-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
220 lines (200 loc) · 10.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from __future__ import print_function
import numpy as np
import argparse
import os
import glob
import time
from tqdm import tqdm
import ipdb
import torch
from torch import nn, optim
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from utils.dataset import VideoDataset
from model.s3d_g import S3D_G
###########################################################################################
# SET SOME ARGUMENTS #
###########################################################################################
# define a string2boolean type function for argparse
def str2bool(arg):
arg = arg.lower()
if arg in ['yes', 'true', '1']:
return True
elif arg in ['no', 'false', '0']:
return False
else:
# raise argparse.ArgumentTypeError('Boolean value expected!')
pass
parser = argparse.ArgumentParser(description="separable 3D CNN for action classification!")
parser.add_argument('--batch_size', type=int, default=2,
help='batch size: 10')
parser.add_argument('--clip_len', type=int, default=64,
help='set time step: 64')
parser.add_argument('--drop_prob', type=float, default=0.5,
help='dropout parameter: 0.2')
parser.add_argument('--lr', type=float, default=0.003,
help='learning rate: 0.001')
parser.add_argument('--gpu', type=str2bool, default='true',
help='chose to use gpu or not: True')
parser.add_argument('--test', type=str2bool, default='true',
help="test the model during traing: True")
# parser.add_argument('--clip', type=int, default=4,
# help='gradient clipping: 4')
parser.add_argument('--dataset', type=str, default='ucf101', choices=['ucf101','hmdb51'],
help='location of the dataset: ucf101')
parser.add_argument('--pretrained', type=str, default='',
help='location of the pretrained model file for training: None')
parser.add_argument('--log_dir', type=str, default='./log',
help='path to save the log data like loss\accuracy... : ./log')
parser.add_argument('--save_dir', type=str, default='./checkpoints',
help='path to save the checkpoints: ./checkpoints')
parser.add_argument('--epoch', type=int, default=300,
help='number of epochs to train: 300')
parser.add_argument('--print_every', type=int, default=10,
help='number of steps for printing training and validation loss: 10')
parser.add_argument('--save_every', type=int, default=50,
help='number of steps for saving the model parameters: 50')
parser.add_argument('--test_every', type=int, default=50,
help='number of steps for testing the model: 50')
# for dataset processing
parser.add_argument('--resize_height', type=int, default=256,
help='resize the height of frames before processing: 256')
parser.add_argument('--resize_width', type=int, default=256,
help='resize the width of frames before processing: 256')
parser.add_argument('--crop_height', type=int, default=224,
help='crop the height of frames when processing: 224')
parser.add_argument('--crop_width', type=int, default=224,
help='crop the widht of frames when processing: 224')
parser.add_argument('--reprocess_data', type=str2bool, default='false',
help='reporcess the data: false')
args = parser.parse_args()
###########################################################################################
# TRAIN/TEST MODEL #
###########################################################################################
def run_model(args):
# set up model
if args.dataset == "ucf101":
num_class = 101
elif args.dataset == "hmdb51":
num_class = 51
# train from scratch if args.pretrained==None
model = S3D_G(num_class=num_class, drop_prob=args.drop_prob, gate=True)
resume_epoch = 0
if args.pretrained:
# initialize model with uploaded checkpoint
checkpoint = torch.load(args.pretrained)
model.load_state_dict(checkpoint['state_dict'])
resume_epoch = args.pretrained.split('_')[-2]
# use GPU if available else revert to CPU
# ipdb.set_trace()
device = torch.device('cuda' if torch.cuda.is_available() and args.gpu else 'cpu')
print("Training on {}".format(device))
model.to(device)
# prepare dataset
trainset = VideoDataset(dataset=args.dataset, split='train', clip_len=args.clip_len,
resize_height=args.resize_height, resize_width=args.resize_width,
crop_height=args.crop_height, crop_width=args.crop_width, preprocess=args.reprocess_data)
valset = VideoDataset(dataset=args.dataset, split='val', clip_len=args.clip_len,
resize_height=args.resize_height, resize_width=args.resize_width,
crop_height=args.crop_height, crop_width=args.crop_width)
testset = VideoDataset(dataset=args.dataset, split='test', clip_len=args.clip_len,
resize_height=args.resize_height, resize_width=args.resize_width,
crop_height=args.crop_height, crop_width=args.crop_width)
train_dataloader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=1)
val_dataloader = DataLoader(valset, batch_size=args.batch_size, shuffle=True)
test_dataloader = DataLoader(testset, batch_size=args.batch_size, shuffle=False)
trainval_loaders = {'train': train_dataloader, 'val': val_dataloader}
trainval_size = {x: len(trainval_loaders[x].dataset) for x in ['train', 'val']}
test_size = len(test_dataloader.dataset)
# build optimizer && criterion
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9)
criterion = nn.NLLLoss()
# criterion = nn.CrossEntropyLoss()
# scheduler = optim.lr_scheduler.SetpLR(optimizer, step_size=10, gamma=0.1) #the scheduler divides the lr by 10 every 10 epochs
# set visualization and create folder to save checkpoints
writer = SummaryWriter(log_dir=args.log_dir)
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
'''------------------------------------------TRAINING------------------------------------------'''
for epoch in range(resume_epoch, resume_epoch+args.epoch):
# each epoch has a training and validation step
for phase in ['train', 'val']:
start_time = time.time()
running_loss = 0.0
running_corrects = 0.0
# for i,(inputs, labels) in tqdm(enumerate(trainval_loaders[phase])):
for inputs, labels in tqdm(trainval_loaders[phase]):
inputs, labels = inputs.to(device), labels.to(device)
if phase == 'train':
model.train()
model.zero_grad()
outputs = model(inputs)
loss = criterion(torch.log(outputs), labels)
loss.backward()
optimizer.step()
else:
model.eval()
# turn off the gradients for vaildation, save memory and computations
with torch.no_grad():
outputs = model(inputs)
loss = criterion(torch.log(outputs), labels)
# accumulate loss of each batch
running_loss += loss.item() * inputs.size(0)
# accumulate accuracy of each batch
top_probs, top_class = outputs.topk(1, dim=1) # or = torch.max(outputs, 1)
running_corrects += torch.sum(top_class == labels.data.view(top_class.shape))
# calculate the loss and accuracy of each epoch
epoch_loss = running_loss / trainval_size[phase]
epoch_acc = running_corrects.double() / trainval_size[phase]
# log trainval datas, and visualize them in the same graph
if phase == 'train':
train_loss = epoch_loss
train_acc = epoch_acc
else:
writer.add_scalars('trainval_loss_epoch', {'train': train_loss, 'val': epoch_loss}, epoch)
writer.add_scalars('trainval_acc_epoch', {'train': train_acc, 'val': epoch_acc}, epoch)
# print data
if (epoch % args.print_every) == 0:
end_time = time.time()
print("[{}] Epoch: {}/{} Loss: {} Acc: {} Execution time: {}".format(\
phase, epoch+1, args.epoch, epoch_loss, epoch_acc, (end_time-start_time)))
# save model
if epoch % args.save_every == (args.save_every -1):
checkpoint = {
'clip_len': args.clip_len,
'resize_height': args.resize_height,
'resize_width': args.resize_width,
'crop_height': args.crop_height,
'crop_width': args.crop_width,
'state_dict': model.state_dict()
}
save_name = args.dataset + "_checkpoint_" + str(epoch+1) + '_epoch.pth'
torch.save(checkpoint, os.path.join(args.save_dir, save_name))
'''------------------------------------------TESTING------------------------------------------'''
# test the model or not
if args.test and (epoch % args.test_every == args.test_every-1):
print('Finished {} epochs training. Start to test the model!'.format(epoch+1))
# testing model
model.eval()
testing_loss = 0.0
testing_corrects = 0.0
for inputs, labels in tqdm(test_dataloader):
inputs = inputs.to(device)
labels = labels.to(device)
with torch.no_grad():
outputs = model(inputs)
loss = criterion(torch.log(outputs), labels)
testing_loss += loss.item() * inputs.shape[0]
top_probs, top_class = outputs.topk(1, dim=1)
testing_corrects += torch.sum(top_class == labels.data.view(top_class.shape))
epoch_loss = testing_loss / test_size
epoch_acc = testing_corrects.double() / test_size
# log data
writer.add_scalar('test_loss_epoch', epoch_loss, epoch+1)
writer.add_scalar('test_acc_epoch', epoch_acc, epoch+1)
# print something out
print("[test] Epoch: {}/{} Loss: {} Acc: {}".format(epoch+1, args.epoch, epoch_loss, epoch_acc))
writer.close()
print('Finishing training!')
if __name__ == "__main__":
run_model(args)