You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
# Instructions for running the EIT Bayesian Inverse Problem
2
2
3
-
To generate the EIT results shown in the paper, run the script `EIT.py` for each of the different noise levels: $5\\%$, $10\\%$, $20\\%$. Then run the script `plot_paper_figures.py` to generate the figures 6, 7, 8, and 9 in the paper. To set the noise level, change the variable `noise_percent` in the script `EIT.py` to be either `5`, `10`, or `20`. The script `EIT.py` will then generate the sampling results for the corresponding noise level and save it in the folder `/stat/`. The script `plot_paper_figures.py` will then use these results to generate the paper figures.
3
+
Full instructions for running the EIT Bayesian Inverse Problem are provided in
4
+
the notebook `EIT.ipynb`.
4
5
5
-
Observed data for each noise-levels are available in `/data/`:
6
-
-`/data/obs_circular_inclusion_2_5per_noise.npz` with 5 percent noise-level.
7
-
-`/data/obs_circular_inclusion_2_10per_noise.npz` with 10 percent noise-level.
8
-
-`/data/obs_circular_inclusion_2_20per_noise.npz` with 20 percent noise-level.
6
+
Observed data are available in `./data/`:
7
+
-`./data/obs_circular_inclusion_2_5per_noise.npz` with 5 percent noise-level.
8
+
-`./data/obs_circular_inclusion_2_10per_noise.npz` with 10 percent noise-level.
9
+
-`./data/obs_circular_inclusion_2_20per_noise.npz` with 20 percent noise-level.
10
+
11
+
Pre-computed results are available in `./stat_paper/`:
12
+
-`./results/stat_circular_inclusion_2_5per_noise_thinned.npz` for the 5 percent noise-level case.
13
+
-`./results/stat_circular_inclusion_2_10per_noise_thinned.npz` for the 10 percent noise-level case.
14
+
-`./results/stat_circular_inclusion_2_20per_noise_thinned.npz` for the 20 percent noise-level case.
0 commit comments