-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
57 lines (43 loc) · 1.54 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
import torch
import torch.nn.functional as F
from medpy.metric.binary import jc, dc, hd, hd95, recall, specificity, precision
def iou_score(output, target):
smooth = 1e-5
if torch.is_tensor(output):
output = torch.sigmoid(output).data.cpu().numpy()
if torch.is_tensor(target):
target = target.data.cpu().numpy()
output_ = output > 0.5
target_ = target > 0.5
intersection = (output_ & target_).sum()
union = (output_ | target_).sum()
iou = (intersection + smooth) / (union + smooth)
dice = (2* iou) / (iou+1)
try:
hd95_ = hd95(output_, target_)
except:
hd95_ = 0
return iou, dice, hd95_
def dice_coef(output, target):
smooth = 1e-5
output = torch.sigmoid(output).view(-1).data.cpu().numpy()
target = target.view(-1).data.cpu().numpy()
intersection = (output * target).sum()
return (2. * intersection + smooth) / \
(output.sum() + target.sum() + smooth)
def indicators(output, target):
if torch.is_tensor(output):
output = torch.sigmoid(output).data.cpu().numpy()
if torch.is_tensor(target):
target = target.data.cpu().numpy()
output_ = output > 0.5
target_ = target > 0.5
iou_ = jc(output_, target_)
dice_ = dc(output_, target_)
hd_ = hd(output_, target_)
hd95_ = hd95(output_, target_)
recall_ = recall(output_, target_)
specificity_ = specificity(output_, target_)
precision_ = precision(output_, target_)
return iou_, dice_, hd_, hd95_, recall_, specificity_, precision_