@@ -984,7 +984,7 @@ Proof
984
984
\\ gs [result_map_def, CaseEq " bool" , MEM_MAP]
985
985
\\ gs [Once (DECIDE “A ⇒ ¬B ⇔ B ⇒ ¬A”)]
986
986
\\ gvs [MEM_EL, PULL_EXISTS]
987
- \\ first_x_assum (drule_all_then assume_tac)
987
+ \\ last_x_assum $ drule_then assume_tac
988
988
\\ first_x_assum (drule_then drule)
989
989
\\ disch_then (qx_choose_then ‘j’ assume_tac)
990
990
\\ qexists_tac ‘j’
@@ -998,7 +998,7 @@ Proof
998
998
\\ gvs [result_map_def, CaseEq " bool" , MEM_MAP, Abbr ‘g’, MEM_EL]
999
999
\\ rename1 ‘eval_to k (EL m ys) = INL Type_error’
1000
1000
\\ ntac 2 (pop_assum kall_tac)
1001
- \\ first_x_assum (drule_all_then assume_tac)
1001
+ \\ last_x_assum $ drule_then assume_tac
1002
1002
\\ first_x_assum
1003
1003
(drule_then (drule_then (qx_choose_then ‘j’ assume_tac)))
1004
1004
\\ gs [Abbr ‘f’]
@@ -1197,13 +1197,13 @@ Proof
1197
1197
\\ rename1 ‘m < LENGTH ys’
1198
1198
\\ Cases_on ‘eval_to (k - 1 ) (EL m ys)’ \\ gvs []
1199
1199
>- (
1200
- first_x_assum (drule_all_then assume_tac)
1200
+ last_x_assum $ drule_then assume_tac
1201
1201
\\ first_x_assum (drule_all_then (qx_choose_then ‘j’ assume_tac))
1202
1202
\\ gs [Abbr ‘f’]
1203
1203
\\ first_x_assum (drule_then assume_tac)
1204
1204
\\ Cases_on ‘eval_to (j + k - 1 ) (EL m xs)’ \\ gs [])
1205
1205
\\ fs [DECIDE “A ⇒ ¬B ⇔ B ⇒ ¬A”]
1206
- \\ first_x_assum (drule_all_then assume_tac)
1206
+ \\ last_x_assum $ drule_then assume_tac
1207
1207
\\ first_x_assum (drule_all_then (qx_choose_then ‘j’ assume_tac))
1208
1208
\\ gs [Abbr ‘f’]
1209
1209
\\ first_x_assum (drule_then assume_tac)
0 commit comments