Skip to content

Commit f46fca9

Browse files
committed
Adding GPU support to XGBoost
1 parent 0ccacd1 commit f46fca9

File tree

5 files changed

+9
-3
lines changed

5 files changed

+9
-3
lines changed

auto_ts/__version__.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,6 @@
55
__author__ = "Ram Seshadri"
66
__description__ = "Build time series models for any data set, any size. Now using dask."
77
__url__ = "https://github.com/Auto_ViML/Auto_TS.git"
8-
__version__ = "0.0.82"
8+
__version__ = "0.0.90"
99
__license__ = "Apache License 2.0"
1010
__copyright__ = "2020-22 Google"

auto_ts/utils/eda.py

+2
Original file line numberDiff line numberDiff line change
@@ -2,6 +2,8 @@
22
import numpy as np # type: ignore
33
import pandas as pd # type: ignore
44
import seaborn as sns # type: ignore
5+
from itertools import cycle
6+
import matplotlib.pyplot as plt
57

68
# This gives an error when running from a python script.
79
# Maybe, this should be set in the jupyter notebook directly.

auto_ts/utils/etl.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@
1111
import numpy as np
1212
import pandas as pd # type: ignore
1313
from sklearn.model_selection import TimeSeriesSplit # type: ignore
14-
14+
import pdb
1515

1616
##### This function loads a time series data and sets the index as a time series
1717
def load_ts_data(filename, ts_column, sep, target, dask_xgboost_flag=0):

setup.py

+2-1
Original file line numberDiff line numberDiff line change
@@ -26,10 +26,11 @@
2626
"prophet",
2727
"scikit-learn>=0.24.0",
2828
"statsmodels",
29-
"xgboost>=1.5.1",
29+
"xgboost>=2.0",
3030
"prettytable",
3131
"dask>=2022.1.0",
3232
"pyyaml>=5.4.1",
33+
"GPUtil>=1.4.0",
3334
"distributed>=2022.2.0",
3435
],
3536
classifiers=[

updates.md

+3
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,8 @@
11
<h1 id="updates">Latest Updates about Auto_TS library Page:</h1>
22

3+
<h2 id="jan-update">January 2024 Update:</h2>
4+
<p style="font-family:verdana">We have now added `XGBoost with GPU` support to Auto_TS. Auto_TS will automatically detect if there is a GPU in your Kaggle kernel or your local machine and will run XGBoost with GPU support. Hope this speeds up your computations!.
5+
36
<h2 id="nov-update">November 2023 Update:</h2>
47
<p style="font-family:verdana">We have now added `Google Cloud Run` support to Auto_TS. You can simply use the instructions in this <a href="https://github.com/AutoViML/Auto_TS/blob/master/cloud_run.txt">page</a> to deploy Auto_TS models on Google Cloud Run. Many thanks to <a href="https://github.com/abdulrahman305"> abdulrahman305</a> for providing a Pull Request to add this functionality to Auto_TS. <br>
58

0 commit comments

Comments
 (0)