forked from QEDjl-project/QEDprocesses.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcross_section.jl
172 lines (149 loc) · 5.13 KB
/
cross_section.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#####
# Perturbative one-photon Compton scattering
# Implementation of the cross section interface
#####
function QEDbase._incident_flux(in_psp::InPhaseSpacePoint{<:Compton,PerturbativeQED})
return momentum(in_psp, Incoming(), 1) * momentum(in_psp, Incoming(), 2)
end
function QEDbase._matrix_element(psp::PhaseSpacePoint{<:Compton,PerturbativeQED})
in_ps = momenta(psp, Incoming())
out_ps = momenta(psp, Outgoing())
return _pert_compton_matrix_element(psp.proc, in_ps, out_ps)
end
"""
_averaging_norm(proc::Compton)
!!! note "Convention"
We average over the initial spins and pols, and sum over final.
"""
function QEDbase._averaging_norm(proc::Compton)
return inv(incoming_multiplicity(proc))
end
@inline function _all_onshell(psp::PhaseSpacePoint{<:Compton})
return @inbounds isapprox(
getMass2(momentum(psp, Incoming(), 1)), mass(incoming_particles(psp.proc)[1])^2
) &&
isapprox(
getMass2(momentum(psp, Incoming(), 2)), mass(incoming_particles(psp.proc)[2])^2
) &&
isapprox(
getMass2(momentum(psp, Outgoing(), 1)), mass(outgoing_particles(psp.proc)[1])^2
) &&
isapprox(
getMass2(momentum(psp, Outgoing(), 2)), mass(outgoing_particles(psp.proc)[2])^2
)
end
@inline function QEDbase._is_in_phasespace(psp::PhaseSpacePoint{<:Compton,PerturbativeQED})
@inbounds if (
!isapprox(
momentum(psp, Incoming(), 1) + momentum(psp, Incoming(), 2),
momentum(psp, Outgoing(), 1) + momentum(psp, Outgoing(), 2),
)
)
return false
end
return _all_onshell(psp)
end
@inline function QEDbase._phase_space_factor(
psp::PhaseSpacePoint{<:Compton,PerturbativeQED}
)
in_ps = momenta(psp, Incoming())
out_ps = momenta(psp, Outgoing())
return _pert_compton_ps_fac(psp.ps_def, in_ps[2], out_ps[2])
end
#######
# Matrix elements
#######
@inline function _pert_compton_matrix_element(
proc::Compton, in_ps::NTuple{N,T}, out_ps::NTuple{M,T}
) where {N,M,T<:AbstractFourMomentum}
in_electron_mom = in_ps[1]
in_photon_mom = in_ps[2]
out_electron_mom = out_ps[1]
out_photon_mom = out_ps[2]
in_electron_state = base_state(Electron(), Incoming(), in_electron_mom, proc.in_spin)
in_photon_state = base_state(Photon(), Incoming(), in_photon_mom, proc.in_pol)
out_electron_state = base_state(Electron(), Outgoing(), out_electron_mom, proc.out_spin)
out_photon_state = base_state(Photon(), Outgoing(), out_photon_mom, proc.out_pol)
return _pert_compton_matrix_element(
in_electron_mom,
in_electron_state,
in_photon_mom,
in_photon_state,
out_electron_mom,
out_electron_state,
out_photon_mom,
out_photon_state,
)
end
function _pert_compton_matrix_element(
in_electron_mom::T,
in_electron_state,
in_photon_mom::T,
in_photon_state,
out_electron_mom::T,
out_electron_state,
out_photon_mom::T,
out_photon_state,
) where {T<:AbstractFourMomentum}
base_states_comb = Iterators.product(
QEDbase._as_svec(in_electron_state),
QEDbase._as_svec(in_photon_state),
QEDbase._as_svec(out_electron_state),
QEDbase._as_svec(out_photon_state),
)
matrix_elements = Vector{ComplexF64}()
sizehint!(matrix_elements, length(base_states_comb))
for (in_el, in_ph, out_el, out_ph) in base_states_comb
push!(
matrix_elements,
_pert_compton_matrix_element_single(
in_electron_mom,
in_el,
in_photon_mom,
in_ph,
out_electron_mom,
out_el,
out_photon_mom,
out_ph,
),
)
end
return matrix_elements
end
function _pert_compton_matrix_element_single(
in_electron_mom::T,
in_electron_state::BiSpinor,
in_photon_mom::T,
in_photon_state::SLorentzVector,
out_electron_mom::T,
out_electron_state::AdjointBiSpinor,
out_photon_mom::T,
out_photon_state::SLorentzVector,
) where {T<:AbstractFourMomentum}
in_ph_slashed = slashed(in_photon_state)
out_ph_slashed = slashed(out_photon_state)
prop1 = QEDcore._fermion_propagator(in_photon_mom + in_electron_mom, mass(Electron()))
prop2 = QEDcore._fermion_propagator(in_electron_mom - out_photon_mom, mass(Electron()))
# TODO: fermion propagator is not yet in QEDbase
diagram_1 =
out_electron_state *
(out_ph_slashed * (prop1 * (in_ph_slashed * in_electron_state)))
diagram_2 =
out_electron_state *
(in_ph_slashed * (prop2 * (out_ph_slashed * in_electron_state)))
result = diagram_1 + diagram_2
# TODO: find (preferably unitful) global provider for physical constants
# elementary charge
return ELEMENTARY_CHARGE_SQUARE * result
end
#######
# Phase space factors
#######
function _pert_compton_ps_fac(
in_ps_def::PhasespaceDefinition{inCS,ElectronRestFrame}, in_photon_mom, out_photon_mom
) where {inCS}
# TODO
omega = getE(in_photon_mom)
omega_prime = getE(out_photon_mom)
return omega_prime^2 / (16 * pi^2 * omega * mass(Electron()))
end