-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_p2net.py
304 lines (260 loc) · 13 KB
/
train_p2net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# basic lib
import os
import torch
import numpy as np
import os.path as osp
# data & options
from options.opt_p2net import Options
from torch.utils.data import DataLoader
from data.common import P2NETCollate
from data.dl_p2net import P2NETMatchDataset
# networks & loss func
from networks.d2f import D2F
from networks.d3f import KPFCNN
from networks.loss_p2net import p2net_criterion
# tools
import time
import datetime
from tensorboardX import SummaryWriter
# Config
opt = Options().parse()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpus
cuda = torch.cuda.is_available()
opt.device = "cuda:0" if cuda else "cpu"
writer = SummaryWriter(log_dir=opt.runs_dir)
def validation(d2net, d3net, val_loader, total_epoch, loss_mode):
d2net.eval()
d3net.eval()
val_steps = 0
tot_d_pos = 0
tot_d_neg = 0
tot_d_neg_row = 0
tot_d_neg_col = 0
tot_val_acc = 0
tot_val_loss = 0
toto_val_det_loss = 0
print("****************************************************************")
print("********************* Start validation {:d} ***********************".format(total_epoch + 1))
print("****************************************************************\n")
for val_data in val_loader:
val_data.to(opt.device)
with torch.set_grad_enabled(False):
d2_out = d2net(val_data.images, val_data.valid_depth_mask, opt)
d3_out = d3net(val_data, opt)
val_loss, val_det_loss, val_acc, d_pos, d_neg, d_neg_row, d_neg_col = p2net_criterion(d2_out, d3_out, val_data.pos_keypts_inds, opt, 1, loss_mode)
if val_acc > 0:
val_steps += 1
tot_d_pos += d_pos.item()
tot_d_neg += d_neg.item()
tot_d_neg_row += d_neg_row
tot_d_neg_col += d_neg_col
tot_val_acc += val_acc
tot_val_loss += val_loss.item()
toto_val_det_loss += val_det_loss.item()
if val_steps == opt.val_size:
break
if val_steps > 0:
mean_acc = tot_val_acc / val_steps
mean_loss = tot_val_loss / val_steps
mean_det_loss = toto_val_det_loss / val_steps
mean_d_pos = tot_d_pos / val_steps
mean_d_neg = tot_d_neg / val_steps
mean_d_neg_row = tot_d_neg_row / val_steps
mean_d_neg_col = tot_d_neg_col / val_steps
else:
mean_acc = 0
mean_loss = 0
mean_det_loss = 0
mean_d_pos = 0
mean_d_neg = 0
mean_d_neg_row = 0
mean_d_neg_col = 0
print('------------------- Validation of epoch {:d} ----------------------'.format(total_epoch + 1))
print("d_pos:{:f}, d_neg:{:f}, d_neg_row {:f}, d_neg_col {:f}".format(mean_d_pos, mean_d_neg, mean_d_neg_row, mean_d_neg_col))
print("mean_loss:{:f}, mean_det_loss {:f}, mean_acc:{:f}".format(mean_loss, mean_det_loss, mean_acc))
print("total validation steps:", val_steps)
writer.add_scalar('val_acc', mean_acc, total_epoch)
writer.add_scalar('val_loss', mean_loss, total_epoch)
writer.add_scalar('val_det_loss', mean_det_loss, total_epoch)
writer.add_scalar('val_d_pos', mean_d_pos, total_epoch)
writer.add_scalar('val_d_neg', mean_d_neg, total_epoch)
writer.add_scalar('val_d_neg_row', mean_d_neg_row, total_epoch)
writer.add_scalar('val_d_neg_col', mean_d_neg_col, total_epoch)
print("\n****************************************************************")
print("********************* End of validation {:d} **********************".format(total_epoch + 1))
print("****************************************************************\n")
torch.cuda.empty_cache()
return mean_acc
def train(d2net, d3net, train_loader, val_loader=None, ckpt=None):
param_list = list(d2net.parameters()) + list(d3net.parameters())
if opt.optm_type == 'SGD':
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, param_list), lr=opt.sgd_lr,
momentum=opt.sgd_momentum, weight_decay=opt.sgd_weight_decay)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.1 ** (2 / opt.epochs))
elif opt.optm_type == 'Adam':
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, param_list), lr=opt.adam_lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.1 ** (1 / 240000))
else:
raise NotImplementedError
if opt.train_mode == 'continue':
optimizer.load_state_dict(ckpt['optimizer_state_dict'])
best_acc = 0
total_steps = 0
epoch_acc = []
epoch_loss = []
epoch_det_loss = []
epoch_d_pos = []
epoch_d_neg = []
epoch_d_neg_row = []
epoch_d_neg_col = []
loss_mode = 'Single'
for epoch in range(opt.epochs):
print("******************************* Start epoch {:d} ************************************".format(epoch + 1))
d2net.train()
d3net.train()
if epoch == opt.switch_epoch:
loss_mode = opt.loss_mode
for train_data in train_loader:
train_data.to(opt.device)
with torch.set_grad_enabled(True):
optimizer.zero_grad()
d2_out = d2net(train_data.images, train_data.valid_depth_mask, opt)
d3_out = d3net(train_data, opt)
train_loss, train_det_loss, train_acc, d_pos, d_neg, d_neg_row, d_neg_col = p2net_criterion(d2_out, d3_out, train_data.pos_keypts_inds, opt,
total_steps, loss_mode)
# backward
train_loss.backward()
do_step = True
for param in d3net.parameters():
if param.grad is not None:
if (1 - torch.isfinite(param.grad).long()).sum() > 0:
do_step = False
break
if do_step is True:
if opt.grad_clip_norm > 0:
torch.nn.utils.clip_grad_value_(d3net.parameters(), opt.grad_clip_norm)
optimizer.step()
scheduler.step()
epoch_acc.append(train_acc)
epoch_loss.append(train_loss.item())
epoch_det_loss.append(train_det_loss.item())
epoch_d_pos.append(d_pos.item())
epoch_d_neg.append(d_neg.item())
epoch_d_neg_row.append(d_neg_row.item())
epoch_d_neg_col.append(d_neg_col.item())
total_steps += 1
if total_steps == 1 or total_steps % opt.print_freq == 0:
tmp_acc = np.mean(epoch_acc)
tmp_loss = np.mean(epoch_loss)
tmp_det_loss = np.mean(epoch_det_loss)
tmp_d_pos = np.mean(epoch_d_pos)
tmp_d_neg = np.mean(epoch_d_neg)
tmp_d_neg_row = np.mean(epoch_d_neg_row)
tmp_d_neg_col = np.mean(epoch_d_neg_col)
epoch_acc = []
epoch_loss = []
epoch_det_loss = []
epoch_d_pos = []
epoch_d_neg = []
epoch_d_neg_row = []
epoch_d_neg_col = []
writer.add_scalar('train_acc', tmp_acc, total_steps)
writer.add_scalar('train_loss', tmp_loss, total_steps)
writer.add_scalar('train_det_loss', tmp_det_loss, total_steps)
writer.add_scalar('train_d_pos', tmp_d_pos, total_steps)
writer.add_scalar('train_d_neg', tmp_d_neg, total_steps)
writer.add_scalar('train_d_neg_row', tmp_d_neg_row, total_steps)
writer.add_scalar('train_d_neg_col', tmp_d_neg_col, total_steps)
print('Train: total_steps {:d}, train_loss {:f}, train_det_loss {:f} train_acc {:f}, d_pos {:f}, d_neg {:f}, d_neg_row {:f}, d_neg_col {:f}'.format(total_steps,
tmp_loss,
tmp_det_loss,
tmp_acc,
tmp_d_pos,
tmp_d_neg,
tmp_d_neg_row,
tmp_d_neg_col))
# process validation after each epoch
tmp_val_acc = validation(d2net, d3net, val_loader, epoch, loss_mode)
d2net.train()
d3net.train()
if epoch > 4 and epoch % opt.save_freq == 0:
print(f"save model of epoch {epoch + 1}")
filename = osp.join(opt.models_dir, f'ckpt_{epoch + 1}.pth.tar')
checkpoint_dict = {'epoch': epoch + 1,
'd2net_state_dict': d2net.state_dict(),
'd3net_state_dict': d3net.state_dict(),
'optimizer_state_dict': optimizer.state_dict()}
torch.save(checkpoint_dict, filename)
# save best model
if tmp_val_acc > best_acc:
print(f"save best model")
best_filename = osp.join(opt.models_dir, f'best.pth.tar')
best_acc = tmp_val_acc
torch.save(checkpoint_dict, best_filename)
# reconstruct the batched data index after each epoch
val_loader.dataset.reset_batch_list(opt.batchsize)
train_loader.dataset.reset_batch_list(opt.batchsize)
def main():
# Load the dataset
t1 = time.time()
print("******* Prepare dataset *******")
test_set = P2NETMatchDataset(opt, 'test')
train_set = P2NETMatchDataset(opt, 'train')
kwargs = {'num_workers': opt.nThreads, 'pin_memory': True} if cuda else {}
test_loader = DataLoader(test_set, batch_size=1, collate_fn=P2NETCollate, shuffle=True, **kwargs)
train_loader = DataLoader(train_set, batch_size=1, collate_fn=P2NETCollate, shuffle=True, **kwargs)
t2 = time.time()
print("\nDone in {:f} seconds".format(t2 - t1))
def get_parameter_number(net):
total_num = sum(p.numel() for p in net.parameters())
trainable_num = sum(p.numel() for p in net.parameters() if p.requires_grad)
return {'Total': total_num, 'Trainable': trainable_num}
# Models
print("******* Creating model *******")
d2net = D2F(opt)
d3net = KPFCNN(opt)
d2net.to(opt.device)
d3net.to(opt.device)
if opt.train_mode == 'from-scratch':
print("Training mode: from scratch...")
elif opt.train_mode == 'fine-tune':
print("Training mode: with pre-trained models...")
d2net_weights = f'./logs/{opt.d2net_logs}/models/{opt.d2net_ckpt}'
d3net_weights = f'../CDF-master/logs/{opt.d3net_logs}/models/{opt.d3net_ckpt}'
d2net_ckpt = torch.load(d2net_weights, map_location=opt.device)
d3net_ckpt = torch.load(d3net_weights, map_location=opt.device)
d2net.load_state_dict(d2net_ckpt['d2net_state_dict'])
d3net.load_state_dict(d3net_ckpt['d3net_state_dict'])
elif opt.train_mode == 'continue':
print("Training mode: with pre-trained p2p weights...")
weights = f'./logs/{opt.p2p_logs}/models/{opt.p2p_ckpt}'
ckpt = torch.load(weights, map_location=opt.device)
print(f"Loaded models from {opt.p2p_ckpt}")
d2net.load_state_dict(ckpt['d2net_state_dict'])
d3net.load_state_dict(ckpt['d3net_state_dict'])
else:
raise ValueError
print(d2net)
print(d3net)
print(get_parameter_number(d2net))
print(get_parameter_number(d3net))
t3 = time.time()
print("\nDone in {:f} seconds".format(t3 - t2))
# Train
print("\n******* Start training *******")
start_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print("******* Start time: {:s} ********".format(start_time))
if opt.train_mode == 'from-scratch':
train(d2net, d3net, train_loader, test_loader)
elif opt.train_mode == 'continue':
# train(d2net, d3net, train_loader, val_loader, ckpt)
validation(d2net, d3net, test_loader, 0)
else:
raise NotImplementedError
# validation(d2net, d3net, val_loader, 0, opt.loss_mode)
end_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print("\n******* Finished at {:s} *******".format(end_time))
writer.close()
if __name__ == '__main__':
main()