-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgol_in_gol_circuit2Script.sml
2281 lines (2098 loc) · 83.7 KB
/
gol_in_gol_circuit2Script.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
open HolKernel bossLib boolLib Parse;
open gol_simTheory gol_sim_okTheory listTheory gol_circuitTheory pred_setTheory
pairTheory alistTheory arithmeticTheory sortingTheory integerTheory numLib
dep_rewrite intLib combinTheory rich_listTheory quantHeuristicsTheory
gol_in_gol_paramsLib gol_io_stepTheory;
val _ = new_theory "gol_in_gol_circuit2";
(* val metis_tac = Timeout.apply (Time.fromMilliseconds 2000) o metis_tac
val fs = Timeout.apply (Time.fromMilliseconds 2000) o fs
val simp = Timeout.apply (Time.fromMilliseconds 2000) o simp
val rw = Timeout.apply (Time.fromMilliseconds 2000) o rw *)
fun suff_eqr_tac th: tactic = fn (g as (asl,w)) =>
(SUFF_TAC(mk_eq(concl th, w))
>- (disch_then (irule o iffLR) \\ ACCEPT_TAC th))
g
fun suff_eq_tac th: tactic = fn (g as (asl,w)) =>
(SUFF_TAC(mk_eq(w, concl th))
>- (disch_then (irule o iffRL) \\ ACCEPT_TAC th))
g
fun cong_tac n = ntac n $ FIRST [AP_THM_TAC, AP_TERM_TAC, ABS_TAC, BINOP_TAC, MK_COMB_TAC]
Definition circuit_gen_def:
circuit_gen area ins outs init ⇔
∀ s0. LENGTH s0 = LENGTH ins ⇒ ∃ s1.
circuit area
(MAP2 (λv (p,d,_). (p,d,v)) s0 ins)
(MAP2 (λv (_,p,d,_). (p,d,v)) s1 outs) init ∧
LIST_REL (λv (is,p,d,Q).
(∀ i. MEM i is ⇒ EL i (MAP2 (λv (_,_,P). P v) s0 ins)) ⇒ Q v) s1 outs
End
Datatype:
avalue = Cell (int # int) | RNot avalue
| RAnd avalue avalue | ROr avalue avalue | RXor avalue avalue;
evalue = Clock | NotClock | ThisCell | ThisCellClock | ThisCellNotClock;
value = Approx num avalue | Exact int evalue | Fail
End
Definition r_eval_def[simp]:
(r_eval env (Cell p) ⇔ env p) ∧
(r_eval env (RNot v) ⇔ ¬r_eval env v) ∧
(r_eval env (RAnd v1 v2) ⇔ r_eval env v1 ∧ r_eval env v2) ∧
(r_eval env (ROr v1 v2) ⇔ r_eval env v1 ∨ r_eval env v2) ∧
(r_eval env (RXor v1 v2) ⇔ r_eval env v1 ≠ r_eval env v2)
End
Definition e_clock_def:
e_clock (n:int) ⇔ n % ^periodZ < ^pulseZ
End
Definition e_cell_def:
e_cell env (n:int) ⇔ 0 ≤ n ∧ env (Num n DIV ^periodN)
End
Definition e_eval_def[simp]:
e_eval env Clock = e_clock ∧
e_eval env NotClock = (λn. ¬e_clock n) ∧
e_eval env ThisCell = e_cell env ∧
e_eval env ThisCellClock = (λn. e_clock n ∧ e_cell env n) ∧
e_eval env ThisCellNotClock = (λn. e_cell env n ∧ ¬e_clock n)
End
Definition v_eval'_def[simp]:
(v_eval' env (Approx d rv) s ⇔
∀ n. d ≤ n MOD ^periodN ⇒ s n = r_eval (env (n DIV ^periodN)) rv) ∧
(v_eval' env (Exact d ev) s ⇔ s = (λn. e_eval (λi. env i (0, 0)) ev (&n - d))) ∧
(v_eval' env Fail s ⇔ T)
End
Type stream[pp] = “:int # int -> num -> bool”;
Definition v_eval_def:
v_eval env v (s:stream) ⇔
∀x. v_eval' (λi p. env i (add_pt x p)) v (s x)
End
Theorem v_eval_fail[simp]:
v_eval env Fail s
Proof
simp [v_eval_def]
QED
Definition v_delay_def[simp]:
v_delay n (Approx i v) = Approx (n + i) v ∧
v_delay n (Exact i v) = Exact (&n + i) v ∧
v_delay n Fail = Fail
End
Theorem v_delay_0[simp]:
v_delay 0 v = v
Proof
Cases_on `v` \\ rw []
QED
Definition v_teleport_def:
v_teleport p (Approx i (Cell a)) = Approx i (Cell (add_pt a p)) ∧
v_teleport _ _ = Fail
End
Definition nextCell_def[compute]:
nextCell = let
e1 = RXor (Cell (0, 1)) (Cell (~1, 1));
e2 = RXor (Cell (1, 0)) (Cell (1, 1));
e3 = RXor (Cell (0, ~1)) (Cell (1, ~1));
e4 = RXor (Cell (~1, 0)) (Cell (~1, ~1));
e5 = RAnd (Cell (0, 1)) (Cell (~1, 1));
e6 = RAnd (Cell (0, ~1)) (Cell (1, ~1));
e7 = RAnd (Cell (~1, 0)) (Cell (~1, ~1));
e8 = RAnd (Cell (1, 0)) (Cell (1, 1));
e9 = RXor e2 (RXor e3 e4);
e10 = ROr (RAnd e2 (RXor e3 e4)) e8;
e11 = ROr (RAnd e1 e9) e5;
e12 = ROr (RAnd e3 e4) e6;
e13 = RXor e10 (RXor e12 e7);
in
RAnd (ROr (Cell (0, 0)) (RXor e1 e9))
(RAnd (RXor e11 e13) (RNot (ROr (RAnd e11 e13)
(ROr (RAnd e10 (RXor e12 e7)) (RAnd e12 e7)))))
End
Definition v_and_def[simp,compute]:
(v_and (Approx d1 rv1) (Approx d2 rv2) = Approx (MAX d1 d2) (RAnd rv1 rv2)) ∧
(v_and (Exact d1 ThisCell) (Exact d2 NotClock) =
if d2 ≤ d1 ∧ d1 ≤ d2 + ^pulseZ then
Exact d2 ThisCellNotClock
else Fail) ∧
(v_and (Exact d1 Clock) (Approx d2 v2) =
if v2 = nextCell ∧ &d2 ≤ d1 + ^periodZ ∧ d1 ≤ -^pulseZ then
Exact d1 ThisCellClock
else Fail) ∧
(v_and _ _ = Fail)
End
Theorem v_and_fail[simp]:
v_and v Fail = Fail
Proof
Cases_on `v` \\ simp [] \\ Cases_on `e` \\ simp [] \\ rpt CASE_TAC \\ simp []
QED
Definition v_or_def[simp]:
(v_or (Approx d1 rv1) (Approx d2 rv2) = Approx (MAX d1 d2) (ROr rv1 rv2)) ∧
(v_or (Exact d1 ThisCellClock) (Exact d2 ThisCellNotClock) =
if d1 = d2 then Exact d1 ThisCell else Fail) ∧
(v_or _ _ = Fail)
End
Theorem v_or_fail[simp]:
v_or v Fail = Fail
Proof
Cases_on `v` \\ simp [] \\ Cases_on `e` \\ simp [] \\ rpt CASE_TAC \\ simp []
QED
Definition v_not_def[simp]:
v_not (Exact d1 Clock) = Exact d1 NotClock ∧
v_not (Approx d1 v1) = Approx d1 (RNot v1) ∧
v_not _ = Fail
End
Definition v_xor_def[simp]:
v_xor (Approx d1 v1) (Approx d2 v2) = Approx (MAX d1 d2) (RXor v1 v2) ∧
v_xor _ _ = Fail
End
Definition v_subset_def:
v_subset v1 v2 ⇔ ∀env s. v_eval env v1 s ⇒ v_eval env v2 s
End
val _ = set_fixity "⊑" (Infix(NONASSOC, 450))
Overload "⊑" = “v_subset”;
Theorem v_subset_refl[simp]:
v ⊑ v
Proof
simp [v_subset_def]
QED
Theorem v_subset_fail[simp]:
v ⊑ Fail
Proof
simp [v_subset_def]
QED
Theorem Reg_mono:
na ≤ nb ∧ (∀env. r_eval env va ⇔ r_eval env vb) ⇒ Approx na va ⊑ Approx nb vb
Proof
simp [v_subset_def, v_eval_def] \\ metis_tac [LE_TRANS]
QED
Definition env_wf_def:
env_wf (env:num->state) ⇔
∀t x. env (t + 1) x = r_eval (env t ∘ add_pt x) nextCell
End
Definition mk_pt_def[compute]:
mk_pt a z ⇔ add_pt a (mul_pt (^tile2Z) z)
End
val pt_arith_tac: tactic =
POP_ASSUM_LIST kall_tac \\ rw []
\\ (fn g as (asm, t) => (
MAP_EVERY (C tmCases_on []) (
filter (fn v => snd (dest_var v) = ``:int#int``) (free_varsl (t::asm)) @
find_maximal_termsl (fn tm => rator tm ~~ ``dir_to_xy`` handle _ => false) t)
\\ fs [mk_pt_def] \\ ARITH_TAC
) g);
Theorem mk_pt_0[simp]:
mk_pt p (0,0) = p
Proof
pt_arith_tac
QED
Definition mk_dpt_def[compute]:
mk_dpt (a, d:dir) z ⇔ (mk_pt a z, d)
End
Theorem mk_dpt_0[simp]:
mk_dpt p (0,0) = p
Proof
Cases_on `p` \\ simp [mk_dpt_def]
QED
Definition span_def:
span s = {mk_dpt p z | z,p | p ∈ s}
End
Theorem span_sn_eq_span_sn:
span {(a,d)} = span {(a',d')} ⇔ d = d' ∧ ∃z. a' = mk_pt a z
Proof
simp [Once SET_EQ_SUBSET, SUBSET_DEF, PULL_EXISTS, span_def, mk_dpt_def]
\\ `∀z z'. mk_pt (mk_pt a z) z' = mk_pt a (add_pt z z') ∧
mk_pt a z' = mk_pt (mk_pt a z) (sub_pt z' z)` by pt_arith_tac
\\ metis_tac [mk_pt_0]
QED
Definition vb_eval_def[simp,compute]:
(vb_eval ((da, a), _) (Var A d) = v_delay (da - d) a) ∧
(vb_eval (_, (db, b)) (Var B d) = v_delay (db - d) b) ∧
(vb_eval env (Not x) = v_not (vb_eval env x)) ∧
(vb_eval env (And x y) = v_and (vb_eval env x) (vb_eval env y)) ∧
(vb_eval env (Or x y) = v_or (vb_eval env x) (vb_eval env y)) ∧
(vb_eval _ _ = Fail)
End
Definition classify_clock_def[compute]:
(classify_clock da T d =
if &da + d + ^pulseZ ≤ ^periodZ ∧ -^periodZ ≤ d then
if 0 ≤ d ∨ &da + d + ^pulseZ ≤ 0 then SOME Zeros else
SOME (Pulse
(if 0 ≤ &da + d then Num (&da + d) else 0)
(MIN da (Num (&da + d + ^pulseZ))))
else NONE) ∧
(classify_clock da F d =
if &da + d ≤ 0 ∧ -^periodZ ≤ d then
SOME (Pulse
(if 0 ≤ &da + d + ^pulseZ then Num (&da + d + ^pulseZ) else 0)
(MIN da (Num (&da + d + ^periodZ))))
else NONE)
End
Definition classify_this_def[compute]:
classify_this da d =
if 0 < d then SOME Zeros else
if 0 < d + ^periodZ then
SOME (Pulse (if 0 ≤ &da + d then Num (&da + d) else 0) da)
else NONE
End
Definition and_this_def[compute]:
and_this Zeros = Zeros ∧
(and_this (Pulse a b) = PulseThis a b) ∧
(and_this (PulseThis a b) = PulseThis a b)
End
Definition classify_def[compute]:
classify _ (Approx _ _) = SOME Zeros ∧
classify da (Exact d Clock) = classify_clock da T d ∧
classify da (Exact d NotClock) = classify_clock da F d ∧
classify da (Exact d ThisCell) =
OPTION_MAP and_this (classify_this da d) ∧
classify da (Exact d ThisCellClock) =
OPTION_MAP and_this (classify_clock da T d) ∧
classify da (Exact d ThisCellNotClock) =
OPTION_MAP and_this (classify_clock da F d) ∧
classify _ Fail = NONE
End
Definition from_init_def:
from_init env init =
from_rows (-85,-85) (MAP (MAP (eval (λ_. env)) o from_blist) init)
End
Datatype:
gate = <| width: num; height: num; init: blist list |>
End
Definition gate_wf_def:
gate_wf (g:gate) ⇔
g.width ≠ 0 ∧ g.height ≠ 0 ∧
g.width < ^tileN ∧ g.height < ^tileN ∧
rectangle g.width g.height (MAP from_blist g.init)
End
Definition gate_ports_wf_def:
gate_ports_wf w h ins outs ⇔
(∀p d. (p,d) ∈ ins ⇒ MEM (add_pt p (dir_to_xy d)) (make_area w h) ∧
¬MEM (sub_pt p (dir_to_xy d)) (make_area w h)) ∧
∀p d. (p,d) ∈ outs ⇒ MEM (sub_pt p (dir_to_xy d)) (make_area w h) ∧
¬MEM (add_pt p (dir_to_xy d)) (make_area w h)
End
Definition is_gate_def:
is_gate (g:gate)
(ins: (((int # int) # dir) # value) list)
(outs: (((int # int) # dir) # value) list) ⇔
gate_wf g ∧
gate_ports_wf g.width g.height (set (MAP FST ins)) (set (MAP FST outs)) ∧
∀env. env_wf env ⇒
∀s. LIST_REL (λ(_,v). v_eval env v) ins s ⇒
∃s'. LIST_REL (λ(_,v). v_eval env v) outs s' ∧
∀z. circuit (make_area g.width g.height)
(MAP2 (λ((p,d),_) v. (p,d,v z)) ins s)
(MAP2 (λ((p,d),_) v. (p,d,v z)) outs s')
(from_init (env 0 z) g.init)
End
Theorem circuit_perm:
PERM ins ins' ∧ PERM outs outs' ⇒
(circuit area ins outs init ⇔ circuit area ins' outs' init)
Proof
rw [circuit_def] \\ BINOP_TAC
>- metis_tac [PERM_LIST_TO_SET, PERM_MAP]
\\ metis_tac [ALL_DISTINCT_PERM, PERM_MAP]
QED
Theorem EVERY2_sym_fwd = SRULE [] $
Q.ISPECL [`R:α->β->bool`,`flip R:β->α->bool`] $ Q.GENL [`R1`, `R2`] EVERY2_sym;
Theorem EVERY2_trans':
(∀x y z. R1 x y ∧ R2 y z ⇒ R3 x z) ⇒
∀x y z. LIST_REL R1 x y ∧ LIST_REL R2 y z ⇒ LIST_REL R3 x z
Proof
strip_tac \\ Induct_on `x` \\ Cases_on `y` \\ Cases_on `z` \\ simp [] \\ metis_tac []
QED
Theorem PERM_ZIP_R:
PERM l1 l2 ∧ LENGTH l2 = LENGTH l3 ⇒
∃l4. LENGTH l3 = LENGTH l4 ∧ PERM (ZIP (l1, l3)) (ZIP (l2, l4))
Proof
`∀l1 l2. PERM l1 l2 ⇒ LENGTH l1 = LENGTH l2 ∧ ∀l3. LENGTH l3 = LENGTH l2 ⇒
∃l4. LENGTH l3 = LENGTH l4 ∧ PERM (ZIP (l1, l3)) (ZIP (l2, l4))`
suffices_by metis_tac []
\\ ho_match_mp_tac PERM_IND \\ rw []
>- (
Cases_on `l3` \\ gvs []
\\ first_x_assum drule \\ rw []
\\ qexists_tac `h::l4` \\ simp [ZIP_def])
>- (
Cases_on `l3` \\ gvs []
\\ Cases_on `t` \\ gvs []
\\ first_x_assum drule \\ rw []
\\ qexists_tac `h'::h::l4` \\ simp [ZIP_def, PERM_SWAP_AT_FRONT])
\\ last_x_assum (qspec_then `l3` mp_tac) \\ rw []
\\ first_x_assum (qspec_then `l4` mp_tac) \\ rw []
\\ qexists_tac `l4'` \\ metis_tac [PERM_TRANS]
QED
Theorem PERM_ZIP_R':
PERM l1 l2 ∧ LENGTH l2 = LENGTH l3 ⇒
∃l4. PERM l3 l4 ∧ PERM (ZIP (l1, l3)) (ZIP (l2, l4))
Proof
strip_tac \\ drule_then drule PERM_ZIP_R \\ rw []
\\ first_assum $ irule_at Any
\\ first_assum $ mp_tac o MATCH_MP (Q.ISPEC `SND` PERM_MAP)
\\ imp_res_tac PERM_LENGTH
\\ simp [PERM_LENGTH, MAP_ZIP]
QED
Theorem env_wf_translate:
env_wf f ⇒ env_wf (λi a. f i (add_pt x a))
Proof
rw [env_wf_def, o_DEF, add_pt_assoc]
QED
Definition delay_def:
delay n a i = if i < n then F else a (i - n:num)
End
Definition delay'_def:
delay' (n,ee,env) a i =
if i < n then eval (λ_. env) (eval_env_kind ee i) else a (i - n:num)
End
Theorem delay'_eq_delay[simp]:
delay' (n,Zeros,env) = delay n
Proof
rw [FUN_EQ_THM, delay'_def, delay_def, eval_env_kind_def]
QED
Theorem eval_classify_clock:
classify_clock da b d = SOME ea ∧ n < da ⇒
&n − (&da + d) < ^periodZ ∧
(eval env (eval_env_kind ea n) ⇔ e_clock (&n − (&da + d)) = b) ∧
(e_clock (&n − (&da + d)) ∨ ¬b ⇒ 0 ≤ &n − (&da + d))
Proof
Cases_on `b` \\ rw [classify_clock_def, e_clock_def] \\ rw [eval_env_kind_def] \\ TRY ARITH_TAC
QED
Theorem eval_classify_this:
classify_this da d = SOME ea ∧ n < da ⇒
&n − (&da + d) < ^periodZ ∧
(eval env (eval_env_kind ea n) ⇔ 0 ≤ &n − (&da + d))
Proof
rw [classify_this_def] \\ rw [eval_env_kind_def, e_cell_def] \\ ARITH_TAC
QED
Theorem e_cell_init:
i < ^periodZ ⇒ (∀env. e_cell env i ⇔ 0 ≤ i ∧ env 0)
Proof
rw [e_cell_def] \\ Cases_on `0 ≤ i` \\ rw [] \\ AP_TERM_TAC \\ ARITH_TAC
QED
Theorem v_eval'_v_delay':
classify da a = SOME ea ∧ v_eval' env a s ∧ k ≤ da ⇒
v_eval' env (v_delay (da - k) a) (λi. delay' (da,ea,env 0 (0,0)) s (k + i))
Proof
gvs [oneline v_delay_def] \\ CASE_TAC \\ rw [FUN_EQ_THM]
\\ gvs [v_eval_def, delay'_def]
>- (`da ≤ i + k ∧ n ≤ (i + k - da) MOD ^periodN ∧
(i + k − da) DIV ^periodN = i DIV ^periodN` by ARITH_TAC
\\ simp [])
\\ reverse (rw []) >- (AP_TERM_TAC \\ ARITH_TAC)
\\ `&n − (&(da − k) + i) = &(k + n) − (&da + i)` by ARITH_TAC
\\ `∀ee n. eval (λ_. env 0 (0,0)) (eval_env_kind (and_this ee) n) ⇔
env 0 (0,0) ∧ eval (λ_. env 0 (0,0)) (eval_env_kind ee n)` by (
Cases \\ rw [and_this_def, eval_env_kind_def])
\\ Cases_on `e` \\ gvs [classify_def]
\\ FIRST (map (drule_then $ drule_then $
qspec_then `λ_. env 0 (0,0)` strip_assume_tac)
[eval_classify_clock, eval_classify_this])
\\ drule e_cell_init \\ strip_tac \\ fs []
\\ rw [eval_env_kind_def] \\ metis_tac []
QED
Theorem v_eval_v_delay':
classify da a = SOME ea ∧ v_eval env a s ∧ k ≤ da ⇒
v_eval env (v_delay (da - k) a) (λz i. delay' (da,ea,env 0 z) (s z) (k + i))
Proof
rw [v_eval_def]
\\ drule_then (drule_at_then Any $
qspecl_then [`s z`, `λi a. env i (add_pt z a)`] mp_tac) v_eval'_v_delay'
\\ rw []
QED
Theorem v_eval'_v_not:
v_eval' env v1 a1 ⇒
v_eval' env (v_not v1) (λn. ¬a1 n)
Proof
gvs [oneline v_not_def] \\ rpt (CASE_TAC \\ gvs [])
\\ rw [e_cell_def]
\\ `∃k. i = &k` by rw [NUM_POSINT_EXISTS] \\ gvs []
\\ `k ≤ n ∧ (n − k) DIV 586 = n DIV 586` by ARITH_TAC
\\ simp [INT_SUB]
QED
Theorem v_eval_v_not:
v_eval env v1 a1 ⇒
v_eval env (v_not v1) (λz n. ¬a1 z n)
Proof
rw [v_eval_def] \\ metis_tac [v_eval'_v_not]
QED
Theorem v_eval'_v_and:
env_wf env ∧ v_eval' env v1 a1 ∧ v_eval' env v2 a2 ⇒
v_eval' env (v_and v1 v2) (λn. a1 n ∧ a2 n)
Proof
gvs [oneline v_and_def] \\ rpt (CASE_TAC \\ rw []) \\ gvs [v_eval'_def]
(* v_and (Exact i Clock) (Approx n nextCell) = Exact i ThisCellClock *)
>- (rw [FUN_EQ_THM] \\ Cases_on `e_clock (&n' − i)` \\ rw []
\\ DEP_ASM_REWRITE_TAC [] \\ gvs [e_clock_def, e_cell_def] \\ rw []
>- ARITH_TAC
\\ `∃k. i = -&k` by ARITH_TAC \\ gvs [INT_ADD]
\\ `(k + n') DIV ^periodN = n' DIV ^periodN + 1` by ARITH_TAC
\\ fs [env_wf_def]
\\ cong_tac 2 \\ simp [FUN_EQ_THM, FORALL_PROD])
(* v_and (Exact i' ThisCell) (Exact i NotClock) = Exact d2 ThisCellNotClock *)
>- (rw [FUN_EQ_THM] \\ Cases_on `e_clock (&n − i)` \\ rw []
\\ gvs [e_cell_def, e_clock_def] \\ reverse (Cases_on `0 ≤ i`)
>- (`22 ≤ &n - i` by ARITH_TAC
\\ `∃k. i = -&k ∧ ∃j. &n − i' = &j` by ARITH_TAC \\ gvs [INT_ADD]
\\ cong_tac 2 \\ ARITH_TAC)
\\ `(∃k. i = &k) ∧ ∃k'. i' = &k'` by ARITH_TAC \\ gvs [INT_SUB, INT_SUB_LE]
\\ `∀m:int. ^periodZ * m ≤ &n − &k ⇔ ^periodZ * m ≤ &n − &k'` by ARITH_TAC
\\ pop_assum (qspec_then `&(m:num)` (assume_tac o GEN ``m:num`` o SRULE []))
\\ first_assum (qspec_then `0` mp_tac) \\ simp [NoAsms] \\ rw []
\\ gvs [INT_SUB, INT_SUB_LE] \\ Cases_on `k' ≤ n` \\ gvs [INT_SUB, INT_SUB_LE]
\\ assume_tac (GSYM $ MATCH_MP X_LE_DIV (DECIDE ``0 < 586n``)) \\ gvs []
\\ cong_tac 2 \\ irule LESS_EQUAL_ANTISYM \\ simp []
\\ pop_assum $ K $ qpat_x_assum `$! _` (rw o single o GSYM))
QED
Theorem v_eval_v_and:
env_wf env ∧ v_eval env v1 a1 ∧ v_eval env v2 a2 ⇒
v_eval env (v_and v1 v2) (λz n. a1 z n ∧ a2 z n)
Proof
rw [v_eval_def] \\ metis_tac [v_eval'_v_and, env_wf_translate]
QED
Theorem v_eval'_v_or:
v_eval' env v1 a1 ∧ v_eval' env v2 a2 ⇒
v_eval' env (v_or v1 v2) (λn. a1 n ∨ a2 n)
Proof
gvs [oneline v_or_def] \\ rpt (CASE_TAC \\ rw []) \\ gvs [v_eval'_def]
(* v_or (Exact i ThisCellClock) (Exact i ThisCellNotClock) = Exact i ThisCell *)
>- (rw [FUN_EQ_THM] \\ Cases_on `e_clock (&n − i)` \\ rw [])
QED
Theorem v_eval_v_or:
v_eval env v1 a1 ∧ v_eval env v2 a2 ⇒
v_eval env (v_or v1 v2) (λz n. a1 z n ∨ a2 z n)
Proof
rw [v_eval_def] \\ metis_tac [v_eval'_v_or]
QED
Theorem LIST_REL_MAP2 = CONV_RULE (DEPTH_CONV ETA_CONV) LIST_REL_MAP2;
Theorem MAP2_MAP_LR:
MAP2 f (MAP g1 ls1) (MAP g2 ls2) = MAP2 (λx y. f (g1 x) (g2 y)) ls1 ls2
Proof
qspec_tac (`ls2`,`ls2`) \\ Induct_on `ls1` \\ Cases_on `ls2` \\ simp []
QED
Theorem MAP2_MAP_L = SRULE [] $
INST_TY_TERM ([``g2:γ->γ`` |-> ``I:γ->γ``], [``:ε`` |-> ``:γ``]) MAP2_MAP_LR;
Theorem MAP2_MAP_R = SRULE [] $
INST_TY_TERM ([``g1:β->β`` |-> ``I:β->β``], [``:δ`` |-> ``:β``]) MAP2_MAP_LR;
Theorem MAP2_self:
MAP2 f l l = MAP (λx. f x x) l
Proof
Induct_on `l` \\ simp []
QED
Theorem MAP_eq_MAP2_l:
LENGTH l1 = LENGTH l2 ⇒ MAP f l1 = MAP2 (λx _. f x) l1 l2
Proof
qspec_tac (`l2`,`l2`) \\ Induct_on `l1` \\ Cases_on `l2` \\ simp []
QED
Theorem MAP_eq_MAP2_r:
LENGTH l1 = LENGTH l2 ⇒ MAP f l2 = MAP2 (λ_. f) l1 l2
Proof
qspec_tac (`l2`,`l2`) \\ Induct_on `l1` \\ Cases_on `l2` \\ simp []
QED
Theorem MAP2_ZIP:
MAP2 f l1 l2 = MAP (UNCURRY f) (ZIP (l1, l2))
Proof
qspec_tac (`l2`,`l2`) \\ Induct_on `l1` \\ Cases_on `l2` \\ simp [ZIP_def]
QED
Theorem MAP_ZIP':
MAP f (ZIP (l1, l2)) = MAP2 (λx y. f (x, y)) l1 l2
Proof
simp [MAP2_ZIP] \\ cong_tac 2 \\ simp [FUN_EQ_THM, FORALL_PROD]
QED
Theorem MAP_MAP2:
MAP f (MAP2 g l1 l2) = MAP2 (λx y. f (g x y)) l1 l2
Proof
simp [MAP2_ZIP, MAP_COMPOSE] \\ cong_tac 2 \\ simp [FUN_EQ_THM, FORALL_PROD]
QED
Theorem MAP2_CONG_LIST_REL:
LIST_REL (λx y. f x y = g x y) l1 l2 ⇒ MAP2 f l1 l2 = MAP2 g l1 l2
Proof
qspec_tac (`l2`,`l2`) \\ Induct_on `l1` \\ Cases_on `l2` \\ simp []
QED
Definition mk_output_env_def:
mk_output_env env s (da,db) (ea,eb) z = λ(x,n).
delay' (var_CASE x da db, var_CASE x ea eb, env 0n z)
(EL (var_CASE x 0 1) s z) n
End
Theorem v_eval_mk_output_env:
admissible_ins ins = SOME (da,db') ∧
(∀x. db' = SOME x ⇒ x = db) ∧
classify da a = SOME ea ∧
classify db b = SOME eb ∧
env_wf env ∧
LIST_REL (λ(_,_,v). v_eval env (vb_eval ((da,a),db,b) v)) ins s ⇒
∀v. admissible_bexpr (da, db') v ⇒
v_eval env (vb_eval ((da,a),(db,b)) v)
(λz n. eval (age n (mk_output_env env s (da,db) (ea,eb) z)) v)
Proof
strip_tac \\ Induct \\ rw [admissible_bexpr_def]
>- (
`v_eval env a (HD s) ∧
(db' = SOME db ⇒ v_eval env b (EL 1 s))` by (
MAP_EVERY (C qpat_x_assum mp_tac) [`LIST_REL _ _ _`, `admissible_ins _ = _`]
\\ fs [oneline admissible_ins_def] \\ rpt CASE_TAC \\ rw [] \\ fs [])
\\ Cases_on `v`
\\ fs [oneline admissible_bexpr_def, mk_output_env_def]
THENL [ALL_TAC, Cases_on `db'` \\ gvs []]
\\ irule v_eval_v_delay' \\ simp [])
>- (HO_BACKCHAIN_TAC v_eval_v_not \\ rw [])
>- (HO_BACKCHAIN_TAC v_eval_v_and \\ rw [])
>- (HO_BACKCHAIN_TAC v_eval_v_or \\ rw [])
QED
Theorem blist_simulation_ok_gate_ports_wf:
blist_simulation_ok w h ins outs init ⇒
gate_ports_wf w h (set (MAP (λ(p,d,_). (p,d)) ins)) (set (MAP (λ(p,d,_). (p,d)) outs))
Proof
rewrite_tac [blist_simulation_ok_def]
\\ disch_then (mp_tac o CONJUNCT1)
\\ simp [blist_simple_checks_def, EVERY_MEM, gate_ports_wf_def, MEM_MAP, PULL_EXISTS,
Q.INST_TYPE [`:α` |-> `:γ#δ`] EXISTS_PROD,
Q.INST_TYPE [`:α` |-> `:dir`] EXISTS_PROD]
\\ ntac 6 strip_tac \\ first_x_assum drule \\ simp []
QED
Theorem blist_simulation_ok_gate_wf:
blist_simulation_ok w h ins outs init ∧ w < ^tileN ∧ h < ^tileN ⇒
gate_wf (gate w h (instantiate ee init))
Proof
strip_tac \\ simp [gate_wf_def]
\\ qpat_x_assum `_ init` mp_tac \\ rewrite_tac [blist_simulation_ok_def]
\\ disch_then (mp_tac o CONJUNCT1) \\ rewrite_tac [blist_simple_checks_def]
\\ simp [rectangle_def, instantiate_def, EVERY_MEM, MEM_MAP, PULL_EXISTS]
\\ rw [] \\ first_x_assum $ dxrule_then (rw o single o SYM)
\\ POP_ASSUM_LIST kall_tac
\\ Induct_on `y'`
\\ simp [blist_length_def, instantiate_row_def, from_blist_def]
QED
Theorem blist_simulation_ok_imp_circuit':
blist_simulation_ok w h ins outs init ∧
admissible_ins ins = SOME (da, db') ∧
LIST_REL (λ(_,_,v). v_eval env (vb_eval ((da,a),db,b) v)) ins sin ∧
(∀x. db' = SOME x ⇒ x = db) ⇒
circuit (make_area w h)
(MAP2 (λ(p,d,_) v. (p,d,v z)) ins sin)
(MAP (λ(p,d,v). (p,d, λn.
eval (age n (mk_output_env env sin (da,db) (ea,eb) z)) v)) outs)
(from_init (env 0 z) (instantiate (ea,eb) init))
Proof
strip_tac
\\ qmatch_goalsub_abbrev_tac `age _ env2`
\\ drule_then (qspec_then `env2` suff_eq_tac) blist_simulation_ok_IMP_circuit
\\ cong_tac 1 >>> HEADGOAL (cong_tac 1)
>- (
fs [eval_io_def]
\\ MAP_EVERY (C qpat_x_assum mp_tac) [`LIST_REL _ ins _`, `admissible_ins _ = _`]
\\ fs [oneline admissible_ins_def] \\ rpt CASE_TAC
\\ rw [] \\ rw [] \\ pairarg_tac \\ rw []
\\ gvs [FUN_EQ_THM, Abbr`env2`, delay'_def, mk_output_env_def])
>- (
fs [eval_io_def, MAP2_self] \\ cong_tac 2
\\ simp [FUN_EQ_THM, FORALL_PROD])
\\ simp [Abbr`env2`, mk_output_env_def]
\\ qmatch_goalsub_abbrev_tac `eval env3`
\\ rw [MAP_COMPOSE, from_init_def, instantiate_def] \\ cong_tac 1
\\ irule MAP_CONG \\ rw []
\\ last_x_assum mp_tac \\ rewrite_tac [blist_simulation_ok_def]
\\ disch_then (mp_tac o CONJUNCT1 o CONJUNCT2) \\ simp [EVERY_MEM]
\\ disch_then (dxrule o CONJUNCT2)
\\ `∀v. admissible_bexpr (da,db') v ⇒
eval (λ_. env 0 z) (subst (instantiate_var (ea,eb)) v) =
eval env3 v` suffices_by (
Induct_on `x` \\ simp [admissible_row_def, instantiate_row_def, from_blist_def])
\\ Induct \\ simp [admissible_bexpr_def, instantiate_var_def,
subst_def, eval_build_Not, eval_build_If]
\\ Cases \\ simp [admissible_bexpr_def, instantiate_var_def,
Abbr`env3`, delay'_def]
\\ Cases_on `db'` \\ rw []
QED
Theorem blist_simulation_ok_imp_gate:
blist_simulation_ok w h ins outs init ∧
admissible_ins ins = SOME (da, db') ∧
(∀x. db' = SOME x ⇒ x = db) ∧
w < ^tileN ∧ h < ^tileN ∧
classify da a = SOME ea ∧
classify db b = SOME eb ⇒
is_gate (gate w h (instantiate (ea, eb) init))
(MAP (λ(p,d,v). ((p,d),vb_eval ((da,a),(db,b)) v)) ins)
(MAP (λ(p,d,v). ((p,d),vb_eval ((da,a),(db,b)) v)) outs)
Proof
rw [is_gate_def, LIST_REL_MAP1, LIST_REL_MAP2]
>- (drule_then irule blist_simulation_ok_gate_wf \\ rw [])
>- (drule blist_simulation_ok_gate_ports_wf
\\ simp [MAP_COMPOSE]
\\ disch_then suff_eq_tac \\ cong_tac 4
\\ simp [FUN_EQ_THM, FORALL_PROD])
\\ qpat_abbrev_tac `f = λ(p,d,v). ((p,d),vb_eval ((da,a),(db,b)) v)`
\\ qabbrev_tac `s1 = λv z n. eval (age n (mk_output_env env s (da,db) (ea,eb) z)) v`
\\ qexists_tac `MAP (λ(_,_,v). s1 v) outs` \\ rw [LIST_REL_MAP2]
>- (
irule EVERY2_refl \\ simp [FORALL_PROD, Abbr`f`, Abbr`s1`] \\ rw []
\\ irule v_eval_mk_output_env \\ rpt $ first_assum $ irule_at Any
\\ conj_tac >- first_assum ACCEPT_TAC
\\ reverse conj_tac >- (
qpat_x_assum `_ s` suff_eq_tac \\ cong_tac 3
\\ simp [FUN_EQ_THM, FORALL_PROD])
\\ last_x_assum mp_tac \\ rewrite_tac [blist_simulation_ok_def]
\\ disch_then (mp_tac o CONJUNCT1 o CONJUNCT2) \\ simp [EVERY_MEM]
\\ disch_then (drule o CONJUNCT1) \\ simp [])
\\ drule_then (drule_at_then Any $ drule_then $
qspecl_then [`z`,`s`,`env`,`eb`,`ea`,`b`,`a`] mp_tac o SRULE [])
blist_simulation_ok_imp_circuit'
\\ impl_tac >- (
qpat_x_assum `_ s` suff_eq_tac \\ cong_tac 3
\\ simp [Abbr`f`, FUN_EQ_THM, FORALL_PROD])
\\ simp [Abbr`f`, MAP2_MAP_L, MAP2_MAP_R, MAP2_self]
\\ disch_then suff_eq_tac \\ cong_tac 4 >>> HEADGOAL (cong_tac 1)
\\ simp [FUN_EQ_THM, FORALL_PROD]
QED
Theorem blist_simulation_ok_imp_gate_1:
blist_simulation_ok w h [(p1,d1,Var A da)] outs init ⇒
w < ^tileN ∧ h < ^tileN ⇒
classify da a = SOME ea ⇒
is_gate (gate w h (instantiate (ea, ea) init))
[((p1,d1),a)]
(MAP (λ(p,d,v). ((p,d),vb_eval ((da,a),(da,a)) v)) outs)
Proof
rpt strip_tac
\\ dxrule_then (drule_at_then Any $ dxrule_at_then Any $
qspec_then `NONE` (irule o SRULE [])) blist_simulation_ok_imp_gate
\\ simp [admissible_ins_def]
QED
Theorem blist_simulation_ok_imp_gate_2:
blist_simulation_ok w h [(p1,d1,Var A da); (p2,d2,Var B db)] outs init ⇒
w < ^tileN ∧ h < ^tileN ⇒
classify da a = SOME ea ∧
classify db b = SOME eb ⇒
is_gate (gate w h (instantiate (ea, eb) init))
[((p1,d1),a); ((p2,d2),b)]
(MAP (λ(p,d,v). ((p,d),vb_eval ((da,a),(db,b)) v)) outs)
Proof
rpt strip_tac
\\ dxrule_then (dxrule_at_then (Pos (el 6)) $ dxrule_at_then Any $
qspec_then `SOME db` (irule o SRULE [])) blist_simulation_ok_imp_gate
\\ simp [admissible_ins_def]
QED
Theorem gate_weaken:
LIST_REL (λ(pd,v) (pd',v'). pd = pd' ∧ v ⊑ v') outs outs' ∧
is_gate g ins outs ⇒ is_gate g ins outs'
Proof
simp [is_gate_def] \\ strip_tac
\\ `MAP FST outs = MAP FST outs'` by (
CONV_TAC $ PATH_CONV "ll" $ REWR_CONV $ SYM LIST_REL_eq
\\ simp [EVERY2_MAP] \\ drule_at_then Any irule EVERY2_mono
\\ simp [FORALL_PROD])
\\ fs [] \\ rpt strip_tac
\\ last_x_assum (dxrule_then dxrule) \\ strip_tac
\\ qexists_tac `s'` \\ conj_tac
>- (
last_x_assum (fn h1 => qpat_x_assum `_ s'` (fn h2 =>
mp_tac (CONJ (MATCH_MP EVERY2_sym_fwd h1) h2)))
\\ prim_irule $ SPEC_ALL $ UNDISCH EVERY2_trans'
\\ simp [FORALL_PROD, v_subset_def])
\\ pop_assum suff_eqr_tac \\ cong_tac 4
\\ `MAP2 (λ(p,d) v. (p,d,v z)) (MAP FST outs) s' =
MAP2 (λ(p,d) v. (p,d,v z)) (MAP FST outs') s'` by simp []
\\ pop_assum suff_eq_tac \\ cong_tac 1 \\ simp [MAP2_MAP_L]
\\ cong_tac 3 \\ simp [FUN_EQ_THM, FORALL_PROD]
QED
Theorem half_adder_weaken:
(p ⇒ is_gate g ins [(pd,v_or
(v_and (v_delay 15 a) (v_or (v_and (v_delay 12 a) (v_not (v_delay 18 b)))
(v_and (v_not (v_delay 12 a)) (v_and (v_delay 15 b) (v_not (v_delay 18 b))))))
(v_and (v_not (v_delay 15 a)) (v_or (v_delay 12 a) (v_delay 15 b)))); out]) ⇒
p ⇒ is_gate g ins [(pd,v_xor (v_delay 15 a) (v_delay 18 b));out]
Proof
rpt strip_tac \\ first_x_assum dxrule
\\ strip_tac \\ dxrule_at_then Any irule gate_weaken
\\ PairCases_on `out` \\ simp []
\\ Cases_on `a` \\ simp [] \\ Cases_on `b` \\ simp []
\\ irule Reg_mono \\ simp [] \\ metis_tac []
QED
Definition to_tiling_def:
to_tiling st env0 =
iunion (λz:int#int.
translate_set (mul_pt (75 * ^tile2Z) z)
(st (z ∈ env0)))
End
Definition union_gates_def:
union_gates (gates: ((int # int) # gate) list) b =
U (set (MAP (λ(p,g).
translate_set (mul_pt 75 p) (from_init b g.init)) gates))
End
Definition in_range_def:
in_range (x,y) ⇔
(x % 2 = 0 ∧ 0 ≤ x ∧ x < ^tile2Z) ∧
(y % 2 = 0 ∧ 0 ≤ y ∧ y < ^tile2Z)
End
Theorem in_range_unique:
in_range (mk_pt a z) ∧ in_range (mk_pt a z') ⇒ z = z'
Proof
MAP_EVERY PairCases_on [`a`,`z`,`z'`]
\\ simp [in_range_def, mk_pt_def] \\ ARITH_TAC
QED
Definition gate_at_wf_def:
gate_at_wf area (p, g) ⇔ gate_wf g ∧
∀x. MEM x (make_area g.width g.height) ⇒ MEM (add_pt p x) area
End
Theorem every_gate_at_wf_mono:
set l1 ⊆ set l2 ⇒
EVERY (gate_at_wf l1) init ⇒ EVERY (gate_at_wf l2) init
Proof
rw [EVERY_MEM] \\ first_x_assum dxrule
\\ Cases_on `e` \\ fs [gate_at_wf_def, SUBSET_DEF]
QED
Theorem gate_at_wf_bounded:
gate_at_wf area ((q0,q1),g) ∧ EVERY in_range area ⇒
∃r0 r1. q0 = 2*r0 ∧ q1 = 2*r1 ∧ 0 ≤ r0 ∧ 0 ≤ r1 ∧
r0 + &g.width ≤ ^tileZ ∧ r1 + &g.height ≤ ^tileZ
Proof
rw [gate_at_wf_def, gate_wf_def, EVERY_MEM, FORALL_PROD]
\\ `MEM (0,0) (make_area g.width g.height) ∧
MEM (2 * &g.width - 2,2 * &g.height - 2) (make_area g.width g.height)` by
(simp [make_area_def, MEM_FLAT, MEM_GENLIST, PULL_EXISTS] \\ ARITH_TAC)
\\ res_tac \\ res_tac \\ fs [in_range_def] \\ ARITH_TAC
QED
Theorem add_sub_pt_assoc =
SRULE [] $ Q.INST [`c` |-> `neg_pt c`] add_pt_assoc;
Theorem add_pt_left_comm:
add_pt a (add_pt b c) = add_pt b (add_pt a c)
Proof
pt_arith_tac
QED
Theorem add_pt_right_comm:
add_pt (add_pt a b) c = add_pt (add_pt a c) b
Proof
pt_arith_tac
QED
Theorem sub_add_pt_comm:
sub_pt (add_pt a b) c = add_pt (sub_pt a c) b
Proof
pt_arith_tac
QED
Theorem add_sub_pt_comm:
add_pt a (sub_pt b c) = sub_pt (add_pt a b) c
Proof
pt_arith_tac
QED
Theorem sub_mk_pt_assoc:
sub_pt (mk_pt a z) b = mk_pt (sub_pt a b) z
Proof
pt_arith_tac
QED
Theorem mk_mk_pt_assoc:
mk_pt (mk_pt a z) z' = mk_pt a (add_pt z z')
Proof
pt_arith_tac
QED
Theorem neg_pt_inj[simp]:
neg_pt a = neg_pt b ⇔ a = b
Proof
pt_arith_tac
QED
Theorem sub_mk_pt_eq_add_neg:
sub_pt a (mk_pt b z) = mk_pt (sub_pt a b) (neg_pt z)
Proof
pt_arith_tac
QED
Theorem add_mk_pt_assoc_l:
add_pt (mk_pt a z) b = mk_pt (add_pt a b) z
Proof
pt_arith_tac
QED
Theorem add_mk_pt_assoc_r:
add_pt a (mk_pt b z) = mk_pt (add_pt a b) z
Proof
pt_arith_tac
QED
Theorem sub_pt_right_comm:
sub_pt (sub_pt a b) c = sub_pt (sub_pt a c) b
Proof
pt_arith_tac
QED
Theorem ALL_DISTINCT_MAP_of_MAP:
ALL_DISTINCT (MAP f ls) ∧
(∀x y. MEM x ls ∧ MEM y ls ∧ g x = g y ⇒ f x = f y) ⇒
ALL_DISTINCT (MAP g ls)
Proof
Induct_on `ls` \\ rw [MAP, ALL_DISTINCT, MEM_MAP, SF DNF_ss] \\ metis_tac []
QED
Definition floodfill_io_wf_def:
floodfill_io_wf area ins outs ⇔
(∀a d v z. ((a,d),v) ∈ ins ∧
MEM (sub_pt (mk_pt a z) (dir_to_xy d)) area ⇒
∃z'. ((mk_pt a z',d),λi. v (add_pt i z')) ∈ outs) ∧
(∀a d v z. ((a,d),v) ∈ outs ∧
MEM (add_pt (mk_pt a z) (dir_to_xy d)) area ⇒
∃z'. ((mk_pt a z',d),λi. v (add_pt i z')) ∈ ins)
End
Definition floodfill_run_def:
floodfill_run (area: (int # int) list) (init: state)
(ins: (((int # int) # dir) # (int # int -> num -> bool)) list)
(outs: (((int # int) # dir) # (int # int -> num -> bool)) list) ⇔
EVERY in_range area ∧
(∀a d v. MEM ((a,d),v) ins ⇒ MEM (add_pt a (dir_to_xy d)) area) ∧
(∀a d v. MEM ((a,d),v) outs ⇒ ∃z. MEM (mk_pt (sub_pt a (dir_to_xy d)) z) area) ∧
ALL_DISTINCT (MAP (λ((a,d),v). span {(a,d)}) ins) ∧
ALL_DISTINCT (MAP (λ((a,d),v). span {(a,d)}) outs) ∧
(floodfill_io_wf area (set ins) (set outs) ⇒
circuit_run
(iunion (λz. set (MAP (λp. mk_pt p z) area)))
(iunion (λz. set (MAP (λ((p,d),v). (mk_pt p z, d, v z)) ins)))
(iunion (λz. set (MAP (λ((p,d),v). (mk_pt p z, d, v z)) outs)))
init)
End
Definition floodfill_gate_wf_def:
floodfill_gate_wf g ins1 outs1 init ⇔
g.width < ^tileN ∧ g.height < ^tileN ∧
gate_ports_wf g.width g.height (set (MAP FST ins1)) (set (MAP FST outs1)) ∧
(∀z. circuit (make_area g.width g.height)
(MAP (λ((a,d),v). (a,d,v z)) ins1)
(MAP (λ((a,d),v). (a,d,v z)) outs1)
(from_init (init z) g.init))
End
Theorem floodfill_run_add_gate:
∀ins1 outs1 ins outs init.
floodfill_gate_wf g ins1 outs1 init ∧
(∃x y. p = (&(2*x),&(2*y)) ∧ x + g.width ≤ ^tileN ∧ y + g.height ≤ ^tileN) ∧
EVERY (λa. ¬MEM (add_pt p a) area) (make_area g.width g.height) ∧
floodfill_run area (to_tiling (union_gates gates) init) ins outs
⇒
floodfill_run (MAP (add_pt p) (make_area g.width g.height) ⧺ area)
(to_tiling (union_gates ((p,g)::gates)) init)
(MAP (λ((a,d),v). ((add_pt p a,d),v)) ins1 ++ ins)
(MAP (λ((a,d),v). ((add_pt p a,d),v)) outs1 ++ outs)
Proof
simp [floodfill_run_def, floodfill_gate_wf_def, gate_ports_wf_def, circuit_def]
\\ rpt gen_tac \\ strip_tac
\\ gvs [] \\ qabbrev_tac `p = (&(2*x):int,&(2*y):int)`
\\ pop_assum (fn h => POP_ASSUM_LIST (fn hs => MAP_EVERY assume_tac (h::rev hs)))
\\ `∀a. MEM a (make_area g.width g.height) ⇒ in_range (add_pt p a)` by (
simp [Abbr`p`, FORALL_PROD, make_area_def, MEM_FLAT, MEM_GENLIST,
PULL_EXISTS, in_range_def] \\ ARITH_TAC)
\\ qabbrev_tac `s = make_area g.width g.height`
\\ fs [EVERY_MEM, MEM_MAP, PULL_EXISTS, DISJ_IMP_THM, IMP_CONJ_THM, FORALL_AND_THM,
Q.INST_TYPE [`:α` |-> `:γ#δ`] EXISTS_PROD]
\\ `∀a z z'. MEM (mk_pt a z) s ⇒ ¬MEM (mk_pt (add_pt p a) z') area` by (
rpt strip_tac \\ res_tac
\\ `add_pt p (mk_pt a z) = mk_pt (add_pt p a) z` by pt_arith_tac
\\ pop_assum (fs o single)
\\ dxrule_then drule in_range_unique \\ strip_tac \\ gvs [])
\\ rw []
>- metis_tac [add_pt_assoc]
>- metis_tac [add_pt_assoc]
>- metis_tac [add_sub_pt_comm, mk_pt_0]
>- metis_tac [add_sub_pt_comm]
>- (
fs [ALL_DISTINCT_APPEND, MAP_COMPOSE]
\\ reverse conj_tac >- (
simp [MEM_MAP, PULL_EXISTS, Q.INST_TYPE [`:α` |-> `:γ#δ`] FORALL_PROD,
span_sn_eq_span_sn]
\\ rpt strip_tac \\ res_tac \\ res_tac
\\ fs [add_pt_assoc, add_mk_pt_assoc_l]
\\ `z = (0,0)` by metis_tac [in_range_unique, mk_pt_0]
\\ gvs [])
\\ first_x_assum $ qspec_then `(0,0)` $ mp_then (Pos hd) irule ALL_DISTINCT_MAP_of_MAP
\\ simp [Q.INST_TYPE [`:α` |-> `:γ#δ`] FORALL_PROD, span_sn_eq_span_sn] \\ rw []
\\ ntac 2 $ last_assum dxrule \\ pop_assum mp_tac
\\ MAP_EVERY PairCases_on [`p_1'`,`p_1`,`z`]