Skip to content

Commit 46defcf

Browse files
committed
ex2-surface: fix documentation
1 parent ad91634 commit 46defcf

File tree

1 file changed

+7
-27
lines changed

1 file changed

+7
-27
lines changed

examples/ceed/index.rst

Lines changed: 7 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -50,37 +50,17 @@ Similarly to :ref:`Ex1-Volume`, it computes:
5050
I = \int_{\partial \Omega} \mathbf{1} \, dS .
5151
:label: eq-ex2-surface
5252
53-
but this time by solving a Laplace's equation for a harmonic function
54-
:math:`u(\mathbf{x})`. We write the Laplace's equation
53+
but this time by applying the divergence theorem using a Laplacian.
54+
In particular, we select :math:`u(\bm x) = x_0 + x_1 + x_2`, for which :math:`\nabla u = [1, 1, 1]^T`, and thus :math:`\nabla u \cdot \hat{\bm n} = 1`.
5555

56-
.. math::
57-
\nabla \cdot \nabla u = 0, \textrm{ for } \mathbf{x} \in \Omega .
58-
:label: eq-laplace
59-
60-
We can rewrite this via the bilinear form :math:`a(\cdot, \cdot)` and the linear form
61-
:math:`\langle \cdot, \cdot \rangle` as
56+
Given Laplace's equation,
6257

6358
.. math::
64-
a(u,v) = \langle, v,f \rangle
59+
-\nabla \cdot \nabla u = 0, \textrm{ for } \mathbf{x} \in \Omega
6560
66-
where :math:`v` is the test function, and for which :math:`\langle, v,f \rangle=0` in
67-
this case. We
68-
obtain
61+
multiply by a test function :math:`v` and integrate by parts to obtain
6962

7063
.. math::
71-
a(u,v) = \int_\Omega v \nabla \cdot \nabla u \, dV = \int_{\partial \Omega} v \nabla u \cdot \mathbf{n}\, dS - \int_\Omega \nabla v \cdot \nabla u \, dV = 0 ,
72-
73-
where we have used integration by parts.
64+
\int_\Omega \nabla v \cdot \nabla u \, dV - \int_{\partial \Omega} v \nabla u \cdot \hat{\bm n}\, dS = 0 .
7465
75-
:math:`a(u,v) = 0` because we have chosen :math:`u(\mathbf{x})` to be harmonic, so we
76-
can write
77-
78-
.. math::
79-
\int_{\partial \Omega} v \nabla u \cdot \mathbf{n}\, dS = \int_\Omega \nabla v \cdot \nabla u \, dV
80-
:label: eq-laplace-by-parts
81-
82-
and use the :ref:`CeedOperator` for Laplace's operator to compute the right-hand side of
83-
equation :math:numref:`eq-laplace-by-parts`. This way, the left-hand side of equation
84-
:math:numref:`eq-laplace-by-parts` (which gives :math:numref:`eq-ex2-surface` because
85-
we have chosen :math:`u(\mathbf{x}) = (x + y + z)` such that
86-
:math:`\nabla u \cdot \mathbf{n} = 1`) is readily found.
66+
Since we have chosen :math:`u` such that the boundary integrand is :math:`v 1`, we may evaluate the surface integral by applying the volumetric Laplacian and summing the result.

0 commit comments

Comments
 (0)