-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathsimilar.cc
377 lines (313 loc) · 8.81 KB
/
similar.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
/*
* Copyright (C) 2004 John Ellis
* Copyright (C) 2008 - 2016 The Geeqie Team
*
* Author: John Ellis
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "similar.h"
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <functional>
#include <vector>
#include "options.h"
/**
* @file
*
* These functions are intended to find images with similar color content. For
* example when an image was saved at different compression levels or dimensions
* (scaled down/up) the contents are similar, but these files do not match by file
* size, dimensions, or checksum.
*
* These functions create a 32 x 32 array for each color channel (red, green, blue).
* The array represents the average color of each corresponding part of the
* image. (imagine the image cut into 1024 rectangles, or a 32 x 32 grid.
* Each grid is then processed for the average color value, this is what
* is stored in the array)
*
* To compare two images, generate a ImageSimilarityData for each image, then
* pass them to the compare function. The return value is the percent match
* of the two images. (for this, simple comparisons are used, basically the return
* is an average of the corresponding array differences)
*
* for image_sim_compare(), the return is 0.0 to 1.0: \n
* 1.0 for exact matches (an image is compared to itself) \n
* 0.0 for exact opposite images (compare an all black to an all white image) \n
* generally only a match of > 0.85 are significant at all, and >.95 is useful to
* find images that have been re-saved to other formats, dimensions, or compression.
*/
namespace
{
using ImageSimilarityCheckAbort = std::function<bool(gdouble)>;
void image_sim_channel_equal(guint8 *pix, gsize len)
{
struct IndexedPix
{
gsize index;
guint8 pix;
};
std::vector<IndexedPix> buf;
buf.reserve(len);
for (gsize i = 0; i < len; i++)
{
buf.push_back({i, pix[i]});
}
std::sort(buf.begin(), buf.end(), [](const IndexedPix &a, const IndexedPix &b){ return a.pix < b.pix; });
for (gsize i = 0; i < len; i++)
{
gint n = buf[i].index;
pix[n] = static_cast<guint8>(255 * i / len);
}
}
/*
* 4 rotations (0, 90, 180, 270) combined with two mirrors (0, H)
* generate all possible isometric transformations
* = 8 tests
* = change dir of x, change dir of y, exchange x and y = 2^3 = 8
*/
gdouble image_sim_data_compare_transfo(const ImageSimilarityData *a, const ImageSimilarityData *b, gchar transfo, const ImageSimilarityCheckAbort &check_abort)
{
if (!a || !b || !a->filled || !b->filled) return 0.0;
gint sim = 0.0;
gint i2;
gint *i;
gint j2;
gint *j;
if (transfo & 1) { i = &j2; j = &i2; } else { i = &i2; j = &j2; }
for (gint j1 = 0; j1 < 32; j1++)
{
if (transfo & 2) *j = 31-j1; else *j = j1;
for (gint i1 = 0; i1 < 32; i1++)
{
if (transfo & 4) *i = 31-i1; else *i = i1;
sim += abs(a->avg_r[(i1*32)+j1] - b->avg_r[(i2*32)+j2]);
sim += abs(a->avg_g[(i1*32)+j1] - b->avg_g[(i2*32)+j2]);
sim += abs(a->avg_b[(i1*32)+j1] - b->avg_b[(i2*32)+j2]);
/* check for abort, if so return 0.0 */
if (check_abort(sim)) return 0.0;
}
}
return 1.0 - (static_cast<gdouble>(sim) / (255.0 * 1024.0 * 3.0));
}
gdouble image_sim_data_compare(const ImageSimilarityData *a, const ImageSimilarityData *b, const ImageSimilarityCheckAbort &check_abort)
{
gchar max_t = (options->rot_invariant_sim ? 8 : 1);
gdouble max_score = 0;
for (gchar t = 0; t < max_t; t++)
{
max_score = std::max(image_sim_data_compare_transfo(a, b, t, check_abort), max_score);
}
return max_score;
}
} // namespace
ImageSimilarityData *image_sim_new()
{
auto sd = g_new0(ImageSimilarityData, 1);
return sd;
}
void image_sim_free(ImageSimilarityData *sd)
{
g_free(sd);
}
static void image_sim_channel_norm(guint8 *pix, gint len)
{
guint8 l;
guint8 h;
guint8 delta;
gint i;
gdouble scale;
l = h = pix[0];
for (i = 1; i < len; i++)
{
l = std::min(pix[i], l);
h = std::max(pix[i], h);
}
delta = h - l;
scale = (delta != 0) ? 255.0 / static_cast<gdouble>(delta) : 1.0;
for (i = 0; i < len; i++)
{
pix[i] = static_cast<guint8>(static_cast<gdouble>(pix[i] - l) * scale);
}
}
/*
* The Alternate algorithm is only for testing of new techniques to
* improve the result, and hopes to reduce false positives.
*/
void image_sim_alternate_processing(ImageSimilarityData *sd)
{
gint i;
if (!options->alternate_similarity_algorithm.enabled)
{
return;
}
image_sim_channel_norm(sd->avg_r, sizeof(sd->avg_r));
image_sim_channel_norm(sd->avg_g, sizeof(sd->avg_g));
image_sim_channel_norm(sd->avg_b, sizeof(sd->avg_b));
image_sim_channel_equal(sd->avg_r, sizeof(sd->avg_r));
image_sim_channel_equal(sd->avg_g, sizeof(sd->avg_g));
image_sim_channel_equal(sd->avg_b, sizeof(sd->avg_b));
if (options->alternate_similarity_algorithm.grayscale)
{
for (i = 0; i < (gint)sizeof(sd->avg_r); i++)
{
guint8 n;
n = (guint8)((gint)(sd->avg_r[i] + sd->avg_g[i] + sd->avg_b[i]) / 3);
sd->avg_r[i] = sd->avg_g[i] = sd->avg_b[i] = n;
}
}
}
void image_sim_fill_data(ImageSimilarityData *sd, GdkPixbuf *pixbuf)
{
gint w;
gint h;
gint rs;
guchar *pix;
gboolean has_alpha;
gint p_step;
guchar *p;
gint i;
gint j;
gint x_inc;
gint y_inc;
gint xy_inc;
gint xs;
gint ys;
gint w_left;
gint h_left;
gboolean x_small = FALSE; /* if less than 32 w or h, set TRUE */
gboolean y_small = FALSE;
if (!sd || !pixbuf) return;
w = gdk_pixbuf_get_width(pixbuf);
h = gdk_pixbuf_get_height(pixbuf);
rs = gdk_pixbuf_get_rowstride(pixbuf);
pix = gdk_pixbuf_get_pixels(pixbuf);
has_alpha = gdk_pixbuf_get_has_alpha(pixbuf);
p_step = has_alpha ? 4 : 3;
x_inc = w / 32;
y_inc = h / 32;
w_left = w;
h_left = h;
if (x_inc < 1)
{
x_inc = 1;
x_small = TRUE;
}
if (y_inc < 1)
{
y_inc = 1;
y_small = TRUE;
}
j = 0;
for (ys = 0; ys < 32; ys++)
{
if (y_small) j = static_cast<gdouble>(h) / 32 * ys;
else y_inc = std::lround(static_cast<gdouble>(h_left)/(32-ys));
i = 0;
w_left = w;
for (xs = 0; xs < 32; xs++)
{
gint x;
gint y;
gint r;
gint g;
gint b;
gint t;
guchar *xpos;
if (x_small) i = static_cast<gdouble>(w) / 32 * xs;
else x_inc = std::lround(static_cast<gdouble>(w_left)/(32-xs));
xy_inc = x_inc * y_inc;
r = g = b = 0;
xpos = pix + (i * p_step);
for (y = j; y < j + y_inc; y++)
{
p = xpos + (y * rs);
for (x = i; x < i + x_inc; x++)
{
r += p[0];
g += p[1];
b += p[2];
p += p_step;
}
}
r /= xy_inc;
g /= xy_inc;
b /= xy_inc;
t = ys * 32 + xs;
sd->avg_r[t] = r;
sd->avg_g[t] = g;
sd->avg_b[t] = b;
i += x_inc;
w_left -= x_inc;
}
j += y_inc;
h_left -= y_inc;
}
sd->filled = TRUE;
}
ImageSimilarityData *image_sim_new_from_pixbuf(GdkPixbuf *pixbuf)
{
ImageSimilarityData *sd;
sd = image_sim_new();
image_sim_fill_data(sd, pixbuf);
return sd;
}
static gdouble alternate_image_sim_compare_fast(const ImageSimilarityData *a, const ImageSimilarityData *b, gdouble min)
{
gint sim;
gint i;
gint j;
gint ld;
if (!a || !b || !a->filled || !b->filled) return 0.0;
sim = 0.0;
ld = 0;
for (j = 0; j < 1024; j += 32)
{
for (i = j; i < j + 32; i++)
{
gint cr;
gint cg;
gint cb;
gint cd;
cr = abs(a->avg_r[i] - b->avg_r[i]);
cg = abs(a->avg_g[i] - b->avg_g[i]);
cb = abs(a->avg_b[i] - b->avg_b[i]);
cd = cr + cg + cb;
sim += cd + abs(cd - ld);
ld = cd / 3;
}
/* check for abort, if so return 0.0 */
if ((gdouble)sim / (255.0 * 1024.0 * 4.0) > min) return 0.0;
}
return (1.0 - ((gdouble)sim / (255.0 * 1024.0 * 4.0)) );
}
gdouble image_sim_compare(ImageSimilarityData *a, ImageSimilarityData *b)
{
return image_sim_data_compare(a, b, [](gdouble){ return false; });
}
/* this uses a cutoff point so that it can abort early when it gets to
* a point that can simply no longer make the cut-off point.
*/
gdouble image_sim_compare_fast(ImageSimilarityData *a, ImageSimilarityData *b, gdouble min)
{
min = 1.0 - min;
if (options->alternate_similarity_algorithm.enabled)
{
return alternate_image_sim_compare_fast(a, b, min);
}
return image_sim_data_compare(a, b, [min](gdouble sim){ return (sim / (255.0 * 1024.0 * 3.0)) > min; });
}
/* vim: set shiftwidth=8 softtabstop=0 cindent cinoptions={1s: */