-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIntelligent_malware
40 lines (32 loc) · 1.44 KB
/
Intelligent_malware
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import tensorflow as tf
import random
# Load the malicious data and train the neural network
model = tf.keras.models.sequential([
tf.keras.layers.Dense(128, input_shape=(input_dim,),
activation="relu"),
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dense(1, activation="sigmoid")
])
model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
model.fit(x_train, y_train, epochs=10)
# Generate a random seed to use for generating the initial mutation of the malware
random_seed = random.randint(0, 10000)
random.seed(random_seed)
# Mutate the initial version of the malware
mutated_malware = mutate(initian_malware)
# Use the trained neural network to perform malicious actions on the target system
while True:
# Collect data from the target system
data = collect_data()
# Use the neural network to decide which actions to take
prediction = model.predict(data)
# Perform the chosen action on the target system
perform_actions(predictions)
# Randomly decide whether to mutate the malware again
if random.random() < mutation_probability:
mutated_malware = mutate(mutated_malware)
# If the malware is detected, regenerate the random seed and mutate the malware again
if detected(mutated_malware):
random_seed = random.randint(0, 10000)
random.seed(random_seed)
mutated_malware = mutate(mutated_malware)