|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "metadata": {}, |
| 5 | + "cell_type": "code", |
| 6 | + "source": [ |
| 7 | + "import numpy as np\n", |
| 8 | + "import blosc2\n", |
| 9 | + "import time\n", |
| 10 | + "import plotly.express as px\n", |
| 11 | + "import pandas as pd" |
| 12 | + ], |
| 13 | + "id": "55765646130156ef", |
| 14 | + "outputs": [], |
| 15 | + "execution_count": null |
| 16 | + }, |
| 17 | + { |
| 18 | + "metadata": {}, |
| 19 | + "cell_type": "code", |
| 20 | + "source": [ |
| 21 | + "sizes = [(100, 100), (500, 500), (500, 1000), (1000, 1000), (2000, 2000), (3000, 3000), (4000, 4000), (5000, 5000)]\n", |
| 22 | + "sizes_mb = [(np.prod(size) * 8) / 2**20 for size in sizes] # Convert to MB\n", |
| 23 | + "results = {\"numpy\": [], \"blosc2\": []}" |
| 24 | + ], |
| 25 | + "id": "1cfb7daa6eee1401", |
| 26 | + "outputs": [], |
| 27 | + "execution_count": null |
| 28 | + }, |
| 29 | + { |
| 30 | + "metadata": {}, |
| 31 | + "cell_type": "code", |
| 32 | + "source": [ |
| 33 | + "for method in [\"numpy\", \"blosc2\"]:\n", |
| 34 | + " for size in sizes:\n", |
| 35 | + " arr = np.random.rand(*size)\n", |
| 36 | + " arr_b2 = blosc2.asarray(arr)\n", |
| 37 | + "\n", |
| 38 | + " start_time = time.perf_counter()\n", |
| 39 | + "\n", |
| 40 | + " if method == \"numpy\":\n", |
| 41 | + " np.transpose(arr).copy()\n", |
| 42 | + " elif method == \"blosc2\":\n", |
| 43 | + " blosc2.transpose(arr_b2)\n", |
| 44 | + "\n", |
| 45 | + " end_time = time.perf_counter()\n", |
| 46 | + " time_b = end_time - start_time\n", |
| 47 | + "\n", |
| 48 | + " print(f\"{method}: shape={size}, Performance = {time_b:.6f} s\")\n", |
| 49 | + " results[method].append(time_b)" |
| 50 | + ], |
| 51 | + "id": "384d0ad7983a8d26", |
| 52 | + "outputs": [], |
| 53 | + "execution_count": null |
| 54 | + }, |
| 55 | + { |
| 56 | + "metadata": {}, |
| 57 | + "cell_type": "code", |
| 58 | + "source": [ |
| 59 | + "df = pd.DataFrame({\n", |
| 60 | + " \"Matrix Size (MB)\": sizes_mb,\n", |
| 61 | + " \"NumPy Time (s)\": results[\"numpy\"],\n", |
| 62 | + " \"Blosc2 Time (s)\": results[\"blosc2\"]\n", |
| 63 | + "})\n", |
| 64 | + "\n", |
| 65 | + "fig = px.line(df,\n", |
| 66 | + " x=\"Matrix Size (MB)\",\n", |
| 67 | + " y=[\"NumPy Time (s)\", \"Blosc2 Time (s)\"],\n", |
| 68 | + " title=\"Performance of Matrix Transposition (NumPy vs Blosc2)\",\n", |
| 69 | + " labels={\"value\": \"Time (s)\", \"variable\": \"Method\"},\n", |
| 70 | + " markers=True)\n", |
| 71 | + "\n", |
| 72 | + "fig.show()" |
| 73 | + ], |
| 74 | + "id": "c71ffb39eb28992c", |
| 75 | + "outputs": [], |
| 76 | + "execution_count": null |
| 77 | + }, |
| 78 | + { |
| 79 | + "metadata": {}, |
| 80 | + "cell_type": "code", |
| 81 | + "source": [ |
| 82 | + "%%time\n", |
| 83 | + "shapes = [\n", |
| 84 | + " (100, 100), (2000, 2000), (3000, 3000), (4000, 4000), (3000, 7000),\n", |
| 85 | + " (5000, 5000), (6000, 6000), (7000, 7000), (8000, 8000), (6000, 12000),\n", |
| 86 | + " (9000, 9000), (10000, 10000),\n", |
| 87 | + " (10500, 10500), (11000, 11000), (11500, 11500), (12000, 12000),\n", |
| 88 | + " (12500, 12500), (13000, 13000), (13500, 13500), (14000, 14000),\n", |
| 89 | + " (14500, 14500), (15000, 15000), (15500, 15500), (16000, 16000),\n", |
| 90 | + " (16500, 16500), (17000, 17000)\n", |
| 91 | + "]\n", |
| 92 | + "chunkshapes = [None, (150, 300), (200, 500), (500, 200), (1000, 1000)]\n", |
| 93 | + "\n", |
| 94 | + "sizes = []\n", |
| 95 | + "time_total = []\n", |
| 96 | + "chunk_labels = []\n", |
| 97 | + "\n", |
| 98 | + "for shape in shapes:\n", |
| 99 | + " size_mb = (np.prod(shape) * 8) / (2 ** 20)\n", |
| 100 | + "\n", |
| 101 | + " matrix_np = np.linspace(0, 1, np.prod(shape)).reshape(shape)\n", |
| 102 | + "\n", |
| 103 | + " t0 = time.perf_counter()\n", |
| 104 | + " result_numpy = np.transpose(matrix_np).copy()\n", |
| 105 | + " numpy_time = time.perf_counter() - t0\n", |
| 106 | + "\n", |
| 107 | + " time_total.append(numpy_time)\n", |
| 108 | + " sizes.append(size_mb)\n", |
| 109 | + " chunk_labels.append(\"NumPy\")\n", |
| 110 | + "\n", |
| 111 | + " print(f\"NumPy: Shape={shape}, Time = {numpy_time:.6f} s\")\n", |
| 112 | + "\n", |
| 113 | + " for chunk in chunkshapes:\n", |
| 114 | + " matrix_blosc2 = blosc2.asarray(matrix_np, chunks=chunk)\n", |
| 115 | + "\n", |
| 116 | + " t0 = time.perf_counter()\n", |
| 117 | + " result_blosc2 = blosc2.transpose(matrix_blosc2)\n", |
| 118 | + " blosc2_time = time.perf_counter() - t0\n", |
| 119 | + "\n", |
| 120 | + " sizes.append(size_mb)\n", |
| 121 | + " time_total.append(blosc2_time)\n", |
| 122 | + " chunk_labels.append(f\"{chunk[0]}x{chunk[1]}\" if chunk else \"Auto\")\n", |
| 123 | + "\n", |
| 124 | + " print(f\"Blosc2: Shape={shape}, Chunks = {matrix_blosc2.chunks}, Time = {blosc2_time:.6f} s\")\n", |
| 125 | + "\n", |
| 126 | + "df = pd.DataFrame({\n", |
| 127 | + " \"Matrix Size (MB)\": sizes,\n", |
| 128 | + " \"Time (s)\": time_total,\n", |
| 129 | + " \"Chunk Shape\": chunk_labels\n", |
| 130 | + "})\n", |
| 131 | + "\n", |
| 132 | + "fig = px.line(df,\n", |
| 133 | + " x=\"Matrix Size (MB)\",\n", |
| 134 | + " y=\"Time (s)\",\n", |
| 135 | + " color=\"Chunk Shape\",\n", |
| 136 | + " title=\"Performance of Matrix Transposition (Blosc2 vs NumPy)\",\n", |
| 137 | + " labels={\"value\": \"Time (s)\", \"variable\": \"Metric\"},\n", |
| 138 | + " markers=True)\n", |
| 139 | + "fig.show()" |
| 140 | + ], |
| 141 | + "id": "bcdd8aa5f65df561", |
| 142 | + "outputs": [], |
| 143 | + "execution_count": null |
| 144 | + }, |
| 145 | + { |
| 146 | + "metadata": {}, |
| 147 | + "cell_type": "code", |
| 148 | + "source": "", |
| 149 | + "id": "1d2f48f370ba7e7a", |
| 150 | + "outputs": [], |
| 151 | + "execution_count": null |
| 152 | + } |
| 153 | + ], |
| 154 | + "metadata": { |
| 155 | + "kernelspec": { |
| 156 | + "name": "python3", |
| 157 | + "language": "python", |
| 158 | + "display_name": "Python 3 (ipykernel)" |
| 159 | + } |
| 160 | + }, |
| 161 | + "nbformat": 5, |
| 162 | + "nbformat_minor": 9 |
| 163 | +} |
0 commit comments