-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDESCRIPTION
26 lines (26 loc) · 1.19 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Package: influenceAUC
Type: Package
Title: Identify Influential Observations in Binary Classification
Version: 0.1.3
Authors@R: c(
person("Bo-Shiang", "Ke", email = "[email protected]", role = c("cre", "aut", "cph")),
person("Yuan-chin Ivan", "Chang", email = "[email protected]", role = "aut"),
person("Wen-Ting", "Wang", email = "[email protected]", role = "aut")
)
Maintainer: Bo-Shiang Ke <[email protected]>
Description: Ke, B. S., Chiang, A. J., & Chang, Y. C. I. (2018) <doi:10.1080/10543406.2017.1377728> provide two theoretical methods (influence function and local influence) based on the area under the receiver operating characteristic curve (AUC) to quantify the numerical impact of each observation to the overall AUC. Alternative graphical tools, cumulative lift charts, are proposed to reveal the existences and approximate locations of those influential observations through data visualization.
License: GPL-3
BugReports: https://github.com/BoShiangKe/InfluenceAUC/issues
URL: https://boshiangke.github.io/InfluenceAUC/
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.1.0
Depends:
R (>= 3.6)
Imports:
dplyr,
geigen,
ggplot2,
ggrepel,
methods,
ROCR