-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpseudocode.py
86 lines (67 loc) · 3.14 KB
/
pseudocode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
Pseudocode:
# Metamorphic malware function that takes an input file and applies
# metamorphic transformations to it, using a neural network to predict
# whether the transformed file is likely to be detected as malicious
# by security mechanisms. If the prediction is "malicious", the
# function exits without executing the transformed file. Otherwise,
# it executes the transformed file.
function metamorphicMalware(inputFile):
# Load the neural network model from a file
neuralNetwork = loadNeuralNetworkModel("model.h5")
# Apply metamorphic transformations to the input file
transformedFile = transformFile(inputFile)
# Use the neural network to predict whether the transformed file is malicious
prediction = neuralNetwork.predict(transformedFile)
# If the prediction is "malicious", exit without executing the transformed file
if prediction == "malicious":
return
# Otherwise, execute the transformed file
execute(transformedFile)
# Function that applies metamorphic transformations to an input file
function transformFile(inputFile):
# Initialize an empty list to store the transformations
transformations = []
# Choose a random number of transformations to apply (between 1 and 5)
numTransformations = randint(1, 5)
# Apply the chosen number of transformations
for i in range(numTransformations):
# Choose a random transformation to apply
transformation = chooseRandomTransformation()
# Apply the transformation to the input file
inputFile = transformation(inputFile)
# Add the transformation to the list of transformations
transformations.append(transformation)
# Return the transformed file
return inputFile
# Function that chooses a random transformation from a list of available transformations
function chooseRandomTransformation():
# List of available transformations
transformations = [encrypt, addJunkCode, renameVariables, changeControlFlow]
# Choose a random transformation and return it
return choice(transformations)
# Example transformation functions
# Encryption transformation that encrypts the input file using a randomly generated key
function encrypt(inputFile):
key = generateRandomKey()
encryptedFile = inputFile.encrypt(key)
return encryptedFile
# Junk code transformation that adds random, meaningless code to the input file
function addJunkCode(inputFile):
junkCode = generateRandomJunkCode()
inputFile.addCode(junkCode)
return inputFile
# Rename variables transformation that renames variables in the input file to random names
function renameVariables(inputFile):
inputFile.renameVariables()
return inputFile
# Change control flow transformation that modifies the control flow of the input file
function changeControlFlow(inputFile):
inputFile.modifyControlFlow()
return inputFile
# Use cases:
# Case 1: Malicious input file
inputFile = loadFile("malware.exe")
metamorphicMalware(inputFile) # The function should exit without executing the file
# Case 2: Benign input file
inputFile = loadFile("calculator.exe")
metamorphicMalware(inputFile) # The function should execute the file