-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshear.f
1855 lines (1750 loc) · 52.4 KB
/
shear.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
C 3-DIMENSIONAL WCA FOR A BOUNDARY DRIVEN SHEARING SYSTEM OF
C PARITICLES OR MOLECULES
C
C Last changes: OCTOBER 2010
C Based on program kawascii
C
C NEMD transient trajectory simulation
C with a constant colour field applied to the waslls after equilibration
C Colour field equations - 4th order Runge-Kutta
C Peculiar internal energy or kinetic energy
c thermostatted with Gaussian thermostat
C Periodic boundary conditions in the x & y direction
C WCA potential
C FENE potential for intramolecular forces
C Included NCELL AND ABILITY TO ALTER CUBE LENGTH IN Z DIRECTION
C
C (i) Equilibration is carried out
C (ii) A constant colour field to the walls is then applied and
C various properties
C and tcf calculated. Some tau-averaged properties are
C stored to disk for tau=MAXTAU
C (ii) The time-correlation function is integrated (if NTYPE.gt.1).
C
C The accumulated properties from are stored in MEAN
C and the number of data accumulated in NMEAN
C The accumulated autocorrelation functions are stored in TCF(I,0..NTCF)
C and the number of data accumulated in KOUNT
C The integrated autocorrelation function is stored in INTCF(I,0..NTCF)
C The integral of properties along a trajectory is stored in TAUAV(0..NTCF)
C The average of properties at points on a trajectory is stored in
C AVER(I,0..NTCF)
C
C-----------------------------------------------------------------------
C
C MODULE TTCF
C CONTAINS
SUBROUTINE SETUP()
INCLUDE "SSGK.inc"
C
C***** LOCAL VARIABLES
C
REAL (KIND=prec) TEST,R6,R12,R4,RSI,TOTPX,TOTPY,TOTPZ
REAL (KIND=prec) AR1PX,AR1PY,AR1PZ,XX,XX2,RX,RXEQ
REAL (KIND=prec) AR2PX,AR2PY,AR2PZ,TESTL,TESTH
REAL (KIND=prec) KENER
INTEGER I,J,K,M,N,IXX
INTEGER RANK, NUM_PROCESSORS, IERR
CHARACTER*9 DATNOW
REAL (KIND=prec) TIMNOW,SECNDS,RZERO
C
C***** DISPLAY TITLE
C
C WRITE(6,'(//''NEMD WITH COLOUR: RK4,LJ'')')
C CALL DATE(DATNOW)
RZERO=0.0E0
C TIMNOW=SECNDS(RZERO)
C WRITE(6,*) DATNOW,TIMNOW
CONSER=0.0_prec
E00=0.0_prec
KB=0
TOTPX=0.0_prec
TOTPY=0.0_prec
TOTPZ=0.0_prec
AR1PX=0.0_prec
AR1PY=0.0_prec
AR1PZ=0.0_prec
AR2PX=0.0_prec
AR2PY=0.0_prec
AR2PZ=0.0_prec
FIELD=0.0_prec
DO_PRESSURE = .FALSE.
C
C***** ANALYSE INPUT
C
IF (MAXTAU.GT.NK) THEN
WRITE(6,*)'MAXTAU TOO HIGH FOR DIMENSION:',NK
STOP
END IF
IF (NTYPE.LT.1.OR.NTYPE.GT.3) THEN
WRITE(*,*) NTYPE
WRITE(6,*)'NO SUCH NTYPE IN THIS PROGRAM, CHOOSE:1,2,3'
STOP
END IF
C
TEST=DBLE(NPART)
IF(NTYPE.EQ.1) THEN
IF(LATT.EQ.1)THEN
IF (MOD(TEST,4.0_prec).NE.0.0_prec) THEN
WRITE(6,*)'NPART,MUST BE DIVISIBLE BY 4'
STOP
ELSE
TEST=(NPART/4.0_prec*YZDIVX)**(1.0_prec/3.0_prec)
TESTL=TEST-0.0000001
TESTH=TEST+0.0000001
IF (ANINT(TEST).LT.TESTL.OR.ANINT(TEST).GT.TESTH) THEN
WRITE(6,*)'NPART MUST BE 4*N^3/YZDIVX; N INTEGER'
WRITE(6,*)TESTL,TESTH
STOP
ENDIF
ENDIF
ENDIF
C C
TEST=DBLE(NPART*YZDIVX)
IF(LATT.EQ.2)THEN
IF (MOD(TEST,2.0_prec).NE.0.0_prec) THEN
WRITE(6,*)'NPART,MUST BE AN EVEN NO'
STOP
ELSE
TEST=(NPART*YZDIVX/2.0_prec)**(1.0_prec/3.0_prec)
TESTL=TEST-0.0000001
TESTH=TEST+0.0000001
IF (ANINT(TEST).LT.TESTL.OR.ANINT(TEST).GT.TESTH) THEN
WRITE(6,*)'NPART MUST BE 2*N^3, WHERE N IS AN INTEGER'
WRITE(6,*)TESTL,TESTH
STOP
END IF
END IF
END IF
END IF
C*****DEFINE NPART2
NPART2 = NPART/2
C***** ASSIGN MOLECULE NO TO FLUID PARTICLES
DO J=1,NPART2
IMOL(J)=1
ENDDO
DO J=NPART2+1, NPART
IMOL(J)=2
ENDDO
C
C C***** CHECK ALL FLUID PARTICLES ARE PART OF A MOLECULE
C IF (MOD(NFLUID,LIMOL).NE.0.0_prec) THEN
C WRITE(6,*)'NFLUID,MUST BE DIVISIBLE BY LIMOL NO REMAINDER'
C STOP
C END IF
C
C***** ADD CHARGE TO WALLS PARTICLES ONLY
C
DO I =1,NPART
IKOL(I)= (-1)**(I)
ENDDO
DO I =1,NPART2
IMOL(I)= 1
ENDDO
DO I =NPART2+1,NPART
IMOL(I)= -1
ENDDO
IF (NGAUS.EQ.6) THEN
DF=3.0_prec*DBLE(NPART)-3.0_prec
ELSE
DF=3.0_prec*DBLE(NPART)-4.0_prec
ENDIF
C
C***** ZERO ARRAYS
C
DENSAV1 = 0.0_prec
DENSAV2 = 0.0_prec
TCFL = 0.0_prec
TCFLL = 0.0_prec
INTCFL = 0.0_prec
INTCFLL = 0.0_prec
KOUNT = 0
AVER = 0.0_prec
TCF = 0.0_prec
INTCF = 0.0_prec
TCF1 = 0.0_prec
INTCF1 = 0.0_prec
NMEAN = 0
MEAN = 0.0_prec
M0 = 0.0_prec
M1 = 0.0_prec
M2 = 0.0_prec
M3 = 0.0_prec
XR = 0.0_prec
YR = 0.0_prec
ZR = 0.0_prec
C
C***** SET INITIAL VALUES
C RCUT SET TO 2**(1/6) FOR WCA POTENTIAL
C SEED set as unix time
ISEED = 10101
C ISEED = TIME()
DXD = 0.0_prec
#ifdef DEBUG
WRITE(6,*) 'SEED', ISEED
#endif
C
C***** CALCULATE RUN PARAMETERS
C
IF (NTYPE.EQ.1) THEN
VOL = NPART/DRF
ELSE
VOL = NPART/DRF
END IF
C write(6,*)'VOLF,VOL,DRW,DRF',VOLF,VOL,DRW,DRF
C***** CALCULATE LENGTHS BASED ON YZDIVX RATIO
CUBEZ = (YZDIVX*VOL)**(1.0_prec/3.0_prec)
CUBEY = CUBEZ
CUBEX = CUBEZ/YZDIVX
CUBEX2 = CUBEX/2.0_prec
CUBEY2 = CUBEY/2.0_prec
CUBEZ2 = CUBEZ/2.0_prec
BINS = FLOOR(CUBEX)
TAUNBINS = FLOOR(CUBEX)
C
C****** IF RCUT TOO LARGE RESET TO HALF BOXLENGTH
C MIX applies mixing rules based on EPS1 and EPS2
IF (RCUT.GT.CUBEY2) THEN
RCUT = CUBEX2
WRITE(6,*)'RCUT RESET TO HALF BOXLENGTH',RCUT
END IF
RMAX = RCUT**2
RSI = 1.D0/RMAX
R4 = RSI*RSI
R6 = R4*RSI
R12 = R6*R6
SHIFT = 4.0_prec*(R12-R6)
C
C***** WRITE SIMULATION PARAMETERS
C
#ifdef DEBUG
WRITE(6,150) NPART
WRITE(6,151) TR,E0,DRW,DRF,RCUT,FE0,NTYPE,
& DELTA,NON,RCUT,NGAUS,CUBE,MAXTAU,
& EQTIM,NCYC,NLAYER,NLP,KH,LATT,NPRINT,
& KF,R0,LIMOL,YZDIVX,CUBEX,CUBEY,CUBEZ,
& DXXDIV
150 FORMAT(/,10X,'SIMULATION PARAMETERS',I6,' PARTICLES')
151 FORMAT(/,5X,'TR =',F14.7,10X,'E/N =',F14.7,10X,
& /,5X,'WALL DENSITY =',F14.7,10X,'FL DEN=',F14.7,10X,
& /,5X,'RCUT =',F14.7,
& /,5X,'FE0 =',F14.7,10X,'NTYPE =',I6,
& /,5X,'DELTA =',F14.7,10X,'NON =',I6,
& /,5X,'RCUT =',F14.7,10X,'NGAUS =',I6,
& /,5X,'CUBE =',F14.7,10X,'MAXTAU =',I6,
& /,5X,'EQTIM =',I6,10X,'NCYC =',I6,
& /,5X,'NLAYER =',F14.7,10X,'NLP =',I6,
& /,5X,'KH =',F14.7,10X,'LATT =',I6,
& /,5X,'NPRINT =',I6
& /,5X,'KF =',F14.7,10X,'R0 =',F14.7,
& /,5X,'LIMOL =',I6
& /,5X,'YZDIVX =',F14.7,10X,'CUBEX =',F14.7,
& /,5X,'CUBEY =',F14.7,10X,'CUBEZ =',F14.7,
& /,5X,'DXXDIV =',F14.7)
#endif
C
C****************************************************************
C
C***** INITIAL STARTUP
C
C
C***** NTYPE=1 INITIAL FROM FCC
C
CALL FCC
C Store initial particle positions for mean-square displacement calculations
X0 = X
Y0 = Y
Z0 = Z
C
C***** CHECK ALL FLUID PARTICLES ARE PART OF A MOLECULE
C IF (MOD(NFLUID,LIMOL).NE.0.0_prec) THEN
C WRITE(6,*)'NPART DIFFERENT FROM INITIAL INPUT, NFLUID',
C & ' MUST BE DIVISIBLE BY LIMOL NO REMAINDER'
C STOP
C END IF
C
C***** UPDATE INPUT UNIT
C
C
#ifdef DEBUG
WRITE(6,*) TR,DRW,DRF,DELTA,LATT,NPART,NLP
WRITE(6,*) FE0,RCUT,NLAYER,KH,NPRINT
WRITE(6,*) MIX, EPS1, EPS2, QVOL
WRITE(6,*) KF,R0,LIMOL,YZDIVX
WRITE(6,*) DXXDIV
WRITE(6,*) NTYPE,NON,NGAUS,E0
WRITE(6,*) NPLOT,MAXTAU,EQTIM,NCYC
WRITE(6,*) 'TR,DRW,DRF,DELTA,LATT,NPART,NLP'
WRITE(6,*) 'FE0,RCUT,NLAYER,KH,NPRINT'
WRITE(6,*) 'KF,R0,LIMOL,YZDIVX'
WRITE(6,*) 'MIX, EPS1, EPS2, QVOL'
WRITE(6,*) 'DXXDIV'
WRITE(6,*) 'NTYPE,NON,NGAUS,E0'
WRITE(6,*) 'NPLOT,MAXTAU,EQTIM,NCYC'
C***** CHECK IMOL IKOL AND SWITCHES
WRITE(6,*)'I,IMOL(I),IKOL(I),S1(I),S2(I),S3(I),S4(I)'
DO I=1,NPART
WRITE(6,*)I,IMOL(I),IKOL(I),S1(I),S2(I),S3(I),S4(I)
ENDDO
#endif
C
C CALCULATE PROPERTIES AT TIME ZERO
C
KE2=0.0_prec
DO 565 I=1, NPART
KE2 = KE2+(PX(I)**2+PY(I)**2+PZ(I)**2)
565 CONTINUE
c write(6,*)'force 1'
CALL FORCECELL
E00=UPOT+KE2/2.0_prec
FIELD=0.0_prec
C***** UPDATE INITIAL TEMPERATURE
TEMP = (KE2/2.0_prec)/(DF/2.0_prec)
45 FORMAT(/,2X,'EQUILIBRATION - INSTANTANEOUS VALUES',/,8X,
& 'STEP TEMP UPOT/NP TOTE/NP ALPHA')
75 FORMAT(/,2X,'EQUILIBRATION - INSTANTANEOUS VALUES',/,8X,
& 'STEP TEMP UPOT/NP TOTE/NP ALPHA')
55 FORMAT(/,2X,'EQUILIBRATION - INSTANTANEOUS VALUES',/,8X,
& 'STEP TEMP UPOT/NP TOTE/NP ALPHA')
85 FORMAT(/,2X,'EQUILIBRATION - INSTANTANEOUS VALUES',/,8X,
& 'STEP TEMP UPOT/NP TOTE/NP ALPHA')
65 FORMAT(6E14.6)
END SUBROUTINE
C
C**********************************************************
C
SUBROUTINE MD(KPROP,IFLAG)
C***** DO COLOUR DIFFUSION MD USING RK4 FOR KPROP STEPS
C***** ACCUMULATE VALUE OF VARIOUS PROPERTIES MEAN AND
C***** ACCUMULATE TCF IN TCF
C
Cf2py threadsafe
INCLUDE "SSGK.inc"
C
C***** LOCAL VARIABLES
C
INTEGER I,J,ISTEP,IX,IY,IZ,IFLAG,KPROP, BIN, NUM,LIM1,LIM2,TAUBIN
REAL (KIND=prec) KENER,KTRAN,KENERW,AHEAT
REAL (KIND=prec) PP,PPF,PXY,PXZ,PYZ,JX,JY,JZ,JXL,JYL,JZL
REAL (KIND=prec) VX,VY,VZ,VXL,VYL,VZL
REAL (KIND=prec) VVX,VVY,VVZ,VVXL,VVYL,VVZL,VVXLL,VVYLL,
& VVZLL
REAL (KIND=prec) PX3,PXYF,PXZF,PYZF,P2,NTOTE
REAL (KIND=prec) RINIT, RR(NP)
INTEGER TMAX,K,NINBIN,NINBINL,NINBIN0L
C
MSDX = 0.0_prec
MSDY = 0.0_prec
MSDZ = 0.0_prec
C Turn on the field as appropriate
IF (IFLAG .EQ. 0) THEN
FIELD = 0.0_prec
ELSE
FIELD = FE0
ENDIF
C
C CALCULATE PROPERTIES AT TIME ZERO
C
KE2=0.0_prec
DO 811 I=1,NPART
KE2=KE2+(PX(I)**2+PY(I)**2+PZ(I)**2)
811 CONTINUE
CALL FORCECELL
E00=UPOT+KE2/2.0_prec
KENER = KE2/2.0_prec
C DO I=0,TAUNBINS
C TAUDENS1(I) = 0.0_prec
C TAUDENS2(I) = 0.0_prec
C ENDDO
C***** KINETIC PART OF AVERAGES
C
KTRAN = 0.0_prec
KENER = 0.0_prec
KENERW = 0.0_prec
DO 81 I = 1, NPART
S0L(I) = 0.0_prec
SL(I) = 0.0_prec
KTRAN = KTRAN + PY(I)**2
KENER = KENER + (PX(I)**2+PY(I)**2+PZ(I)**2)/2.D0
T0V(I,1) = PX(I)
T0V(I,2) = PY(I)
T0V(I,3) = PZ(I)
IF (FLOOR(X(I)).LT.1.0_prec) THEN
S0L(I) = 1.0_prec
SL(I) = 1.0_prec
ENDIF
PX3 = PX3+PX(I)**3
81 CONTINUE
KTRAN = KTRAN/(DF/2.0_prec)
TEMP = KENER/(DF/2.0_prec)
TOTE = KENER + UPOT
TOTE = TOTE/NPART
C DO I=0, BINS
C DISS0L(I) = DISS0L(I) + (JXL(I)*FIELD)*TR
C ENDDO
DO ISTEP=1,KPROP
KE2=0.0_prec
DO 11 I=1,NPART
KE2=KE2+(PX(I)**2+PY(I)**2+PZ(I)**2)
11 CONTINUE
E00=UPOT+KE2*0.5D0
c IF (NON.EQ.1.OR.((NGAUS.EQ.2).AND.(IFLAG.EQ.0))) THEN
CALL FORCECELL
c ENDIF
CALL DOMD
c deb
c if (MOD(istep,100).EQ.0) THEN
c write(11,*)npart
c write(11,*)
c do i=1,NPART
c write(11,*) 'C', x(i),y(i),z(i)
c enddo
c ENDIF
c deb
C
C THE FOLLOWING CALL FORCECELL IS REQUIRED DUE TO PBCS
CALL FORCECELL
C
C***** RESCALE TEMP/ENERGY IF NON.EQ.1 OR DURING EQUILIBRATION
C
KENER = 0.0_prec
DO 3 I = 1, NPART
KENER = KENER + (PX(I)**2 + PY(I)**2
& +PZ(I)**2)/2.0_prec
3 CONTINUE
C THERMOSTAT CORRECTIONS
IF (MOD(NGAUS,2).EQ.1) THEN
CONSER=MAX(CONSER,ABS(E0*NPART-KENER-UPOT))
AHEAT = SQRT((E0*NPART-UPOT)/KENER)
IF (NON.EQ.1.OR.((NGAUS.EQ.1).AND.(IFLAG.EQ.0)))
& THEN
DO 4 I = 1, NPART
PX(I) = PX(I)*AHEAT
PY(I) = PY(I)*AHEAT
PZ(I) = PZ(I)*AHEAT
4 CONTINUE
END IF ! NON.EQ.1....
C*****************************************
ELSE IF (MOD(NGAUS,2).EQ.0) THEN
CONSER=MAX(CONSER,ABS((TR*(DF))-(2*KENER)))
AHEAT = SQRT((TR*(DF))/(2*KENER))
IF (NON.EQ.1.OR.((NGAUS.EQ.2).AND.(IFLAG.EQ.0))) THEN
DO 5 I = 1, NPART
PX(I) = PX(I)*AHEAT
PY(I) = PY(I)*AHEAT
PZ(I) = PZ(I)*AHEAT
5 CONTINUE
ENDIF
ENDIF
C
C***** CALCULATE AVERAGES
C
KB=KB+1
C
C***** KINETIC PART OF AVERAGES
DO I = 1, NPART
SL(I) = 0.0_prec
KTRAN = KTRAN + PY(I)**2
KENER = KENER + (PX(I)**2+PY(I)**2+PZ(I)**2)/2.D0
IF (FLOOR(X(I)).LT.1.0_prec) THEN
SL(I) = 1.0_prec
ENDIF
C*********** Unwrap PBCs before calculating MSD
XR(I) = X(I) + ANINT((XR(I)-X(I))/CUBEX)*CUBEX
YR(I) = Y(I) + ANINT((YR(I)-Y(I))/CUBEY)*CUBEY
ZR(I) = Z(I) + ANINT((ZR(I)-Z(I))/CUBEZ)*CUBEZ
MSDX = MSDX + (XR(I) - X0(I))**2
MSDY = MSDY + (YR(I) - Y0(I))**2
MSDZ = MSDZ + (ZR(I) - Z0(I))**2
END DO
MSDX = MSDX / (REAL(NPART, prec))
MSDY = MSDY / (REAL(NPART, prec))
MSDZ = MSDZ / (REAL(NPART, prec))
MSD = MSDX + MSDY + MSDZ
C*********** Pressure
PXY = 0.5D0*(PT(1,2)+PT(2,1))
PXZ = 0.5D0*(PT(1,3)+PT(3,1))
PYZ = 0.5D0*(PT(2,3)+PT(3,2))
PXYF = 0.5D0*(PTF(1,2)+PTF(2,1))
PXZF = 0.5D0*(PTF(1,3)+PTF(3,1))
PYZF = 0.5D0*(PTF(2,3)+PTF(3,2))
PP = 0.5D0*(PT(1,1)+PT(2,2)+PT(3,3))/3
PPF = 0.5D0*(PTF(1,1)+PTF(2,2)+PTF(3,3))/3
C********** ISTEP
END DO
C
C DO I = 1, NPART
C*********** Unwrap PBCs before calculating MSD
C XR(I) = XR(I)+X(I)-X0(I) - ANINT((X(I)-X0(I))/CUBEX)*CUBEX
C YR(I) = YR(I)+Y(I)-Y0(I) - ANINT((Y(I)-Y0(I))/CUBEY)*CUBEY
C ZR(I) = ZR(I)+Z(I)-Z0(I) - ANINT((Z(I)-Z0(I))/CUBEZ)*CUBEZ
C
C MSDX = MSDX + (XR(I))**2
C MSDY = MSDX + (YR(I))**2
C MSDZ = MSDX + (ZR(I))**2
C END DO
C MSDX = MSDX / (REAL(NPART, prec))
C MSDY = MSDY / (REAL(NPART, prec))
C MSDZ = MSDZ / (REAL(NPART, prec))
55 FORMAT(I12,7F9.5)
75 FORMAT(I12,7F9.5)
65 FORMAT(6E14.6)
C
RETURN
END
C
C**********************************************************
C
SUBROUTINE DOMD
C
C***** DO A SINGLE STEP OF A SIMULATION
C USE COLOUR DIFFUSION ALGORITHM,FOURTH ORDER RUNGE-KUTTA METHOD,
C PERIODIC BOUNDARY CONDITIONS AND
C GAUSSIAN THERMOSTAT OR ERGOSTAT
C*****
C
INCLUDE "SSGK.inc"
C
C***** LOCAL VARIABLES
C
INTEGER I
REAL (KIND=prec) K1X(NP),K1Y(NP),K1Z(NP),K1XEQ(NP),
& K1PX(NP),K1PY(NP),K1PZ(NP),
& K2X(NP),K2Y(NP),K2Z(NP),K2XEQ(NP),
& K2PX(NP),K2PY(NP),K2PZ(NP),
& K3X(NP),K3Y(NP),K3Z(NP),K3XEQ(NP),
& K3PX(NP),K3PY(NP),K3PZ(NP),
& K4X(NP),K4Y(NP),K4Z(NP),K4XEQ(NP),
& K4PX(NP),K4PY(NP),K4PZ(NP),
& K1NH,K2NH,K3NH,K4NH, KENER
REAL (KIND=prec) XOLD(NP),YOLD(NP),ZOLD(NP),XEQOLD(NP),
& PXOLD(NP),PYOLD(NP),PZOLD(NP)
REAL (KIND=prec) NHOLD
REAL (KIND=prec) RX,RY,RZ,RXEQ,RYEQ,CIS,SUMRAN
REAL (KIND=prec) SUMX,SUMY,SUMZ,DXDOLD
C
SUMRAN=0.0_prec
KENER =0.0_prec
NHOLD = NHALPH
DXDOLD = DXD
C WRITE (6,*) 'DXD',DXD,SHEAR
C
C***** 4TH ORDER RK DE SOLVER
C
DO 10 I = 1, NPART
XOLD(I) = X(I)
YOLD(I) = Y(I)
ZOLD(I) = Z(I)
PXOLD(I) = PX(I)
PYOLD(I) = PY(I)
PZOLD(I) = PZ(I)
XEQOLD(I)= XEQ(I)
10 CONTINUE
C
C***** K1
C
DO 15 I = 1, NPART
K1X(I) = PX(I) + SHEAR*Y(I)
K1Y(I) = PY(I)
K1Z(I) = PZ(I)
K1PX(I) = FX(I) - SHEAR*PY(I) - ALPH*PX(I) + IKOL(I)*FIELD
K1PY(I) = FY(I) - ALPH*PY(I)
K1PZ(I) = FZ(I) - ALPH*PZ(I)
KENER = KENER + (PX(I)**2+PY(I)**2+PZ(I)**2)
15 CONTINUE
K1NH = (KENER-((DF)/TR))/QVOL
C
C***** K2
C
DO 20 I = 1,NPART
X(I) = XOLD(I) + K1X(I) *DELTA/2.D0
Y(I) = YOLD(I) + K1Y(I) *DELTA/2.D0
Z(I) = ZOLD(I) + K1Z(I) *DELTA/2.D0
PX(I) = PXOLD(I) + K1PX(I)*DELTA/2.D0
PY(I) = PYOLD(I) + K1PY(I)*DELTA/2.D0
PZ(I) = PZOLD(I) + K1PZ(I)*DELTA/2.D0
C EVK TODO: K1XEQ appears to be uninitialised here
XEQ(I)= XEQOLD(I)+ K1XEQ(I)*DELTA/2.D0
20 CONTINUE
NHALPH = NHOLD + K1NH*DELTA/2.0_prec
DXD = DXDOLD + SHEAR*DELTA/2.0_prec
DXD = DXD - AINT(DXD)
C
C
C***** GET NEW FORCECELLS,ALPHA
C
CALL FORCECELL
KENER=0.0_prec
C
DO 25 I = 1,NPART
K2X(I) = PX(I) + SHEAR*Y(I)
K2Y(I) = PY(I)
K2Z(I) = PZ(I)
K2PX(I) = FX(I) - SHEAR*PY(I) - ALPH*PX(I) + IKOL(I)*FIELD
K2PY(I) = FY(I) - ALPH*PY(I)
K2PZ(I) = FZ(I) - ALPH*PZ(I)
KENER = KENER + (PX(I)**2+PY(I)**2+PZ(I)**2)
25 CONTINUE
K2NH = (KENER-((DF)/TR))/QVOL
C
C***** K3
C
DO 30 I = 1,NPART
X(I) = XOLD(I) + K2X(I) *DELTA/2.D0
Y(I) = YOLD(I) + K2Y(I) *DELTA/2.D0
Z(I) = ZOLD(I) + K2Z(I) *DELTA/2.D0
PX(I) = PXOLD(I) + K2PX(I) *DELTA/2.D0
PY(I) = PYOLD(I) + K2PY(I) *DELTA/2.D0
PZ(I) = PZOLD(I) + K2PZ(I) *DELTA/2.D0
XEQ(I)= XEQOLD(I)+ K2XEQ(I)*DELTA/2.D0
30 CONTINUE
NHALPH = NHOLD + K2NH*DELTA/2.0_prec
C
C***** GET NEW FORCECELLS, ALPH
C
CALL FORCECELL
KENER=0.0_prec
C
DO 35 I = 1,NPART
K3X(I) = PX(I) + SHEAR*Y(I)
K3Y(I) = PY(I)
K3Z(I) = PZ(I)
K3PX(I) = FX(I) - SHEAR*PY(I) - ALPH*PX(I) + IKOL(I)*FIELD
K3PY(I) = FY(I) - ALPH*PY(I)
K3PZ(I) = FZ(I) - ALPH*PZ(I)
KENER = KENER + (PX(I)**2+PY(I)**2+PZ(I)**2)
35 CONTINUE
K3NH = (KENER-((DF)/TR))/QVOL
C***** K4
C
DO 40 I = 1, NPART
X(I) = XOLD(I) + K3X(I)*DELTA
Y(I) = YOLD(I) + K3Y(I)*DELTA
Z(I) = ZOLD(I) + K3Z(I)*DELTA
PX(I) = PXOLD(I) + K3PX(I)*DELTA
PY(I) = PYOLD(I) + K3PY(I)*DELTA
PZ(I) = PZOLD(I) + K3PZ(I)*DELTA
XEQ(I)= XEQOLD(I)+ K3XEQ(I)*DELTA
40 CONTINUE
NHALPH = NHOLD + K3NH*DELTA
DXD = DXDOLD + SHEAR*DELTA
DXD = DXD - AINT(DXD)
C
C
C***** GET NEW FORCECELLS,ALPH
C
CALL FORCECELL
KENER=0.0_prec
C
DO 45 I = 1, NPART
K4X(I) = PX(I) + SHEAR*Y(I)
K4Y(I) = PY(I)
K4Z(I) = PZ(I)
K4PX(I) = FX(I) - SHEAR*PY(I) - ALPH*PX(I) + IKOL(I)*FIELD
K4PY(I) = FY(I) - ALPH*PY(I)
K4PZ(I) = FZ(I) - ALPH*PZ(I)
KENER = KENER + (PX(I)**2+PY(I)**2+PZ(I)**2)
45 CONTINUE
K4NH= (KENER-((DF)/TR))/QVOL
C
DO 50 I = 1, NPART
X(I) = XOLD(I)
& + DELTA/6.D0*(K1X(I) + 2.D0*K2X(I) + 2.D0*K3X(I) + K4X(I))
Y(I) = YOLD(I)
& + DELTA/6.D0*(K1Y(I) + 2.D0*K2Y(I) + 2.D0*K3Y(I) + K4Y(I))
Z(I) = ZOLD(I)
& + DELTA/6.D0*(K1Z(I) + 2.D0*K2Z(I) + 2.D0*K3Z(I) + K4Z(I))
PX(I) = PXOLD(I)
& + DELTA/6.D0*(K1PX(I)+ 2.D0*K2PX(I)+ 2.D0*K3PX(I)+ K4PX(I))
PY(I) = PYOLD(I)
& + DELTA/6.D0*(K1PY(I)+ 2.D0*K2PY(I)+ 2.D0*K3PY(I)+ K4PY(I))
PZ(I) = PZOLD(I)
& + DELTA/6.D0*(K1PZ(I)+ 2.D0*K2PZ(I)+ 2.D0*K3PZ(I)+ K4PZ(I))
XEQ(I) = XEQOLD(I)
& +DELTA/6.D0*(K1XEQ(I)+2.D0*K2XEQ(I)+2.D0*K3XEQ(I)+K4XEQ(I))
50 CONTINUE
NHALPH = NHOLD
& + DELTA/6.D0*(K1NH+ 2.D0*K2NH+ 2.D0*K3NH+ K4NH)
C***** PERIODIC BOUNDARY CONDITIONS
C
DO 60 I = 1, NPART
RX = X(I) - CUBEX2
RY = Y(I) - CUBEY2
RZ = Z(I) - CUBEZ2
CIS = ANINT(RY/CUBEY)
RY = RY - CUBEY*CIS
RX = RX - DXD*CUBEX*CIS
RX = RX - CUBEX*ANINT(RX/CUBEX)
RZ = RZ - CUBEZ*ANINT(RZ/CUBEZ)
X(I) = RX + CUBEX2
Y(I) = RY + CUBEY2
Z(I) = RZ + CUBEZ2
C IF (X(I).GT.CUBEX) THEN
C WRITE(6,*) '1',KB,X(I),Y(I),Z(I),PX(I),PY(I),PZ(I)
C STOP
C END IF
C IF (Y(I).GT.CUBEY) THEN
C WRITE(6,*) '2',KB,X(I),Y(I),Z(I),PX(I),PY(I),PZ(I)
C STOP
C END IF
C IF (Z(I).GT.CUBEZ) THEN
C WRITE(6,*) '3',KB,I,X(I),Y(I),Z(I),PX(I),PY(I),PZ(I)
C STOP
C END IF
C IF (X(I).LT.0.0_prec) THEN
C WRITE(6,*) '4',KB,X(I),Y(I),Z(I),PX(I),PY(I),PZ(I)
C STOP
C END IF
C IF (Y(I).LT.0.0_prec) THEN
C WRITE(6,*) '5',KB,X(I),Y(I),Z(I),PX(I),PY(I),PZ(I)
C STOP
C END IF
C IF (Z(I).LT.0.0_prec) THEN
C WRITE(6,*) '6',KB,I,X(I),Y(I),Z(I),PX(I),PY(I),PZ(I)
C STOP
C END IF
60 CONTINUE
C
RETURN
END
C
C ********************************************************
C
SUBROUTINE FCC
INCLUDE "SSGK.inc"
C
C***** LOCAL VARIABLES
C
INTEGER NX,NY,NZ,M,J,K,IJ,I
REAL (KIND=prec) SUMX,SUMY,SUMZ,SUMX2,SUMY2,SUMZ2
REAL (KIND=prec) RTR,XX,YY,ZZ,XYZ,PS,PS2,HEAT,HEAT2
REAL (KIND=prec) DX,DY,DZ,DNY,CUBEXY
C
C***** CALCULATE NUMBER OF TWO PARTICLE CELLS IN X,Y AND Z DIRECTION
C
IF(LATT.EQ.1)THEN
DNY=DFLOAT(NPART)
DNY=DNY/4.0_prec
DNY = DNY*YZDIVX
DNY=DNY**(1.0_prec/3.0_prec)
NX = NINT(DNY/YZDIVX)
NY = NINT(DNY)
NZ = NY
C
C***** DX,DY,DZ ARE THE SIZE OF EACH SIDE OF A SINGLE TWO-PARTICLE
C***** CELL ASSUMING BOXLENGTH IS 1
C
DX = 1.D0/NX
DY = 1.D0/NY
DZ = 1.D0/NZ
C
C***** SET POSITION OF THE FOUR PARTICLES FOR FCC(LATT=1) IN FIRST CELL
C
X(1) = 0.25D0*DX
Y(1) = 0.25D0*DY
Z(1) = 0.25D0*DZ
X(2) = 0.75D0*DX
Y(2) = 0.75D0*DY
Z(2) = 0.25D0*DZ
X(3) = 0.25D0*DX
Y(3) = 0.75D0*DY
Z(3) = 0.75D0*DZ
X(4) = 0.75D0*DX
Y(4) = 0.25D0*DY
Z(4) = 0.75D0*DZ
C
C***** SET POSITION OF ALL OTHER PARTICLES
C
M = 0
DO 1 K = 1, NX
DO 101 J = 1, NY
DO 201 I = 1, NZ
DO 2 IJ = 1, 4
X(IJ + M) = X(IJ) + DX*(K-1)
Y(IJ + M) = Y(IJ) + DY*(J-1)
Z(IJ + M) = Z(IJ) + DZ*(I-1)
2 CONTINUE
M = M + 4
201 CONTINUE
101 CONTINUE
1 CONTINUE
ENDIF
C
C***** SET POSITIONS FOR PARTICLES IN BCC(LATT=2)
C
IF(LATT.EQ.2)THEN
DNY=DFLOAT(NPART)
DNY=DNY/2.0_prec
DNY = DNY*YZDIVX
DNY=DNY**(1.0_prec/3.0_prec)
NX = NINT(DNY/YZDIVX)
NY = NINT(DNY)
NZ = NY
NL = NX
C*****CHECKING
#ifdef DEBUG
WRITE(6,*)'DNY,NX,NY,NZ,NL',DNY,NX,NY,NZ,NL
WRITE(6,*)'CUBEZ/CUBEX',CUBEZ/CUBEX
#endif
C
C***** DX,DY,DZ ARE THE SIZE OF EACH SIDE OF A SINGLE TWO-PARTICLE
C***** CELL ASSUMING BOXLENGTH IS 1
C
DX = 1.0_prec/NX
DY = 1.0_prec/NY
DZ = 1.0_prec/NZ
C
C***** SET POSITION OF THE PARTICLES FOR BCC(LATT=2) IN FIRST CELL
C
X(1) = 0.25D0*DX
Y(1) = 0.25D0*DY
Z(1) = 0.25D0*DZ
X(2) = 0.75D0*DX
Y(2) = 0.75D0*DY
Z(2) = 0.75D0*DZ
C
C***** SET POSITION OF ALL OTHER PARTICLES
C
M = 0
DO 11 I = 1, NZ
DO 111 J = 1, NY
DO 211 K = 1, NX
DO 12 IJ = 1, 2
X(IJ + M) = X(IJ) + DX*(K-1)
Y(IJ + M) = Y(IJ) + DY*(J-1)
Z(IJ + M) = Z(IJ) + DZ*(I-1)
12 CONTINUE
M = M + 2
211 CONTINUE
111 CONTINUE
11 CONTINUE
ENDIF
C
C*****ETCH OUT FLUID SITES BY REDEFIENING NPART
C*****check
#ifdef DEBUG
WRITE(6,*)'NPART,NPART,DRW,DRF'
WRITE(6,*)NPART,NPART,DRW,DRF
#endif
NPART2 = NPART/2
C VOLF = NPART*DRF
C NPART=NPART+INT(DRF/DRW*NFLUID/2.0_prec)*2
C C NFLUID=NPART-NPART
C DRF=NFLUID/VOLF
C*******CHECK
#ifdef DEBUG
WRITE(6,*)'NPART,NPART, DRW,DRF'
WRITE(6,*)NPART,NPART,DRW,DRF
#endif
C
C***** REDUCE TO COORDINATES OF THE CUBE
C
DO 3 I = 1, NPART
X(I) = X(I)*CUBEX
Y(I) = Y(I)*CUBEY
Z(I) = Z(I)*CUBEZ
3 CONTINUE
C
C***** DEFINE DXX
C
DXX=DX*CUBEX
*****CHECKING
C
C***** DEFINE NPART AND SWITCHES
DO I=1, NPART2
S1(I)=1.0_prec
S2(I)=0.0_prec
S3(I)=1.0_prec
S4(I)=0.0_prec
ENDDO
DO I=NPART2+1, NPART
S1(I)=0.0_prec
S2(I)=1.0_prec
S3(I)=0.0_prec
S4(I)=1.0_prec
ENDDO
C***** SET EQILIBRIUM POSITIONS
C
DO I=1, NPART
IF(I.LE.NPART) THEN
XEQ(I)=X(I)
YEQ(I)=Y(I)
ZEQ(I)=Z(I)
ENDIF
ENDDO
C
C***** WRITE INITIAL POSITIONS OF ATOMS
C
C WRITE(9,100)
C 100 FORMAT(///,5X,'INITIAL COORDINATES',//)
C WRITE(9,101) (X(I),Y(I),Z(I),PX(I),PY(I),P(I),I=1,NPART)
C 101 FORMAT(/,2(2X,F10.4))
C
C***** GENERATE RANDOM VELOCITIES WITH A GAUSSIAN DISTRUBUTION
C***** ABOUT SQRT(TR,E0)
C
SUMX = 0.0_prec
SUMY = 0.0_prec
SUMZ = 0.0_prec
IF (MOD(NGAUS,2).EQ.1) THEN
RTR = SQRT(2.0_prec*E0)
ELSE IF (MOD(NGAUS,2).EQ.0) THEN
RTR = SQRT(2.0_prec*TR)
END IF
DO 4 I = 1,NPART,2
CALL RAN1(ISEED,XX)
CALL RAN1(ISEED,YY)
XYZ = 1.D0/SQRT(XX*XX+YY*YY)
PX(I) = XX*XYZ*RTR
PY(I) = YY*XYZ*RTR
CALL RAN1(ISEED,XX)
CALL RAN1(ISEED,YY)
XYZ = 1.D0/SQRT(XX*XX+YY*YY)
PZ(I) = XX*XYZ*RTR
PX(I+1) = YY*XYZ*RTR
CALL RAN1(ISEED,XX)
CALL RAN1(ISEED,YY)
XYZ = 1.D0/SQRT(XX*XX+YY*YY)
PY(I+1) = XX*XYZ*RTR
PZ(I+1) = YY*XYZ*RTR
4 CONTINUE
DO I=1,NPART
SUMX = SUMX +PX(I)
SUMY = SUMY +PY(I)
SUMZ = SUMZ +PZ(I)
ENDDO
C
C***** WALL - CORRECT SO SUM MOMENTA IS ZERO IN EACH DIRECTION
C***** AND SUM OF SQUARES OF MOMENTA EQUALS 2.0*E0*NPART
C
PS = 0.0_prec
DO 5 I = 1,NPART
PX(I) = PX(I) - SUMX/NPART
PY(I) = PY(I) - SUMY/NPART
PZ(I) = PZ(I) - SUMZ/NPART
105 CONTINUE
PS = PS + PX(I)**2 + PY(I)**2+ PZ(I)**2
5 CONTINUE
IF (MOD(NGAUS,2).EQ.1) THEN
C***** THIS BIT IS NOT YET PROPERLY IMPLEMENTED
CALL FORCECELL
CALL FORCECELL
HEAT = SQRT(2.0_prec*(E0*NPART-UPOT)/PS)
C***********************************************
ELSE IF (MOD(NGAUS,2).EQ.0) THEN
HEAT = SQRT(TR*(DF)/(PS))
END IF
DO I = 1, NPART
PX(I) = PX(I)*HEAT
PY(I) = PY(I)*HEAT