-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclimate_change.py
178 lines (123 loc) · 4.86 KB
/
climate_change.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import streamlit as st
import plotly.express as px
import pandas as pd
import json
from streamlit_lottie import st_lottie
import requests
def load_lottie_url(url):
r = requests.get(url)
if r.status_code != 200:
return None
return r.json()
lottie_temperature_meter = load_lottie_url("https://lottie.host/c2f23b2b-cc34-485a-b466-d0c0af815828/zPAxPvR17j.json")
lottie_earth = load_lottie_url("https://lottie.host/7332295c-98ac-4ba6-8ced-51cbf1ebd984/wUgtDvjY8F.json")
df = pd.read_csv(r"climate_change_indicators.csv")
f = open(r'countries.geo.json')
world_json = json.load(f)
year_list = []
for i in range(1963, 2023):
year = f"F{i}"
year_list.append(year)
df_melt = pd.melt(df, id_vars=["Country"], value_vars=year_list)
df_melt.rename(columns={"variable": "Year", "value": "Tempurate_Change"}, inplace=True)
df_melt['Year'] = df_melt['Year'].str.replace(r'F', '', regex=True)
df_melt['Year'] = df_melt['Year'].astype(int)
df_melt['Tempurate_Change'] = pd.to_numeric(df_melt['Tempurate_Change'], errors='coerce')
# Find max and min temperature changes
max_tempurate = df_melt.loc[df_melt['Tempurate_Change'].idxmax()]
min_tempurate = df_melt.loc[df_melt['Tempurate_Change'].idxmin()]
# Mean Temperature Change for each Year
mean_tempurate_change_by_year = df_melt.groupby("Year").agg({"Tempurate_Change":"mean"}).reset_index()
# The country with the maximum temperature change for each year
top_countries_year = df_melt.groupby(["Year", "Country"])["Tempurate_Change"].mean().reset_index()
top_countries_year = top_countries_year.groupby("Year").apply(lambda x: x.nlargest(1, "Tempurate_Change")).reset_index(drop=True)
# Streamlit app
st.set_page_config(
page_title="Climate Change",
page_icon=":bar_chart:",
layout="wide"
)
# Title
colT1,colT2 = st.columns([1,2])
with colT2:
st.title("Climatic Change Dashboard")
st.subheader("Analyzing Trends and Impact of Climate Change (SDG 13: Climate)")
#Gif
colG1, colG2, colG3, colG4= st.columns(4)
with colG1:
st.write("")
with colG2:
st_lottie(lottie_earth, width=200, height=150)
with colG3:
st.write("")
with colG4:
frame_width = 200
frame_height = 150
frame_style = f"margin-left: 1000px;"
st.markdown(
f"<div style='{frame_style}'>{st_lottie(lottie_temperature_meter, width=frame_width, height=frame_height)}</div>",
unsafe_allow_html=True
)
# Selector
st.markdown("<h3 style='text-align: center;'>Select Year</h3>", unsafe_allow_html=True)
selected_year = st.slider("", min_value=int(df_melt['Year'].min()), max_value=int(df_melt['Year'].max()), value=int(df_melt['Year'].min()))
# Filtered data
filtered_df = df_melt[df_melt["Year"] == selected_year]
# Indicators
left_indicator, right_indicator = st.columns(2)
with left_indicator:
st.subheader(f"**Maximum Tempurate Change ({max_tempurate['Country']} - {max_tempurate['Year']})**")
st.subheader(f"{max_tempurate['Tempurate_Change']:.2f}°C")
with right_indicator:
st.subheader(f"**Minumum Tempurate Change ({min_tempurate['Country']} - {min_tempurate['Year']})**")
st.subheader(f"{min_tempurate['Tempurate_Change']:.2f}°C")
st.markdown("""---""")
# Map
fig_map = px.choropleth(
filtered_df,
geojson=world_json,
featureidkey='properties.name',
locations='Country',
color='Tempurate_Change',
color_continuous_scale='Viridis',
projection='orthographic',
labels={'Tempurate_Change': 'Tempurate Change (°C)'}
)
fig_map.update_geos(
fitbounds="locations",
visible=True
)
fig_map.update_layout(
geo=dict(
bgcolor='rgba(0,0,0,0)',
showland=True,
showcountries=True
),
margin=dict(l=0, r=0, t=0, b=0),
)
map_col = st.columns(1)[0]
with map_col:
map_col.plotly_chart(fig_map, use_container_width=True)
#Graphs
fig_line = px.line(mean_tempurate_change_by_year.sort_values("Year", ascending=False), x='Year', y='Tempurate_Change',
title='Mean Tempurate Change For Each Year', markers=True,
labels={'Tempurate_Change': 'Tempurate Change (°C)'}, color_discrete_sequence=['#84CFFD'])
fig_line.update_layout(
xaxis=dict(showgrid=False),
yaxis=dict(showgrid=False),
plot_bgcolor='rgba(0,0,0,0)'
)
fig_bar = px.bar(filtered_df.sort_values("Tempurate_Change", ascending = False).head(10), x='Country',
y='Tempurate_Change', color='Tempurate_Change', color_continuous_scale = 'Viridis',
title='Countries With The Highest Temperature Increase (Top 10)', text="Country",
labels={'Tempurate_Change': 'Tempurate Change (°C)'})
fig_bar.update_layout(
xaxis=dict(showgrid=False),
yaxis=dict(showgrid=False),
plot_bgcolor='rgba(0,0,0,0)'
)
left_graph, right_graph = st.columns(2)
with left_graph:
left_graph.plotly_chart(fig_line, use_container_width=True)
with right_graph:
right_graph.plotly_chart(fig_bar, use_container_width=True)