Skip to content

Commit 7ce687e

Browse files
Litellm stable release notes 05 03 2025 (#10536)
* build(release_cycle.md): document bar for minor vs. patch updates * docs(index.md): initial changelog doc * docs(index.md): update llama docs * docs(index.md): add docs for llm api endpoints + spend tracking/budget improvements * docs: more doc cleanup * docs(index.md): more doc cleanup * docs(index.md): final doc cleanup
1 parent a9ee95e commit 7ce687e

13 files changed

+1010
-8
lines changed

docs/my-website/docs/mcp.md

+6
Original file line numberDiff line numberDiff line change
@@ -421,3 +421,9 @@ async with stdio_client(server_params) as (read, write):
421421

422422
</TabItem>
423423
</Tabs>
424+
425+
### Permission Management
426+
427+
Currently, all Virtual Keys are able to access the MCP endpoints. We are working on a feature to allow restricting MCP access by keys/teams/users/orgs.
428+
429+
Join the discussion [here](https://github.com/BerriAI/litellm/discussions/9891)

docs/my-website/docs/observability/langsmith_integration.md

+123-2
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,6 @@
11
import Image from '@theme/IdealImage';
2+
import Tabs from '@theme/Tabs';
3+
import TabItem from '@theme/TabItem';
24

35
# Langsmith - Logging LLM Input/Output
46

@@ -22,10 +24,13 @@ pip install litellm
2224
## Quick Start
2325
Use just 2 lines of code, to instantly log your responses **across all providers** with Langsmith
2426

27+
<Tabs>
28+
<TabItem value="python" label="SDK">
2529

2630
```python
27-
litellm.success_callback = ["langsmith"]
31+
litellm.callbacks = ["langsmith"]
2832
```
33+
2934
```python
3035
import litellm
3136
import os
@@ -37,7 +42,7 @@ os.environ["LANGSMITH_DEFAULT_RUN_NAME"] = "" # defaults to LLMRun
3742
os.environ['OPENAI_API_KEY']=""
3843

3944
# set langsmith as a callback, litellm will send the data to langsmith
40-
litellm.success_callback = ["langsmith"]
45+
litellm.callbacks = ["langsmith"]
4146

4247
# openai call
4348
response = litellm.completion(
@@ -47,8 +52,124 @@ response = litellm.completion(
4752
]
4853
)
4954
```
55+
</TabItem>
56+
<TabItem value="proxy" label="LiteLLM Proxy">
57+
58+
1. Setup config.yaml
59+
```yaml
60+
model_list:
61+
- model_name: gpt-3.5-turbo
62+
litellm_params:
63+
model: openai/gpt-3.5-turbo
64+
api_key: os.environ/OPENAI_API_KEY
65+
66+
litellm_settings:
67+
callbacks: ["langsmith"]
68+
```
69+
70+
2. Start LiteLLM Proxy
71+
```bash
72+
litellm --config /path/to/config.yaml
73+
```
74+
75+
3. Test it!
76+
```bash
77+
curl -L -X POST 'http://0.0.0.0:4000/v1/chat/completions' \
78+
-H 'Content-Type: application/json' \
79+
-H 'Authorization: Bearer sk-eWkpOhYaHiuIZV-29JDeTQ' \
80+
-d '{
81+
"model": "gpt-3.5-turbo",
82+
"messages": [
83+
{
84+
"role": "user",
85+
"content": "Hey, how are you?"
86+
}
87+
],
88+
"max_completion_tokens": 250
89+
}'
90+
```
91+
</TabItem>
92+
</Tabs>
93+
94+
5095

5196
## Advanced
97+
98+
### Local Testing - Control Batch Size
99+
100+
Set the size of the batch that Langsmith will process at a time, default is 512.
101+
102+
Set `langsmith_batch_size=1` when testing locally, to see logs land quickly.
103+
104+
<Tabs>
105+
<TabItem value="python" label="SDK">
106+
107+
```python
108+
import litellm
109+
import os
110+
111+
os.environ["LANGSMITH_API_KEY"] = ""
112+
# LLM API Keys
113+
os.environ['OPENAI_API_KEY']=""
114+
115+
# set langsmith as a callback, litellm will send the data to langsmith
116+
litellm.callbacks = ["langsmith"]
117+
litellm.langsmith_batch_size = 1 # 👈 KEY CHANGE
118+
119+
response = litellm.completion(
120+
model="gpt-3.5-turbo",
121+
messages=[
122+
{"role": "user", "content": "Hi 👋 - i'm openai"}
123+
]
124+
)
125+
print(response)
126+
```
127+
</TabItem>
128+
<TabItem value="proxy" label="LiteLLM Proxy">
129+
130+
1. Setup config.yaml
131+
```yaml
132+
model_list:
133+
- model_name: gpt-3.5-turbo
134+
litellm_params:
135+
model: openai/gpt-3.5-turbo
136+
api_key: os.environ/OPENAI_API_KEY
137+
138+
litellm_settings:
139+
langsmith_batch_size: 1
140+
callbacks: ["langsmith"]
141+
```
142+
143+
2. Start LiteLLM Proxy
144+
```bash
145+
litellm --config /path/to/config.yaml
146+
```
147+
148+
3. Test it!
149+
```bash
150+
curl -L -X POST 'http://0.0.0.0:4000/v1/chat/completions' \
151+
-H 'Content-Type: application/json' \
152+
-H 'Authorization: Bearer sk-eWkpOhYaHiuIZV-29JDeTQ' \
153+
-d '{
154+
"model": "gpt-3.5-turbo",
155+
"messages": [
156+
{
157+
"role": "user",
158+
"content": "Hey, how are you?"
159+
}
160+
],
161+
"max_completion_tokens": 250
162+
}'
163+
```
164+
165+
166+
167+
</TabItem>
168+
</Tabs>
169+
170+
171+
172+
52173
### Set Langsmith fields
53174

54175
```python

docs/my-website/docs/providers/bedrock.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -60,9 +60,9 @@ Here's how to call Bedrock with the LiteLLM Proxy Server
6060

6161
```yaml
6262
model_list:
63-
- model_name: bedrock-claude-v1
63+
- model_name: bedrock-claude-3-5-sonnet
6464
litellm_params:
65-
model: bedrock/anthropic.claude-instant-v1
65+
model: bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0
6666
aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID
6767
aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY
6868
aws_region_name: os.environ/AWS_REGION_NAME

0 commit comments

Comments
 (0)