@@ -185,13 +185,13 @@ CEED_QFUNCTION(SWExplicit_Advection)(void *ctx, CeedInt Q,
185185 // -- Height:
186186 // Evaluate the strong form using
187187 // div((h + H0) u) = u . grad(h) + (h + H0) div(u), with H0 constant
188- // or in index notation: (u_j h)_{,j} = u_j h_j + (h + H0) u_{j,j}
188+ // or in index notation: (u_j h)_{,j} = u_j h_{,j} + (h + H0) u_{j,j}
189189 CeedScalar div_u = 0 , u_dot_grad_h = 0 ;
190- for (CeedInt j = 0 ; j < 2 ; j ++ ) {
190+ for (CeedInt j = 0 ; j < 2 ; j ++ ) { // we skip j=2 since dqdx[2] is zero
191191 CeedScalar dhdx_j = 0 ;
192- for (CeedInt k = 0 ; k < 2 ; k ++ ) { // TODO: check indices! in this case dXdx is 2x3
192+ for (CeedInt k = 0 ; k < 2 ; k ++ ) {
193193 div_u += du [j ][k ] * dXdx [k ][j ]; // u_{j,j} = u_{j,K} X_{K,j}
194- dhdx_j += dh [k ] * dXdx [k ][j ];
194+ dhdx_j += dh [k ] * dXdx [k ][j ]; // h_{,j} = h_K X_{K,j}
195195 }
196196 u_dot_grad_h += u [j ] * dhdx_j ;
197197 }
@@ -310,13 +310,13 @@ CEED_QFUNCTION(SWImplicit_Advection)(void *ctx, CeedInt Q,
310310 // -- Height:
311311 // Evaluate the strong form using
312312 // div((h + H0) u) = u . grad(h) + (h + H0) div(u), with H0 constant
313- // or in index notation: (u_j h)_{,j} = u_j h_j + (h + H0) u_{j,j}
313+ // or in index notation: (u_j h)_{,j} = u_j h_{,j} + (h + H0) u_{j,j}
314314 CeedScalar div_u = 0 , u_dot_grad_h = 0 ;
315- for (CeedInt j = 0 ; j < 2 ; j ++ ) {
315+ for (CeedInt j = 0 ; j < 2 ; j ++ ) { // we skip j=2 since dqdx[2] is zero
316316 CeedScalar dhdx_j = 0 ;
317- for (CeedInt k = 0 ; k < 2 ; k ++ ) { // TODO: check indices! in this case dXdx is 2x3
317+ for (CeedInt k = 0 ; k < 2 ; k ++ ) {
318318 div_u += du [j ][k ] * dXdx [k ][j ]; // u_{j,j} = u_{j,K} X_{K,j}
319- dhdx_j += dh [k ] * dXdx [k ][j ];
319+ dhdx_j += dh [k ] * dXdx [k ][j ]; // h_{,j} = h_K X_{K,j}
320320 }
321321 u_dot_grad_h += u [j ] * dhdx_j ;
322322 }
@@ -461,13 +461,13 @@ CEED_QFUNCTION(SWJacobian_Advection)(void *ctx, CeedInt Q,
461461 // -- Height:
462462 // Evaluate the strong form of the action of the Jacobian using
463463 // div((h + H0) delta u) = delta u . grad(h) + (h + H0) div(delta u), with H0 constant
464- // or in index notation: (delta u_j h)_{,j} = delta u_j h_j + (h + H0) delta u_{j,j}
464+ // or in index notation: (delta u_j h)_{,j} = delta u_j h_{,j} + (h + H0) delta u_{j,j}
465465 CeedScalar div_deltau = 0 , deltau_dot_grad_h = 0 ;
466- for (CeedInt j = 0 ; j < 2 ; j ++ ) {
466+ for (CeedInt j = 0 ; j < 2 ; j ++ ) { // we skip j=2 since dqdx[2] is zero
467467 CeedScalar dhdx_j = 0 ;
468- for (CeedInt k = 0 ; k < 2 ; k ++ ) { // TODO: check indices! in this case dXdx is 2x3
469- div_deltau += deltadu [j ][k ] * dXdx [k ][j ]; // u_ {j,j} = u_ {j,K} X_{K,j}
470- dhdx_j += dh [k ] * dXdx [k ][j ];
468+ for (CeedInt k = 0 ; k < 2 ; k ++ ) {
469+ div_deltau += deltadu [j ][k ] * dXdx [k ][j ]; // deltau_ {j,j} = deltau_ {j,K} X_{K,j}
470+ dhdx_j += dh [k ] * dXdx [k ][j ]; // h_{,j} = h_K X_{K,j}
471471 }
472472 deltau_dot_grad_h += deltau [j ] * dhdx_j ;
473473 }
0 commit comments