This repository was archived by the owner on Jul 18, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
67 lines (50 loc) · 1.62 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import numpy as np
import os
from matplotlib import pyplot as plt
import cv2
import random
import pickle
file_list = []
class_list = []
DATADIR = "downloads"
# All the categories you want your neural network to detect
CATEGORIES = ["seagull", "penguin", "owl", "pigeon", "kiwi bird", "blackbird", "eagle", "mallard"]
# The size of the images that your neural network will use
IMG_SIZE = 96
# Checking or all images in the data folder
for category in CATEGORIES :
path = os.path.join(DATADIR, category)
for img in os.listdir(path):
img_array = cv2.imread(os.path.join(path, img), cv2.IMREAD_GRAYSCALE)
training_data = []
def create_training_data():
for category in CATEGORIES :
path = os.path.join(DATADIR, category)
class_num = CATEGORIES.index(category)
for img in os.listdir(path):
try :
img_array = cv2.imread(os.path.join(path, img), cv2.IMREAD_GRAYSCALE)
new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
training_data.append([new_array, class_num])
except Exception as e:
print(e)
pass
create_training_data()
random.shuffle(training_data)
X = [] #features
y = [] #labels
for features, label in training_data:
X.append(features)
y.append(label)
X = np.array(X).reshape(-1, IMG_SIZE, IMG_SIZE, 1)
# Creating the files containing all the information about your model
pickle_out = open("datasets/X.pickle", "wb")
pickle.dump(X, pickle_out)
pickle_out.close()
pickle_out = open("datasets/y.pickle", "wb")
pickle.dump(y, pickle_out)
pickle_out.close()
pickle_in = open("datasets/X.pickle", "rb")
X = pickle.load(pickle_in)
pickle_in = open("datasets/y.pickle", "rb")
y = pickle.load(pickle_in)