38
38
import matplotlib .cm as cm_mp
39
39
import matplotlib .pyplot as plt
40
40
import netCDF4 as nc
41
- import numba
42
41
import numpy as np
43
42
import pandas as pd
44
43
import pathos
52
51
from scipy .sparse import csr_matrix
53
52
from shapely .geometry import LineString , MultiLineString , Point
54
53
from sklearn .metrics import DistanceMetric
54
+ from tqdm import tqdm
55
55
56
56
import climada .hazard .tc_tracks_synth
57
57
import climada .util .coordinates as u_coord
@@ -2924,8 +2924,8 @@ def compute_track_density(
2924
2924
lat_bins = np .linspace (- 90 , 90 , int (180 / res ))
2925
2925
lon_bins = np .linspace (- 180 , 180 , int (360 / res ))
2926
2926
# compute 2D density
2927
- hist_count = csr_matrix ((len (lat_bins ) - 1 , len (lon_bins ) - 1 ))
2928
- for track in tc_track .data :
2927
+ hist_count = np . zeros ((len (lat_bins ) - 1 , len (lon_bins ) - 1 ))
2928
+ for track in tqdm ( tc_track .data , desc = "Processing Tracks" ) :
2929
2929
2930
2930
# select according to wind speed
2931
2931
wind_speed = track .max_sustained_wind .values
@@ -2945,7 +2945,6 @@ def compute_track_density(
2945
2945
bins = [lat_bins , lon_bins ],
2946
2946
density = False ,
2947
2947
)
2948
- hist_new = csr_matrix (hist_new )
2949
2948
hist_new [hist_new > 1 ] = 1 if filter_tracks else hist_new
2950
2949
hist_count += hist_new
2951
2950
0 commit comments