-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmsm_lib.py
1208 lines (1070 loc) · 32.5 KB
/
msm_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
This file is part of the MasterMSM package.
"""
import sys #ionix
import copy
import numpy as np
import networkx as nx
import os #, math
import tempfile
from functools import reduce, cmp_to_key
#import operator
from scipy import linalg as spla
#import multiprocessing as mp
import pickle
# thermal energy (kJ/mol)
beta = 1./(8.314e-3*300)
#def difference(k1, k2):
# l = len(k1)
# diff = 0
# for i in range(l):
# if k1[i] != k2[i]:
# diff+=1
# return diff
def calc_eigsK(rate, evecs=False):
"""
Calculate eigenvalues and eigenvectors of rate matrix K
Parameters
-----------
rate : array
The rate matrix to use.
evecs : bool
Whether we want the eigenvectors of the rate matrix.
Returns:
-------
tauK : numpy array
Relaxation times from K.
peqK : numpy array
Equilibrium probabilities from K.
rvecsK : numpy array, optional
Right eigenvectors of K, sorted.
lvecsK : numpy array, optional
Left eigenvectors of K, sorted.
"""
evalsK, lvecsK, rvecsK = \
spla.eig(rate, left=True)
# sort modes
nkeys = len(rate)
elistK = []
for i in range(nkeys):
elistK.append([i,np.real(evalsK[i])])
elistK.sort(key=cmp_to_key(esort))
# calculate relaxation times from K and T
tauK = []
for i in range(nkeys):
if np.abs(elistK[i][1]) > 1e-10:
iiK, lamK = elistK[i]
tauK.append(-1./lamK)
if len(tauK) == 1:
ieqK = iiK
# equilibrium probabilities
ieqK, _ = elistK[0]
peqK_sum = reduce(lambda x, y: x + y, map(lambda x: rvecsK[x,ieqK],
range(nkeys)))
peqK = rvecsK[:,ieqK]/peqK_sum
if not evecs:
return tauK, peqK
else:
# sort eigenvectors
rvecsK_sorted = np.zeros((nkeys, nkeys), float)
lvecsK_sorted = np.zeros((nkeys, nkeys), float)
for i in range(nkeys):
iiK, lamK = elistK[i]
rvecsK_sorted[:,i] = rvecsK[:,iiK]
lvecsK_sorted[:,i] = lvecsK[:,iiK]
return tauK, peqK, rvecsK_sorted, lvecsK_sorted
def esort(ei, ej):
""" Sorts eigenvalues.
Parameters
----------
ei : float
Eigenvalue i
ej : float
Eigenvalue j
Returns
-------
bool :
Whether the first value is larger than the second.
"""
_, eval_i = ei
_, eval_j = ej
if eval_j.real > eval_i.real:
return 1
elif eval_j.real < eval_i.real:
return -1
else:
return 0
#def find_keys(state_keys, trans, manually_remove):
# """ eliminate dead ends """
# keep_states = []
# keep_keys = []
# # eliminate dead ends
# nstate = len(state_keys)
# for i in range(nstate):
# key = state_keys[i]
# summ = 0
# sumx = 0
# for j in range(nstate):
# if j!=i:
# summ += trans[j][i] # sources
# sumx += trans[i][j] # sinks
# if summ > 0 and sumx > 0 and trans[i][i] > 0 and key not in manually_remove:
# keep_states.append(i)
# keep_keys.append(state_keys[i])
# return keep_states,keep_keys
#
#def connect_groups(keep_states, trans):
# """ check for connected groups """
# connected_groups = []
# leftover = copy.deepcopy(keep_states)
# while len(leftover) > 0:
# #print leftover
# leftover_new = []
# n_old_new_net = 0
# new_net = [ leftover[0] ]
# n_new_net = len(new_net)
# while n_new_net != n_old_new_net:
# for i in range(len(leftover)):
# l = leftover[i]
# if l in new_net:
# continue
# summ = 0
# for g in new_net:
# summ += trans[l][g]+trans[g][l]
# if summ > 0:
# new_net.append(l)
# n_old_new_net = n_new_net
# n_new_net = len(new_net)
# #print " added %i new members" % (n_new_net-n_old_new_net)
# leftover_new = filter(lambda x: x not in new_net, leftover)
# connected_groups.append(new_net)
# leftover = copy.deepcopy(leftover_new)
# return connected_groups
#
#def isnative(native_string, string):
# s = ""
# for i in range(len(string)):
# if string[i]==native_string[i]:
# s+="1"
# else:
# s+="0"
# return s
def mat_mul_v(m, v):
""" Multiplies matrix and vector
Parameters
----------
m : np.array
The matrix.
v : np.array
The vector.
Returns
-------
w : np.array
The result
"""
rows = len(m)
w = [0]*rows
irange = range(len(v))
summ = 0
for j in range(rows):
r = m[j]
for i in irange:
summ += r[i]*v[i]
w[j], summ = summ,0
return w
#def dotproduct(v1, v2, sum=sum, imap=itertools.imap, mul=operator.mul):
# return sum(imap(mul,v1,v2))
#
##def rate_analyze(rate):
## # calculates eigenvalues and eigenvectors from rate matrix
## # calculate symmetrized matrix
## kjisym = kji*(kji.transpose())
## kjisym = sqrt(kjisym)
## for j in arange(nstates):
## kjisym[j,j] = -kjisym[j,j]
## # calculate eigenvalues and eigenvectors
## eigvalsym,eigvectsym = linalg.eig(kjisym)
## # index the solutions
## index = argsort(-eigvalsym)
## ieq = index[0]
## # equilibrium population
## peq = eigvectsym[:,ieq]**2
## # order eigenvalues and calculate left and right eigenvectors
## eigval = zeros((nstates),float)
## PsiR = zeros((nstates,nstates),float)
## PsiL = zeros((nstates,nstates),float)
## for i in arange(nstates):
## eigval[i] = eigvalsym[index[i]]
## PsiR[:,i] = eigvectsym[:,index[i]]*eigvectsym[:,ieq]
## PsiL[:,i] = eigvectsym[:,index[i]]/eigvectsym[:,ieq]
## return eigval,PsiR,PsiL,eigvectsym,peq
#
#def propagate(rate, t, pini):
# # propagate dynamics using rate matrix exponential
# expkt = spla.expm2(rate*t)
# return mat_mul_v(expkt,pini)
#
#def propagate_eig(elist, rvecs, lvecs, t, pini):
# # propagate dynamics using rate matrix exponential using eigenvalues and eigenvectors
# nstates = len(pini)
# p = np.zeros((nstates),float)
# for n in range(nstates):
# #print np.exp(-elist[n][1]*t)
# i,e = elist[n]
# p = p + rvecs[:,i]*(np.dot(lvecs[:,i],pini)*\
# np.exp(-abs(e*t)))
# return p
#
#def bootsfiles(traj_list_dt):
# n = len(traj_list_dt)
# traj_list_dt_new = []
# i = 0
# while i < n:
# k = int(np.random.random()*n)
# traj_list_dt_new.append(traj_list_dt[k])
# i += 1
# return traj_list_dt_new
#
#def boots_pick(filename, blocksize):
# raw = open(filename).readlines()
# lraw = len(raw)
# nblocks = int(lraw/blocksize)
# lblock = int(lraw/nblocks)
# try:
# ib = np.random.randint(nblocks-1)
# except ValueError:
# ib = 0
# return raw[ib*lblock:(ib+1)*lblock]
#
#def onrate(states, target, K, peq):
# # steady state rate
# kon = 0.
# for i in states:
# if i != target:
# if K[target,i] > 0:
# kon += K[target,i]*peq[i]
# return kon
#
def run_commit(states, K, peq, FF, UU):
""" Calculate committors and reactive flux
Parameters
----------
states : list
States in the MSM.
K : np.array
Rate matrix.
peq : np.array
Equilibrium distribution.
FF : list
Definitely folded states.
UU : list
Definitely unfolded states.
Returns
-------
J : np.array
Reactive flux matrix.
pfold : np.array
Values of the committor.
sum_flux : float
Sum of reactive fluxes.
kf : float
Folding rate from flux over population relationship.
"""
nstates = len(states)
# define end-states
UUFF = UU + FF
print (" definitely FF and UU states", UUFF)
I = list(filter(lambda x: x not in UU+FF, states))
NI = len(I)
# calculate committors
b = np.zeros([NI], float)
A = np.zeros([NI,NI], float)
for j_ind in range(NI):
j = I[j_ind]
summ = 0.
for i in FF:
summ += K[i][j]
b[j_ind] = -summ
for i_ind in range(NI):
i = I[i_ind]
A[j_ind][i_ind] = K[i][j]
# solve Ax=b
Ainv = np.linalg.inv(A)
x = np.dot(Ainv,b)
#XX = np.dot(Ainv,A)
pfold = np.zeros(nstates,float)
for i in range(nstates):
if i in UU:
pfold[i] = 0.0
elif i in FF:
pfold[i] = 1.0
else:
ii = I.index(i)
pfold[i] = x[ii]
# stationary distribution
pss = np.zeros(nstates,float)
for i in range(nstates):
pss[i] = (1-pfold[i])*peq[i]
# flux matrix and reactive flux
J = np.zeros([nstates,nstates],float)
for i in range(nstates):
for j in range(nstates):
J[j][i] = K[j][i]*peq[i]*(pfold[j]-pfold[i])
# dividing line is committor = 0.5
sum_flux = 0
left = [x for x in range(nstates) if pfold[x] < 0.5]
right = [x for x in range(nstates) if pfold[x] > 0.5]
for i in left:
for j in right:
sum_flux += J[j][i]
#sum of populations for all reactant states
pU = np.sum([peq[x] for x in range(nstates) if pfold[x] < 0.5])
# pU = np.sum(peq[filter(lambda x: x in UU, range(nstates))])
kf = sum_flux/pU
return J, pfold, sum_flux, kf
def calc_count_worker(x):
""" mp worker that calculates the count matrix from a trajectory
Parameters
----------
x : list
List containing input for each mp worker. Includes:
distraj :the time series of states
dt : the timestep for that trajectory
keys : the keys used in the assignment
lagt : the lag time for construction
Returns
-------
count : array
"""
# parse input from multiprocessing
distraj = x[0]
dt = x[1]
keys = x[2]
nkeys = len(keys)
lagt = x[3]
sliding = x[4]
ltraj = len(distraj)
lag = int(lagt/dt) # number of frames per lag time
if sliding:
slider = 1 # every state is initial state
else:
slider = lag
count = np.zeros([nkeys,nkeys], np.int32)
for i in range(0, ltraj-lag, slider):
j = i + lag
state_i = distraj[i]
state_j = distraj[j]
if state_i in keys:
idx_i = keys.index(state_i)
if state_j in keys:
idx_j = keys.index(state_j)
try:
count[idx_j][idx_i] += 1
except UnboundLocalError:
pass
return count
def calc_lifetime(x):
""" mp worker that calculates the count matrix from a trajectory
Parameters
----------
x : list
List containing input for each mp worker. Includes:
distraj :the time series of states
dt : the timestep for that trajectory
keys : the keys used in the assignment
Returns
-------
life : dict
"""
# parse input from multiprocessing
distraj = x[0]
dt = x[1]
keys = x[2]
ltraj = len(distraj)
life = {}
l = 0
for j in range(1, ltraj):
i = j - 1
state_i = distraj[i]
state_j = distraj[j]
if state_i == state_j:
l += 1
elif state_j not in keys:
l += 1
else:
try:
life[state_i].append(l*dt)
except KeyError:
life[state_i] = [l*dt]
l = 1
#try:
# life[state_i].append(l*dt)
#except KeyError:
# life[state_i] = [l*dt]
return life
def traj_split(data=None, lagt=None, fdboots=None):
""" Splits trajectories into fragments for bootstrapping
Parameters
----------
data : list
Set of trajectories used for building the MSM.
lagt : float
Lag time for building the MSM.
Returns:
-------
filetmp : file object
Open file object with trajectory fragments.
"""
trajs = [[x.distraj, x.dt] for x in data]
ltraj = [len(x[0])*x[1] for x in trajs]
ltraj_median = np.median(ltraj)
timetot = np.sum(ltraj) # total simulation time
while ltraj_median > timetot/20. and ltraj_median > 10.*lagt:
trajs_new = []
#cut trajectories in chunks
for x in trajs:
lx = len(x[0])
trajs_new.append([x[0][:int(lx/2)], x[1]])
trajs_new.append([x[0][int(lx/2):], x[1]])
trajs = trajs_new
ltraj = [len(x[0])*x[1] for x in trajs]
ltraj_median = np.median(ltraj)
# save trajs
fd, filetmp = tempfile.mkstemp()
file = os.fdopen(fd, 'wb')
pickle.dump(trajs, file, protocol=pickle.HIGHEST_PROTOCOL)
file.close()
return filetmp
def do_boots_worker(x):
""" Worker function for parallel bootstrapping.
Parameters
----------
x : list
A list containing the trajectory filename, the states, the lag time
and the total number of transitions.
"""
#print "# Process %s running on input %s"%(mp.current_process(), x[0])
filetmp, keys, lagt, ncount, slider = x
nkeys = len(keys)
finp = open(filetmp, 'rb')
trans = pickle.load(finp)
finp.close()
ltrans = len(trans)
np.random.seed()
ncount_boots = 0
count = np.zeros([nkeys, nkeys], np.int32)
while ncount_boots < ncount:
itrans = np.random.randint(ltrans)
count_inp = [trans[itrans][0], trans[itrans][1], keys, lagt, slider]
c = calc_count_worker(count_inp)
count += np.matrix(c)
ncount_boots += np.sum(c)
#print ncount_boots, "< %g"%ncount
D = nx.DiGraph(count)
#keep_states = sorted(nx.strongly_connected_components(D)[0])
keep_states = list(sorted(list(nx.strongly_connected_components(D)),
key = len, reverse=True)[0])
keep_keys = list(map(lambda x: keys[x], keep_states))
nkeep = len(keep_keys)
trans = np.zeros([nkeep, nkeep], float)
for i in range(nkeep):
ni = reduce(lambda x, y: x + y, map(lambda x:
count[keep_states[x]][keep_states[i]], range(nkeep)))
for j in range(nkeep):
trans[j][i] = float(count[keep_states[j]][keep_states[i]])/float(ni)
evalsT, rvecsT = spla.eig(trans, left=False)
elistT = []
for i in range(nkeep):
elistT.append([i,np.real(evalsT[i])])
elistT.sort(key=cmp_to_key(esort))
tauT = []
for i in range(1,nkeep):
_, lamT = elistT[i]
tauT.append(-lagt/np.log(lamT))
ieqT, _ = elistT[0]
peqT_sum = reduce(lambda x,y: x + y, map(lambda x: rvecsT[x,ieqT],
range(nkeep)))
peqT = rvecsT[:,ieqT]/peqT_sum
return tauT, peqT, trans, keep_keys
def calc_trans(nkeep=None, keep_states=None, count=None, normalize=False):
""" Calculates transition matrix.
Uses the maximum likelihood expression by Prinz et al.[1]_
Parameters
----------
normalize : boolean
Use method of Zimmerman et al. JCTC 2018
Returns
-------
trans : array
The transition probability matrix.
Notes
-----
..[1] J. H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held,
J. D. Chodera, C. Schutte and F. Noe, "Markov state models:
Generation and validation", J. Chem. Phys. (2011).
"""
trans = np.zeros([nkeep, nkeep], float)
if normalize:
pseudo = 1./float(nkeep)
for i in range(nkeep):
ni = reduce(lambda x, y: x + y, map(lambda x:
count[keep_states[x]][keep_states[i]], range(nkeep)))
for j in range(nkeep):
trans[j][i] = float(count[keep_states[j]][keep_states[i]]) + pseudo
trans[j][i] /= float(ni + pseudo)
else:
for i in range(nkeep):
ni = reduce(lambda x, y: x + y, map(lambda x:
count[x][i], range(nkeep)))
#ionix count[keep_states[x]][keep_states[i]], range(nkeep)))
if ni==0.0: print(count) #ionix
sys.stdout.flush()
for j in range(nkeep):
trans[j][i] = float(count[keep_states[j]][keep_states[i]])/float(ni)
return trans
def calc_rate(nkeep, trans, lagt):
""" Calculate rate matrix from transition matrix.
We use a method based on a Taylor expansion.[1]_
Parameters
----------
nkeep : int
Number of states in transition matrix.
trans: np.array
Transition matrix.
lagt : float
The lag time.
Returns
-------
rate : np.array
The rate matrix.
Notes
-----
..[1] D. De Sancho, J. Mittal and R. B. Best, "Folding kinetics
and unfolded state dynamics of the GB1 hairpin from molecular
simulation", J. Chem. Theory Comput. (2013).
"""
rate = trans/lagt
# enforce mass conservation
for i in range(nkeep):
rate[i][i] = -(np.sum(rate[:i,i]) + np.sum(rate[i+1:,i]))
return rate
def rand_rate(nkeep, count):
""" Randomly generate initial matrix.
Parameters
----------
nkeep : int
Number of states in transition matrix.
count : np.array
Transition matrix.
Returns
-------
rand_rate : np.array
The random rate matrix.
"""
nkeys = len(count)
rand_rate = np.zeros((nkeys, nkeys), float)
for i in range(nkeys):
for j in range(nkeys):
if i != j:
if (count[i,j] !=0) and (count[j,i] != 0):
rand_rate[j,i] = np.exp(np.random.randn()*-3)
rand_rate[i,i] = -np.sum(rand_rate[:,i] )
return rand_rate
def calc_mlrate(nkeep, count, lagt, rate_init):
""" Calculate rate matrix using maximum likelihood Bayesian method.
We use a the MLPB method described by Buchete and Hummer.[1]_
Parameters
----------
nkeep : int
Number of states in transition matrix.
count : np.array
Transition matrix.
lagt : float
The lag time.
Returns
-------
rate : np.array
The rate matrix.
Notes
-----
..[1] N.-V. Buchete and G. Hummer, "Coarse master equations for
peptide folding dynamics", J. Phys. Chem. B (2008).
"""
# initialize rate matrix and equilibrium distribution enforcing detailed balance
p_prev = np.sum(count, axis=0)/np.float(np.sum(count))
rate_prev = detailed_balance(nkeep, rate_init, p_prev)
ml_prev = likelihood(nkeep, rate_prev, count, lagt)
# initialize MC sampling
print ("MLPB optimization of rate matrix:\n START")
#print rate_prev,"\n", p_prev, ml_prev
ml_ref = ml_prev
ml_cum = [ml_prev]
temp_cum = [1.]
nstep = 0
nsteps = 1000*nkeep**2
k = -3./nsteps
nfreq = 10
ncycle = 0
accept = 0
rate_best = rate_prev
ml_best = ml_prev
while True:
# random choice of MC move
rate, p = mc_move(nkeep, rate_prev, p_prev)
rate = detailed_balance(nkeep, rate, p)
# calculate likelihood
ml = likelihood(nkeep, rate, count, lagt)
# Boltzmann acceptance / rejection
if ml < ml_prev:
#print " ACCEPT\n"
rate_prev = rate
p_prev = p
ml_prev = ml
accept +=1
if ml < ml_best:
ml_best = ml
rate_best = rate
else:
delta_ml = ml - ml_prev
beta = (1 - np.exp(k*nsteps))/(np.exp(k*nstep) - np.exp(k*nsteps)) if ncycle > 0 else 1
weight = np.exp(-beta*delta_ml)
if np.random.random() < weight:
#print " ACCEPT BOLTZMANN\n"
rate_prev = rate
p_prev = p
ml_prev = ml
accept +=1
nstep +=1
if nstep > nsteps:
ncycle +=1
ml_cum.append(ml_prev)
temp_cum.append(1./beta)
print ("\n END of cycle %g"%ncycle)
print (" acceptance :%g"%(np.float(accept)/nsteps))
accept = 0
print (rate_prev)
print (" L old =", ml_ref,"; L new:", ml_prev)
improvement = (ml_ref - ml_cum[-1])/ml_ref
print (" improvement :%g"%improvement)
if improvement > 0.001 or ncycle < 3:
nstep = 0
ml_ref = np.mean(ml_cum[-nsteps:])
else:
break
elif nstep % nfreq == 0:
ml_cum.append(ml_prev)
temp_cum.append(1./beta)
return rate_best, ml_cum, temp_cum
def mc_move(nkeep, rate, peq):
""" Make MC move in either rate or equilibrium probability.
Changes in equilibrium probabilities are introduced so that the new value
is drawn from a normal distribution centered at the current value.
Parameters
----------
nkeep : int
The number of states.
rate : array
The rate matrix obeying detailed balance.
peq : array
The equilibrium probability
"""
nparam = nkeep*(nkeep - 1)/2 + nkeep - 1
npeq = nkeep - 1
while True:
i = np.random.randint(0, nparam)
#print i
rate_new = copy.deepcopy(rate)
peq_new = copy.deepcopy(peq)
if i < npeq:
#print " Peq"
scale = np.mean(peq)*0.1
# peq_new[i] = np.random.normal(loc=peq[i], scale=scale)
peq_new[i] = peq[i] + (np.random.random() - 0.5)*scale
peq_new = peq_new/np.sum(peq_new)
if np.all(peq_new > 0):
break
else:
#print " Rate"
i = np.random.randint(0, nkeep - 1)
try:
j = np.random.randint(i + 1, nkeep - 1)
except ValueError:
j = nkeep - 1
try:
scale = np.mean(np.abs(rate>0.))*0.1
#rate_new[j,i] = np.random.normal(loc=rate[j,i], scale=scale)
rate_new[j,i] = rate[j,i] + (np.random.random() - 0.5)*scale
if np.all((rate_new - np.diag(np.diag(rate_new))) >= 0):
break
except ValueError:
pass
#else:
# print rate_new - np.diag(np.diag(rate_new))
return rate_new, peq_new
def detailed_balance(nkeep, rate, peq):
""" Enforce detailed balance in rate matrix.
Parameters
----------
nkeep : int
The number of states.
rate : array
The rate matrix obeying detailed balance.
peq : array
The equilibrium probability
"""
for i in range(nkeep):
for j in range(i):
rate[j,i] = rate[i,j]*peq[j]/peq[i]
rate[i,i] = 0
rate[i,i] = -np.sum(rate[:,i])
return rate
def likelihood(nkeep, rate, count, lagt):
""" Likelihood of a rate matrix given a count matrix
We use the procedure described by Buchete and Hummer.[1]_
Parameters
----------
nkeep : int
Number of states in transition matrix.
count : np.array
Transition matrix.
lagt : float
The lag time.
Returns
-------
mlog_like : float
The log likelihood
Notes
-----
..[1] N.-V. Buchete and G. Hummer, "Coarse master equations for
peptide folding dynamics", J. Phys. Chem. B (2008).
"""
# calculate symmetrized rate matrix
ratesym = np.multiply(rate,rate.transpose())
ratesym = np.sqrt(ratesym)
for i in range(nkeep):
ratesym[i,i] = -ratesym[i,i]
# calculate eigenvalues and eigenvectors
evalsym, evectsym = np.linalg.eig(ratesym)
# index the solutions
indx_eig = np.argsort(-evalsym)
# equilibrium population
ieq = indx_eig[0]
# calculate left and right eigenvectors
phiR = np.zeros((nkeep, nkeep))
phiL = np.zeros((nkeep, nkeep))
for i in range(nkeep):
phiR[:,i] = evectsym[:,i]*evectsym[:,ieq]
phiL[:,i] = evectsym[:,i]/evectsym[:,ieq]
# calculate propagators
prop = np.zeros((nkeep, nkeep), float)
for i in range(nkeep):
for j in range(nkeep):
for n in range(nkeep):
prop[j,i] = prop[j,i] + \
phiR[j,n]*phiL[i,n]*np.exp(-abs(evalsym[n])*lagt)
# calculate likelihood using matrix of transitions
log_like = 0.
for i in range(nkeep):
for j in range(nkeep):
if count[j,i] > 0:
log_like = log_like + float(count[j,i])*np.log(prop[j,i])
return -log_like
def partial_rate(K, elem):
""" Calculates the derivative of the rate matrix
Parameters
----------
K : np.array
The rate matrix.
elem : int
Integer corresponding to which we calculate the
partial derivative.
Returns
-------
d_K : np.array
Partial derivative of rate matrix.
"""
nstates = len(K[0])
d_K = np.zeros((nstates,nstates), float)
for i in range(nstates):
if i != elem:
d_K[i,elem] = beta/2.*K[i,elem];
d_K[elem,i] = -beta/2.*K[elem,i];
for i in range(nstates):
d_K[i,i] = -np.sum(d_K[:,i])
return d_K
def partial_peq(peq, elem):
""" Calculates derivative of equilibrium distribution
Parameters
----------
peq : np.array
Equilibrium probabilities.
"""
nstates = len(peq)
d_peq = []
for i in range(nstates):
if i != elem:
d_peq.append(beta*peq[i]*peq[elem])
else:
d_peq.append(-beta*peq[i]*(1. - peq[i]))
return d_peq
def partial_pfold(states, K, d_K, FF, UU, elem):
""" Calculates derivative of pfold """
nstates = len(states)
# define end-states
I = list(filter(lambda x: x not in UU+FF, range(nstates)))
NI = len(I)
# calculate committors
b = np.zeros([NI], float)
A = np.zeros([NI,NI], float)
db = np.zeros([NI], float)
dA = np.zeros([NI,NI], float)
for j_ind in range(NI):
j = I[j_ind]
summ = 0.
sumd = 0.
for i in FF:
summ += K[i][j]
sumd += d_K[i][j]
b[j_ind] = -summ
db[j_ind] = -sumd
for i_ind in range(NI):
i = I[i_ind]
A[j_ind][i_ind] = K[i][j]
dA[j_ind][i_ind] = d_K[i][j]
# solve Ax + Bd(x) = c
Ainv = np.linalg.inv(A)
pfold = np.dot(Ainv,b)
x = np.dot(Ainv,db - np.dot(dA,pfold))
dpfold = np.zeros(nstates,float)
for i in range(nstates):
if i in UU:
dpfold[i] = 0.0
elif i in FF:
dpfold[i] = 0.0
else:
ii = I.index(i)
dpfold[i] = x[ii]
return dpfold
def partial_flux(states, peq, K, pfold, d_peq, d_K, d_pfold, target):
""" Calculates derivative of reactive flux """
# flux matrix and reactive flux
nstates = len(states)
sum_d_flux = 0
d_J = np.zeros((nstates,nstates),float)
for i in range(nstates):
for j in range(nstates):
d_J[j][i] = d_K[j][i]*peq[i]*(pfold[j]-pfold[i]) + \
K[j][i]*d_peq[i]*(pfold[j]-pfold[i]) + \
K[j][i]*peq[i]*(d_pfold[j]-d_pfold[i])
if j in target and K[j][i]>0: # dividing line corresponds to I to F transitions
sum_d_flux += d_J[j][i]
return sum_d_flux
def propagate_worker(x):
""" Propagate dynamics using rate matrix exponential
Parameters
----------
x : list
Contains K, the time and the initial population
Returns
-------
popul : np.array
The propagated population
"""
rate, t, pini = x
expkt = spla.expm(rate*t)
popul = mat_mul_v(expkt, pini)
return popul
def propagateT_worker(x):
""" Propagate dynamics using power of transition matrix
Parameters
----------
x : list