-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
35 lines (25 loc) · 977 Bytes
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import argparse
from ml25m_env import ML25MEnv
from imdb_env import IMDbEnv
from rl_agents import RLAgents
def parse_arguments():
'''parse input arguments'''
parser = argparse.ArgumentParser()
parser.add_argument('-s', '--seed', default=2022, help='value of random seed, default is 2022')
parser.add_argument('-e', '--environment', default='ml25m', help='which environment to use: ml25m, imdb')
args = parser.parse_args()
return int(args.seed), args.environment
if __name__ == '__main__':
# parse input arguments
seed, env_name = parse_arguments()
# create contextual bandit environment
if env_name == 'ml25m':
env = ML25MEnv(random_seed=seed)
elif env_name == 'imdb':
env = IMDbEnv(random_seed=seed)
else:
raise SystemExit(f'\nenvironment {env_name} is not implemented...')
# train rl agents
rl = RLAgents(env, random_seed=seed)
rl.train(num_timesteps=100000)
rl.plot_rewards()