-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path04_scHiC.py
556 lines (464 loc) · 23.4 KB
/
04_scHiC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
import os
import pandas as pd
import numpy as np
from cooler import Cooler
from cooler.fileops import list_coolers
from cooltools.lib.numutils import observed_over_expected
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score
from pybedtools.bedtool import BedTool
import matplotlib.pyplot as plt
import seaborn as sns
import sys
sys.path.append('./src/')
from utils import run_CBS, load_chromsizes
CHROMS = [f'chr{x}' for x in range(1, 23)] + ['chrX']
CHROMSIZES = load_chromsizes()
CHROMS_BY_SIZE = CHROMSIZES.sort_values('length', ascending=False).chr.tolist()
BINSIZE=1000000
COVERAGE_BINSIZE=5000000
EXCLUDED_CHROMS=["chrY", 'chrM']
MAX_DEVIATION_FROM_GENOMEWIDE_MEDIAN = 0.4
GAPS = pd.read_csv("resources/hg19_gap.txt", sep="\t", header=None, usecols=[0, 1, 2, 6], names = ['chrom', 'start', 'end', 'gap_type'])
GAPS = GAPS[GAPS.gap_type.isin(['telomere', 'centromere'])]
UNSEGREGATED_CELLS = [
'RPE_WGD_schic_003',
'RPE_WGD_schic_005',
'RPE_WGD_schic_014',
'RPE_WGD_schic_017',
'RPE_WGD_schic_013',
'RPE_WGD_schic_018',
'RPE_WGD_schic_008',
'RPE_WGD_schic_023'
]
CELL_CATEGORY_PALETTE = {
"Control": "grey",
"WGD without LCS": "black",
"WGD with LCS": "red"
}
CHROMOSOME_INTERACTIONS_PALETTE = {
"LL": "blue",
"LS": "red",
"SS": "lightblue"
}
def to_cell_category(x):
if x.condition == "RPE_TP53":
return "Control"
else:
if x.cell in UNSEGREGATED_CELLS:
return "WGD with LCS"
else:
return "WGD without LCS"
def make_symmetric(all_chrom_interactions):
x = all_chrom_interactions[all_chrom_interactions.chr1 != all_chrom_interactions.chr2].copy()
x1 = x.chr1.copy()
x2 = x.chr2.copy()
x['chr1'] = x2
x['chr2'] = x1
all_chrom_interactions_both = pd.concat([
all_chrom_interactions,
x,
], axis=0, ignore_index=True)
return all_chrom_interactions_both
def get_AB_compartments(bulk_compartments_path):
bulk_compartments = pd.read_csv(bulk_compartments_path, sep="\t", header=None,
names = ['chr', 'start', 'end', 'compartment_label',
"compartment_label_8", "name", "tickStart",
"tickEnd", "color"])
bulk_compartments['compartment_label_2'] = bulk_compartments.compartment_label.map(lambda x: x.split(".")[0])
bulk_compartments = bulk_compartments.sort_values(['chr', 'start', 'end']).reset_index(drop=True)
bulk_compartments['consecutive'] = ((bulk_compartments.chr != bulk_compartments.chr.shift()) | \
(bulk_compartments.start > bulk_compartments.end.shift() + 1000000) |
(bulk_compartments["compartment_label_2"] != bulk_compartments["compartment_label_2"].shift())).cumsum()
bulk_compartments = bulk_compartments.groupby('consecutive', as_index=False, sort=False)\
.apply(lambda x: pd.Series({'chr': x.chr.iloc[0],
'start': x.start.min(),
'end': x.end.max(),
'comp': x["compartment_label_2"].iloc[0]}))\
.drop("consecutive", axis=1)\
.assign(comp = lambda x: pd.Categorical(x.comp, categories=["A", "B"], ordered=True),
chr = lambda x: pd.Categorical(x.chr, categories=CHROMS, ordered=True))
bulk_compartments = bulk_compartments.sort_values(['chr', 'start', 'end']).reset_index(drop=True)
bulk_compartments['domain_id'] = bulk_compartments.index
return bulk_compartments
def call_schic_compartments(cell_path, chrom, bulk_compartments, phasing_track_overlap=0.6, n_comps=10):
H_cool = Cooler(cell_path)
if chrom not in H_cool.chromnames:
xc = chrom[3:]
else:
xc = chrom
bins = H_cool.bins().fetch(xc)
if not bins.iloc[0].chrom.startswith('chr'):
bins['chrom'] = "chr" + bins.chrom.astype(str)
else:
bins['chrom'] = bins.chrom.astype(str)
bins = bins.rename(columns = {'chrom': 'chr'})
bins['bin_id'] = bins.index
bins = bins[['chr', 'start', 'end', 'bin_id']]
bins = BedTool.from_dataframe(bins)\
.sort()\
.map(BedTool.from_dataframe(bulk_compartments).sort(),
c=4, o='distinct',
null='Unknown',
f=phasing_track_overlap)\
.to_dataframe(names = bins.columns.tolist() + ['comp'])
H = H_cool.matrix(balance=False).fetch(xc)
n_interactions = np.triu(H).sum()
n_single_interactions = np.count_nonzero(np.triu(H))
H[~np.isfinite(H)] = 0
mask = H.sum(axis=0) > 0
OE, _, _, _ = observed_over_expected(H, mask)
OE -= 1.0
OE[~mask, :] = 0
OE[:, ~mask] = 0
OE_corr = pd.DataFrame(OE, index=bins.bin_id, columns=bins.bin_id).corr(method='pearson')
bad_bins = np.isnan(OE_corr).all(axis=1)
bins = bins.merge(bad_bins.to_frame('is_bad'), on='bin_id')
good_bins = bins[~bins.is_bad]
OE_corr = OE_corr.reindex(index=good_bins.bin_id.values, columns=good_bins.bin_id.values)
pca = PCA(n_components = n_comps)
pca.fit(OE_corr)
X_t = pca.transform(OE_corr)
X_t = pd.DataFrame(X_t, columns = [f"comp{x}" for x in range(n_comps)], index=good_bins.bin_id)
X_t = good_bins.merge(X_t.reset_index(), on='bin_id')
return X_t
def get_cell_interactions(cell_cool, excluded_chromosomes=None):
excluded_chromosomes = [] if excluded_chromosomes is None else excluded_chromosomes
cell_ints = cell_cool.matrix(balance=None, as_pixels=True, join=True)[:]
cell_ints_other = cell_ints.copy()
x1 = cell_ints[['chrom1', 'start1', 'end1']].copy()
x2 = cell_ints[['chrom2', 'start2', 'end2']].copy()
cell_ints_other.loc[:, ['chrom1', 'start1', 'end1']] = x2.values
cell_ints_other.loc[:, ['chrom2', 'start2', 'end2']] = x1.values
cell_ints_both = pd.concat([cell_ints, cell_ints_other], axis=0, ignore_index=True).drop_duplicates()
cell_ints_both = cell_ints_both.sort_values(['chrom1', 'start1', 'end1', 'chrom2', 'start2', 'end2']).reset_index(drop=True)
cell_ints_both = cell_ints_both[(~cell_ints_both.chrom1.isin(excluded_chromosomes)) & (~cell_ints_both.chrom2.isin(excluded_chromosomes))]
return cell_ints_both
def get_hic_coverage(cell_cool, binsize=None, excluded_chromosomes=None):
excluded_chromosomes = [] if excluded_chromosomes is None else excluded_chromosomes
cell_ints_both = get_cell_interactions(cell_cool, excluded_chromosomes=excluded_chromosomes)
cell_bins = cell_cool.bins()[:]
cell_bins = cell_bins[(~cell_bins.chrom.isin(excluded_chromosomes))]
coverage = cell_bins.merge(
cell_ints_both.groupby(['chrom1', 'start1', 'end1'])['count']\
.sum()\
.to_frame("coverage")\
.reset_index()\
.rename(columns = {'chrom1': 'chrom', 'start1': 'start', 'end1': 'end'}),
on = ['chrom', 'start', 'end'], how = "left")\
.assign(coverage = lambda x: x.coverage.fillna(0).astype(int))
if binsize is not None:
coverage = coverage.assign(start = lambda x: (x.start//binsize)*binsize)\
.groupby(["chrom", 'start'])["coverage"]\
.sum()\
.to_frame("coverage")\
.reset_index()\
.assign(end = lambda x: x.start + binsize)\
[['chrom', 'start', 'end', 'coverage']]
median_coverage = coverage.coverage.median()
coverage['genomewideNormalized_coverage'] = coverage['coverage'] / median_coverage
chromosome_coverage = coverage.groupby("chrom")['coverage'].median().to_frame("chromosome_coverage").reset_index()
coverage = coverage.merge(chromosome_coverage, on = "chrom").assign(chromosomeNormalized_coverage = lambda x: x['coverage'] / x['chromosome_coverage'])
coverage = coverage.drop("chromosome_coverage", axis=1)
return coverage
def call_cnvs(cell_coverage, binsize, ratio_col = "chromosomeNormalized_coverage", gaps = None):
filtered_coverage = cell_coverage[cell_coverage[ratio_col] != 0]
if gaps is not None:
filtered_coverage = BedTool.from_dataframe(filtered_coverage)\
.sort()\
.subtract(BedTool.from_dataframe(gaps).sort(), A=True)\
.to_dataframe(names = filtered_coverage.columns)
segments = run_CBS(filtered_coverage.assign(ratio = lambda x: x[ratio_col].map(np.log2))[["chrom", "start", 'end', "ratio"]], min_width=2)
segments = segments.rename(columns = {'chr': 'chrom'})
segments['end'] += binsize
segments = BedTool.from_dataframe(segments)\
.sort()\
.map(BedTool.from_dataframe(cell_coverage).sort(),
c = (np.where(~cell_coverage.columns.isin(['chrom', 'start', 'end']))[0] + 1).tolist(),
o = 'median')\
.to_dataframe(names = segments.columns.tolist() + [c for c in cell_coverage.columns if c not in segments.columns])
return segments
def plot_cell_segregation_scores(inter_scores):
sns.stripplot(data=inter_scores, x='condition', y='inter_score', hue = "cell_category", palette = CELL_CATEGORY_PALETTE, ax=ax, zorder=1)
sns.boxplot(data=inter_scores, x='condition', y='inter_score',
showfliers=False, boxprops = {'facecolor':'none', 'edgecolor':'black'},
ax=ax, zorder=0)
ax.set_ylim(0.5, 1)
ax.set_ylabel("Single-cell Inter-chr LCS [LS / (LL + SS)]")
ax.set_xlabel("")
ax.legend(bbox_to_anchor=(1, 1))
sns.despine(ax = ax, trim=True)
def plot_inter_chromosomal_rank_difference(X):
g = sns.jointplot(data = X, x = "Control", y="WGD with LCS", hue = "chr_type_int", palette = CHROMOSOME_INTERACTIONS_PALETTE,
xlim=(30, 250), ylim=(30, 250), marginal_kws = dict(common_norm=False, hue_order = ['LS', "SS"]), marginal_ticks=False)
g.set_axis_labels("Inter-chr interaction rank (Control)", "Inter-chr interaction rank (LCS-WGD)")
g.ax_marg_x.axes.xaxis.set_visible(False)
g.ax_marg_y.axes.xaxis.set_visible(False)
return g
def plot_corr_heatmap(ax, M_control):
sns.heatmap(M_control,
cmap='bwr',
vmin=-1,
vmax=1,
linewidth=0.1,
cbar_kws={'label': 'Pearson correlation of O/E', 'shrink': 0.5, 'aspect': 8},
square=True,
ax = ax)
ax.set_xlabel("")
ax.set_ylabel("")
def plot_corr_foldchange_heatmap(ax, M_wgd, M_control):
sns.heatmap((M_wgd + 1) / (M_control + 1),
cmap='BrBG_r',
vmin=0,
vmax=2,
linewidth=0.1,
cbar_kws={'label': '$(corr_{WGD} + 1) / (corr_{Control} + 1)$', 'shrink': 0.5, 'aspect': 8},
square=True,
ax = ax)
ax.set_xlabel("")
ax.set_ylabel("")
def plot_cell_compartment_scores(all_cell_compartment_scores):
g = sns.displot(data = all_cell_compartment_scores,
x = "silhouette_score_comp",
hue = "cell_category",
palette = CELL_CATEGORY_PALETTE,
kind = 'kde',
common_norm=False)
plt.xlabel("Single-cell compartment segregation")
plt.ylabel("Density")
return g
def plot_cnv_heatmap(heatmap, all_cells_cnv_covered_genome, limits):
g = sns.clustermap(heatmap.applymap(lambda x: 1 if abs(x - 1) < MAX_DEVIATION_FROM_GENOMEWIDE_MEDIAN else x),
cmap='bwr',
vmin=0,
vmax=2,
xticklabels=False,
yticklabels=False,
row_cluster=False,
col_cluster=False,
row_colors = pd.Series(palette, name = "Cell\npopulation"),
figsize=(30, 10),
cbar_kws=dict(label = "Coverage ratio"),
dendrogram_ratio = (0.1, 0))
y = all_cells_cnv_covered_genome.set_index("cell")['cnv_perc_genome'].reindex(index = cell_order).values
x = np.arange(len(y))
g.ax_row_dendrogram.barh(x, y, color = 'black', align="edge", height=0.9)
g.ax_row_dendrogram.set_ylim(0, 58)
g.ax_row_dendrogram.invert_yaxis()
g.ax_row_dendrogram.invert_xaxis()
g.ax_row_dendrogram.text(0.5, -.02, "Fraction of altered genome", transform=g.ax_row_dendrogram.transAxes, horizontalalignment='center')
for l in limits['min'].values.tolist() + [limits['max'].max()]:
g.ax_heatmap.axvline(l, color = 'black')
for t in limits.itertuples():
g.ax_heatmap.text(t.mean, -1, t.Index, horizontalalignment='center', rotation=45, size=15)
g.cax.set_visible(True)
g.cax.set_aspect(3)
g.ax_col_dendrogram.set_visible(False)
g.ax_heatmap.set_xlabel("Genomic position")
g.ax_heatmap.set_ylabel("Cell")
return g
OUTPUT_PATH = "figures/ScHiC"
os.makedirs(OUTPUT_PATH, exist_ok=True)
SCHIC_PATH = "data/schic"
print("Analysing Sc-HiC inter-chromosomal contacts")
schic_samples = pd.read_excel(os.path.join(SCHIC_PATH, "schic_samples.xlsx"))
good_cells = schic_samples[schic_samples.flag.isnull()].sample_name.tolist()
RPE_chrom_chrom_interactions = pd.read_csv(os.path.join(SCHIC_PATH, "inter_chromosomal", "RPE_chromosome_interactions.tsv"), sep="\t")
RPE_chrom_chrom_interactions['chr1_type'] = RPE_chrom_chrom_interactions.chr1_type.map({"long": "L", "short": "S"})
RPE_chrom_chrom_interactions['chr2_type'] = RPE_chrom_chrom_interactions.chr2_type.map({"long": "L", "short": "S"})
RPE_chrom_chrom_interactions['chr_type_int'] = RPE_chrom_chrom_interactions.apply(lambda x: "".join(sorted([x.chr1_type, x.chr2_type])), axis=1)
metric = 'ice_count'
inter_scores = RPE_chrom_chrom_interactions[(RPE_chrom_chrom_interactions.chr1 != RPE_chrom_chrom_interactions.chr2)]\
.groupby(['cell', 'condition', 'chr_type_int'])[metric]\
.agg(lambda x: np.sum(x))\
.to_frame("count")\
.reset_index()\
.pivot(index=['cell', 'condition'], columns='chr_type_int', values='count')\
.assign(inter_score = lambda x: x['LS'] / (x['LL'] + x['SS']) )\
.reset_index()
inter_scores['cell_category'] = inter_scores.apply(to_cell_category, axis=1)
fig, ax = plt.subplots(1, 1, figsize=(3, 5))
plot_cell_segregation_scores(inter_scores[inter_scores.cell.isin(good_cells)])
fig.savefig(os.path.join(OUTPUT_PATH, "inter_chromosomal_segregation.pdf"))
plt.close(fig)
print("Analysing inter-chromosomal interacations rankings between Control and WGD with LCS cells")
RPE_chrom_chrom_interactions = RPE_chrom_chrom_interactions[RPE_chrom_chrom_interactions.cell.isin(good_cells)].copy()
RPE_chrom_chrom_interactions["rank"] = RPE_chrom_chrom_interactions\
.groupby(["cell"])\
['ice_count']\
.rank()
RPE_chrom_chrom_interactions['cell_category'] = RPE_chrom_chrom_interactions.apply(to_cell_category, axis=1)
X = RPE_chrom_chrom_interactions\
.groupby(["cell_category", "chr1", 'chr2', 'chr_type_int'])\
['rank']\
.mean()\
.dropna()\
.to_frame("score")\
.reset_index()\
.pivot(index = ['chr1', 'chr2', 'chr_type_int'], columns = 'cell_category', values = 'score')\
.reset_index()
g = plot_inter_chromosomal_rank_difference(X)
g.savefig(os.path.join(OUTPUT_PATH, "inter_chromosomal_rankDifference.pdf"))
plt.close(g.fig)
print("Pseudo-bulk inter-chromosomal analysis of ScHi-C data")
pseudo_chrom_interactions = RPE_chrom_chrom_interactions.groupby(["condition", "chr1", "chr2", "chr_type_int"])['raw_count'].sum().to_frame("count").reset_index()
pseudo_chrom_interactions_both = make_symmetric(pseudo_chrom_interactions)
pseudo_chr_coverage = pseudo_chrom_interactions_both[pseudo_chrom_interactions_both.chr1 != pseudo_chrom_interactions_both.chr2].groupby(['condition', 'chr1'])['count'].sum().reset_index().rename(columns = {'chr1': 'chr'})
pseudo_tot_coverage = pseudo_chrom_interactions[pseudo_chrom_interactions.chr1 != pseudo_chrom_interactions.chr2].groupby('condition')['count'].sum().reset_index()
pseudo_chrom_interactions_both = pseudo_chrom_interactions_both.merge(pseudo_chr_coverage.rename(columns = {'chr': 'chr1', "count": "coverage1"}), on = ["condition", "chr1"] )\
.merge(pseudo_chr_coverage.rename(columns = {'chr': 'chr2', "count": "coverage2"}), on = ["condition", "chr2"] )\
.merge(pseudo_tot_coverage.rename(columns = {'count': 'tot_coverage'}), on='condition')
pseudo_chrom_interactions_both = pseudo_chrom_interactions_both[pseudo_chrom_interactions_both.chr1 != pseudo_chrom_interactions_both.chr2]
pseudo_chrom_interactions_both['expected_count'] = (pseudo_chrom_interactions_both['coverage1']*pseudo_chrom_interactions_both['coverage2'])/(2*pseudo_chrom_interactions_both['tot_coverage'])
pseudo_chrom_interactions_both['oe_count'] = pseudo_chrom_interactions_both['count'] / pseudo_chrom_interactions_both['expected_count']
M_control = pd.pivot_table(pseudo_chrom_interactions_both[pseudo_chrom_interactions_both.condition == 'RPE_TP53'], index='chr1', columns = 'chr2', values='oe_count')
M_control = M_control.reindex(index=CHROMS_BY_SIZE, columns=CHROMS_BY_SIZE)
M_control = M_control.corr()
M_wgd = pd.pivot_table(pseudo_chrom_interactions_both[pseudo_chrom_interactions_both.condition == 'RPE_WGD'], index='chr1', columns = 'chr2', values='oe_count')
M_wgd = M_wgd.reindex(index=CHROMS_BY_SIZE, columns=CHROMS_BY_SIZE)
M_wgd = M_wgd.corr()
fig, ax = plt.subplots(1, 1)
plot_corr_heatmap(ax, M_control)
fig.savefig(os.path.join(OUTPUT_PATH, "RPE_TP53_pseudoBulk_Pearson.pdf"), transparent=True, bbox_inches='tight')
plt.close(fig)
fig, ax = plt.subplots(1, 1)
plot_corr_heatmap(ax, M_wgd)
fig.savefig(os.path.join(OUTPUT_PATH, "RPE_WGD_pseudoBulk_Pearson.pdf"), transparent=True, bbox_inches='tight')
plt.close(fig)
fig, ax = plt.subplots(1, 1)
plot_corr_foldchange_heatmap(ax, M_wgd, M_control)
fig.savefig(os.path.join(OUTPUT_PATH, "RPE_pseudoBulk_Pearson_foldChange.pdf"), transparent=True, bbox_inches='tight')
plt.close(fig)
print("Analysing single-cell Hi-C compartments")
os.makedirs(os.path.join(SCHIC_PATH, "compartments"), exist_ok=True)
bulk_compartments_path = "data/hic/compartment_domains/RPE_TP53_Ctrl_mega_CompartmentDomains.bed"
scool_path = "data/schic/maps/schic_matrices_binsize_1000000.scool"
bulk_compartments = get_AB_compartments(bulk_compartments_path)
phasing_track_overlap=0.6
n_comps = 2
all_cell_compartments_path = os.path.join(SCHIC_PATH, "compartments", "all_cell_compartments.tsv")
if not os.path.isfile(all_cell_compartments_path):
all_cell_compartments = []
for cell in list_coolers(scool_path):
cell_name = cell.split("/")[-1].split(".")[0].split("_binsize_")[0]
print(f"Cell: {cell_name}")
cell_path = scool_path + "::" + cell
if not pd.isnull(schic_samples.set_index("sample_name").loc[cell_name, 'flag']):
continue
cell_compartments = []
for chrom in CHROMS:
print(f"\tChromosome: {chrom}")
chrom_comps = call_schic_compartments(cell_path, chrom, bulk_compartments, phasing_track_overlap=phasing_track_overlap, n_comps=n_comps)
cell_compartments.append(chrom_comps)
cell_compartments = pd.concat(cell_compartments, axis=0, ignore_index=True)
cell_compartments['cell'] = cell_name
all_cell_compartments.append(cell_compartments)
all_cell_compartments = pd.concat(all_cell_compartments, axis=0, ignore_index=True)
all_cell_compartments.to_csv(all_cell_compartments_path, sep="\t", index=False, header=True)
else:
all_cell_compartments = pd.read_csv(all_cell_compartments_path, sep="\t")
all_cell_compartment_scores = []
all_conversions = []
for gc, df in all_cell_compartments.groupby(['cell', 'chr']):
cell, chrom = gc
print(f"{cell} - {chrom}")
X = df[df.comp != 'Unknown']
silhouette_comp = silhouette_score(X[['comp0', 'comp1']], X['comp'], metric='euclidean')
all_cell_compartment_scores.append({'cell': cell,
'chr': chrom,
'silhouette_score_comp': silhouette_comp})
all_cell_compartment_scores = pd.DataFrame.from_dict(all_cell_compartment_scores)
all_cell_compartment_scores = all_cell_compartment_scores.merge(schic_samples.rename(columns = {'sample_name': 'cell'}), on='cell')
all_cell_compartment_scores['condition'] = all_cell_compartment_scores['cell_line'] + "_" + all_cell_compartment_scores['condition']
all_cell_compartment_scores['cell_category'] = all_cell_compartment_scores.apply(to_cell_category, axis=1)
g = plot_cell_compartment_scores(all_cell_compartment_scores)
g.savefig(os.path.join(OUTPUT_PATH, "singleCell_compartmentSegregation.pdf"))
plt.close(g.fig)
print("Analysing CNVs on ScHI-C data")
os.makedirs(os.path.join(SCHIC_PATH, "cnvs"), exist_ok=True)
name = os.path.join(SCHIC_PATH, "cnvs", "schic_cell_cnvs.tsv")
if not os.path.isfile(name):
all_cell_cnvs = []
for cell in list_coolers(scool_path):
cell_name = cell.split("/")[-1].split(".")[0].split("_binsize_")[0]
print(f"{cell_name}")
cool_path = scool_path + "::" + cell
cell_cool = Cooler(cool_path)
cell_coverage = get_hic_coverage(cell_cool, binsize=COVERAGE_BINSIZE, excluded_chromosomes=EXCLUDED_CHROMS)
cell_cnvs = call_cnvs(cell_coverage, binsize=COVERAGE_BINSIZE, ratio_col = "chromosomeNormalized_coverage", gaps=GAPS)
cell_cnvs['is_significant'] = False
cell_cnvs.loc[(cell_cnvs.genomewideNormalized_coverage - 1).abs() >= MAX_DEVIATION_FROM_GENOMEWIDE_MEDIAN, "is_significant"] = True
cell_cnvs['cell'] = cell_name
all_cell_cnvs.append(cell_cnvs)
all_cell_cnvs = pd.concat(all_cell_cnvs, axis=0, ignore_index=True)
def __get_cnv_type(x):
if x.is_significant:
if x['genomewideNormalized_coverage'] > 1:
return "gain"
elif x['genomewideNormalized_coverage'] < 1:
return "loss"
else:
raise ValueError("Incompatible cnv type")
else:
return "NONE"
all_cell_cnvs['cnv_type'] = all_cell_cnvs.apply(__get_cnv_type, axis=1)
all_cell_cnvs = all_cell_cnvs[["cell", "chrom", "start", "end", "mean_value", "n_points",
"coverage", "genomewideNormalized_coverage", "chromosomeNormalized_coverage",
"is_significant", "cnv_type"]]
all_cell_cnvs = all_cell_cnvs.rename(columns = {'chrom': 'chr'})
all_cell_cnvs.to_csv(name, sep="\t", index=False, header=True)
else:
all_cell_cnvs = pd.read_csv(name, sep="\t")
genome_size = Cooler(scool_path + "::" + list_coolers(scool_path)[0]).chromsizes.drop(EXCLUDED_CHROMS, axis=0).sum()
all_cells_cnv_covered_genome = all_cell_cnvs[all_cell_cnvs.is_significant]\
.assign(cnv_size = lambda x: x.end - x.start,
cnv_perc_genome = lambda x: x.cnv_size / genome_size,
n_cnvs = 1)\
.groupby(['cell'])[['cnv_perc_genome', 'n_cnvs']]\
.sum()\
.reindex(sorted(all_cell_cnvs.cell.unique()))\
.fillna(0)\
.reset_index()\
.assign(n_cnvs = lambda x: x.n_cnvs.astype(int))\
.merge(schic_samples.rename(columns = {'sample_name': 'cell'}), on = 'cell')\
.assign(condition = lambda x: x.cell_line + "_" + x.condition)\
.assign(cell_category = lambda x: x.apply(to_cell_category, axis=1))
all_cell_compartment_scores_with_cnvs = all_cell_compartment_scores[['cell', 'silhouette_score_comp']]\
.merge(all_cells_cnv_covered_genome[['cell', 'cnv_perc_genome', 'n_cnvs', 'condition', 'cell_category', 'flag']],
on = 'cell')
selected_cells = all_cell_compartment_scores_with_cnvs[all_cell_compartment_scores_with_cnvs.flag.isna()]
palette = selected_cells[['cell', 'cell_category']]\
.drop_duplicates()\
.set_index('cell')\
['cell_category']\
.map(CELL_CATEGORY_PALETTE)\
.to_dict()
ordered_cells = selected_cells[['cell', 'cnv_perc_genome']].drop_duplicates().sort_values("cnv_perc_genome")
cell_order = ordered_cells.cell.tolist()
bins = BedTool().window_maker(w = COVERAGE_BINSIZE, genome='hg19')
all_cell_cnvs_binned = bins\
.intersect(BedTool.from_dataframe(all_cell_cnvs.loc[all_cell_cnvs.cell.isin(schic_samples[schic_samples.flag.isna()].sample_name),['chr', 'start', 'end', 'genomewideNormalized_coverage', 'cell']]).sort(), wa=True, wb=True)\
.to_dataframe(names = ['chr', 'start', 'end', 'cnv_chr', 'cnv_start', 'cnv_end', 'genomewideNormalized_coverage', 'cell'])
bins = bins.to_dataframe(names = ['chr', 'start', 'end'])
bins = bins[bins.chr.isin(all_cell_cnvs.chr)]
chromosomes = [c for c in Cooler(scool_path + "::" + list_coolers(scool_path)[0]).chromnames if c not in EXCLUDED_CHROMS]
bins['chr'] = pd.Categorical(bins.chr, categories=chromosomes, ordered=True)
bins = bins.sort_values(['chr', 'start', 'end']).reset_index(drop=True)
limits = bins.assign(id = lambda x: x.index)\
.groupby('chr')['id'].agg(['min', 'max', "mean"])
heatmap = bins.merge(
pd.pivot_table(all_cell_cnvs_binned,
index = ['chr', 'start', 'end'],
columns = "cell",
values = "genomewideNormalized_coverage",
fill_value=1)\
.reset_index(),
on = ['chr', 'start', 'end'], how = "left")\
.fillna(1)\
.set_index(['chr', 'start', 'end'])\
.reindex(index = bins)\
.T\
.reindex(index=cell_order)
g = plot_cnv_heatmap(heatmap, all_cells_cnv_covered_genome, limits)
g.savefig(os.path.join(OUTPUT_PATH, "all_CNVs_heatmap.pdf"))
plt.close(g.fig)