Image
import numpy as np
from scipy.ndimage import gaussian_filter

WEIGHTS = [0.0448]#, 0.2856, 0.3001, 0.2363, 0.1333]

def msssim(file1, file2):
    img1 = Image.open(file1).convert('RGB')
    img2 = Image.open(file2).convert('RGB')

    width, height = img1.size
    img1 = np.frombuffer(img1.tobytes(), dtype=np.uint8).reshape(height, width, 3) / 255
    img2 = np.frombuffer(img2.tobytes(), dtype=np.uint8).reshape(height, width, 3) / 255
    
    img1 = np.where(img1 > 0.04045, np.power((img1 + 0.055) / 1.055, 2.4),  img1 / 12.92)
    img2 = np.where(img2 > 0.04045, np.power((img2 + 0.055) / 1.055, 2.4),  img2 / 12.92)

    img1 = 0.2126 * img1[:,:,0] + 0.7152 * img1[:,:,1] + 0.0722 * img1[:,:,2]
    img2 = 0.2126 * img2[:,:,0] + 0.7152 * img2[:,:,1] + 0.0722 * img2[:,:,2]

    mssim = []
    for i in range(len(WEIGHTS)):
        mssim.append(ssim(pow(img1,1./2.2), pow(img2,1./2.2), i, i<len(WEIGHTS)-1))
        img1 = gaussian_filter(img1, 1.08, truncate=1.5)[::2,::2]
        img2 = gaussian_filter(img2, 1.08, truncate=1.5)[::2,::2]

    return np.sum(np.multiply(np.stack(mssim), WEIGHTS)) / np.sum(WEIGHTS)

def mad(x, l):
    return np.mean(np.absolute(x - np.power(np.mean(x), np.power(.5, l)))) # np.mean(np.absolute(x - np.mean(x if l==0 else np.sort(x, axis=None)[-int(x.size//1.5):])))

def ssim(L1, L2, lvl, cs_map):
    C1=(0.01)**2
    C2=(0.03)**2
    sd, t = 1.5, 3 #kernel radius = round(sd * truncate)

    mu1 = gaussian_filter(L1, sd, truncate=t)
    mu2 = gaussian_filter(L2, sd, truncate=t)
    mu1_sq = mu1 * mu1
    mu2_sq = mu2 * mu2
    mu1_mu2 = mu1 * mu2
    sigma1_sq = gaussian_filter(L1 * L1, sd, truncate=t) - mu1_sq
    sigma2_sq = gaussian_filter(L2 * L2, sd, truncate=t) - mu2_sq
    sigma12 = gaussian_filter(L1 * L2, sd, truncate=t) - mu1_mu2

    if cs_map:
        value = (2.0*sigma12 + C2)/(sigma1_sq + sigma2_sq + C2)
    else:
        value = ((2.0*mu1_mu2 + C1)*(2.0*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*
                    (sigma1_sq + sigma2_sq + C2))

    return mad(value, lvl)

def main():
    for arg in sys.argv[2:]:
        score = msssim(sys.argv[1], arg)
        print(str(score) + "\t" + arg)

if __name__ == '__main__':
    main()

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions