@@ -212,7 +212,7 @@ def fit(train_data_or_file, target, keras_model_type="basic", project_name="deep
212
212
"compression": None => you can set it to zip or other file compression formats if your data is compressed
213
213
"csv_encoding": default 'utf-8'. But you can set it to any other csv encoding format your data is in
214
214
"label_encode_flag": False. But you can set it to True if you want it encoded.
215
- "max_trials": default = 30 ## number of Storm Tuner trials ### Lower this for faster processing.
215
+ "max_trials": default = 5 ## number of Storm Tuner trials ### Lower this for faster processing.
216
216
"tuner": default = 'storm' ## Storm Tuner is the default tuner. Optuna is the other option.
217
217
"embedding_size": default = 50 ## this is the NLP embedding size minimum
218
218
"tf_hub_model": default "" (empty string). If you want to supply TF hub model, provide URL here.
@@ -361,7 +361,7 @@ def fit(train_data_or_file, target, keras_model_type="basic", project_name="deep
361
361
"patience" , "epochs" , "steps_per_epoch" , "optimizer" ,
362
362
"kernel_initializer" , "num_layers" , "class_weight" ,
363
363
"loss" , "metrics" , "monitor" ,"mode" , "lr_scheduler" ,"early_stopping" ,
364
- "class_weight" ]
364
+ ]
365
365
366
366
keras_options = copy .deepcopy (keras_options_defaults )
367
367
if len (keras_options_copy ) > 0 :
@@ -389,7 +389,7 @@ def fit(train_data_or_file, target, keras_model_type="basic", project_name="deep
389
389
model_options_defaults ['compression' ] = None ## is is needed in case to read Zip files
390
390
model_options_defaults ["label_encode_flag" ] = '' ## User can set it to True or False depending on their need.
391
391
model_options_defaults ["header" ] = 0 ### this is the header row for pandas to read
392
- model_options_defaults ["max_trials" ] = 30 ## number of Storm Tuner trials ###
392
+ model_options_defaults ["max_trials" ] = 5 ## The number of Storm Tuner trials - make it small ###
393
393
model_options_defaults ['tuner' ] = 'storm' ## Storm Tuner is the default tuner. Optuna is the other option.
394
394
model_options_defaults ["embedding_size" ] = "" ## this is the NLP embedding size minimum
395
395
model_options_defaults ["tf_hub_model" ] = "" ## If you want to use a pretrained Hub model, provide URL here.
0 commit comments