From 2b5e5e92120603ac0f47b69bf498af84cb8fcac1 Mon Sep 17 00:00:00 2001 From: Aditya Gahlot Date: Sat, 10 Aug 2024 20:25:05 +1000 Subject: [PATCH 1/5] Add Jupyter Notebook for sentiment analysis of EV news articles --- Sentiment_Analysis.ipynb | 1000 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 1000 insertions(+) create mode 100644 Sentiment_Analysis.ipynb diff --git a/Sentiment_Analysis.ipynb b/Sentiment_Analysis.ipynb new file mode 100644 index 0000000..e919145 --- /dev/null +++ b/Sentiment_Analysis.ipynb @@ -0,0 +1,1000 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "a2a1d701-1644-4a79-a16a-d5196eacb4e1", + "metadata": {}, + "source": [ + "# EV News Articles Sentiment Analysis\n", + "Performing news article sentiment analysis of EV vehicles in Australia involves several steps, from data collection to sentiment analysis and visualization. Although the sentiments of people vary across various regions in Australia, I have presented a broad analysis of the Electric Vehicle industry through four online articles. The articles for this project were taken from the following links:\n", + "\n", + "1. https://thedriven.io/2024/02/23/most-australians-think-there-are-too-few-public-charging-stations-to-support-evs/\n", + "2. https://www.ey.com/en_au/sustainability/why-consumers-are-charging-toward-electric-vehicles\n", + "3. https://www.sydney.edu.au/news-opinion/news/2024/04/10/evs-face-future-challenges-despite-increasing-uptake-.html\n", + "4. https://www.carexpert.com.au/car-news/evs-in-australia-report-outlines-sales-and-improving-consumer-sentiment" + ] + }, + { + "cell_type": "markdown", + "id": "ac0279aa-b72c-4ccc-8808-9664ad081343", + "metadata": {}, + "source": [ + "# Procedure\n", + "Performing news article sentiment analysis of EV vehicles in Australia involves several steps, from data collection to sentiment analysis and visualization. These steps are summarized further.\n", + "## Step 1: Data Collection\n", + "After gathering the news articles for EVs, I used the technique of **web scraping** to extract meaningful information from the articles like the title, the publication date of the article and its broad content. For this purpose, I used web scraping tools like BeautifulSoup which is imported in the first cell along with other important libraries. After that, I have initialized all the URLs as an array." + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "id": "aea29846-81dc-468e-ac46-c98193afc97a", + "metadata": {}, + "outputs": [], + "source": [ + "import requests\n", + "from bs4 import BeautifulSoup\n", + "import pandas as pd\n", + "import time\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "id": "57681cd9-a557-4283-a734-cf346329ee34", + "metadata": {}, + "outputs": [], + "source": [ + "# List of article URLs\n", + "urls = [\n", + " 'https://thedriven.io/2024/02/23/most-australians-think-there-are-too-few-public-charging-stations-to-support-evs/',\n", + " 'https://www.ey.com/en_au/sustainability/why-consumers-are-charging-toward-electric-vehicles',\n", + " 'https://www.sydney.edu.au/news-opinion/news/2024/04/10/evs-face-future-challenges-despite-increasing-uptake-.html',\n", + " 'https://www.carexpert.com.au/car-news/evs-in-australia-report-outlines-sales-and-improving-consumer-sentiment',\n", + " \n", + "]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "id": "ac8f969b-2142-4494-889b-4e8bfd13caf8", + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize a list to store article data\n", + "articles_data = []\n" + ] + }, + { + "cell_type": "markdown", + "id": "fff14daf-1cb0-4e21-a0f1-175818fd1ec4", + "metadata": {}, + "source": [ + "## Step 2: Scraping an Article with Improved Selectors\n", + "After initializing an empty list to store article data named **articles_data**, I have defined a function **scrape_article** to fetch and parse a single article. It returns the details of an article, including its title, author, publication date, and content. Within the function, **headers** represents a dictionary with the User-Agent header. This helps to mimic a request from a web browser, which can be useful to avoid blocks from some websites that restrict automated scraping. Then an HTTP GET request was sent to the specified URL with the custom headers.\n", + "\n", + "The **BeautifulSoup (response.content, 'html.parser')** function parses the HTML content of the web page, creating a BeautifulSoup object for further extraction.I manually checked the structure of the HTML for each website to determine the correct selectors. This step required viewing the source code of each of the webpages." + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "id": "6320942d-9d3e-4299-aa52-af8866ccafe2", + "metadata": {}, + "outputs": [], + "source": [ + "def scrape_article(url):\n", + " headers = {\n", + " 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'\n", + " }\n", + " \n", + " try:\n", + " # Fetch the web page\n", + " response = requests.get(url, headers=headers)\n", + " response.raise_for_status() # Raise HTTPError for bad responses\n", + "\n", + " # Parse the HTML content\n", + " soup = BeautifulSoup(response.content, 'html.parser')\n", + "\n", + " # Initialize variables\n", + " title = 'No title found'\n", + " author = 'No author found'\n", + " publication_date = 'No date found'\n", + " content = 'No content found'\n", + "\n", + " # Check URL and set selectors accordingly\n", + " if 'thedriven.io' in url:\n", + " title = soup.find('h1').get_text(strip=True) if soup.find('h1') else 'No title found'\n", + " author_tag = soup.find('a', class_='url fn n')\n", + " author = author_tag.get_text(strip=True) if author_tag else 'No author found'\n", + " date_tag = soup.find('a', rel='bookmark')\n", + " publication_date = date_tag.get_text(strip=True) if date_tag else 'No date found'\n", + " content = ' '.join([p.get_text(strip=True) for p in soup.find_all('p')])\n", + "\n", + " elif 'ey.com' in url:\n", + " title = soup.find('h1').get_text(strip=True) if soup.find('h1') else 'No title found'\n", + " authors = [a.get_text(strip=True) for a in soup.find_all('a', class_='surfaceProfile-author-link')]\n", + " author = ', '.join(authors) if authors else 'No author found'\n", + " date_tag = soup.select_one('#container4 > div > div:nth-child(2) > div > div > span:nth-child(2)')\n", + " publication_date = date_tag.get_text(strip=True) if date_tag else 'No date found'\n", + " content = ' '.join([p.get_text(strip=True) for p in soup.find_all('p')])\n", + "\n", + " elif 'sydney.edu.au' in url:\n", + " title = soup.find('h1').get_text(strip=True) if soup.find('h1') else 'No title found'\n", + " author_tag = soup.find('h3', class_='b-contact-information__title')\n", + " author = author_tag.get_text(strip=True) if author_tag else 'No author found'\n", + " date_tag = soup.find('span')\n", + " publication_date = date_tag.get_text(strip=True) if date_tag else 'No date found'\n", + " content = ' '.join([p.get_text(strip=True) for p in soup.find_all('p')])\n", + "\n", + " elif 'carexpert.com.au' in url:\n", + " title = soup.find('h1').get_text(strip=True) if soup.find('h1') else 'No title found'\n", + " author_tag = soup.find('div', class_='gubuy9f')\n", + " author = author_tag.get_text(strip=True) if author_tag else 'No author found'\n", + " date_tag = soup.find('time')\n", + " publication_date = date_tag.get_text(strip=True) if date_tag else 'No date found'\n", + " content = ' '.join([p.get_text(strip=True) for p in soup.find_all('p')])\n", + "\n", + " # Store the data\n", + " article_data = {\n", + " 'title': title,\n", + " 'author': author,\n", + " 'publication_date': publication_date,\n", + " 'content': content\n", + " }\n", + "\n", + " # Print success message\n", + " print(f'Successfully scraped {url}')\n", + " \n", + " return article_data\n", + " \n", + " except Exception as e:\n", + " # Handle errors (e.g., missing elements, request errors)\n", + " print(f'Error fetching {url}: {e}')\n", + " return None\n" + ] + }, + { + "cell_type": "markdown", + "id": "d5d6a6e7-1f9d-4f92-8080-a56787f32bd5", + "metadata": {}, + "source": [ + "The below code iterates over a list of URLs, scraping article data from each URL using the **scrape_article** function, and then appends the collected data to a list. It also includes an optional delay of 2 seconds between requests to avoid overloading the server.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "id": "e5bb5795-ee78-4fd2-b8cd-a254e46e7460", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Successfully scraped https://thedriven.io/2024/02/23/most-australians-think-there-are-too-few-public-charging-stations-to-support-evs/\n", + "Successfully scraped https://www.ey.com/en_au/sustainability/why-consumers-are-charging-toward-electric-vehicles\n", + "Successfully scraped https://www.sydney.edu.au/news-opinion/news/2024/04/10/evs-face-future-challenges-despite-increasing-uptake-.html\n", + "Successfully scraped https://www.carexpert.com.au/car-news/evs-in-australia-report-outlines-sales-and-improving-consumer-sentiment\n" + ] + } + ], + "source": [ + "for url in urls:\n", + " article_data = scrape_article(url)\n", + " if article_data:\n", + " articles_data.append(article_data)\n", + " \n", + " # Optional: Delay between requests to avoid overwhelming the server\n", + " time.sleep(2)\n" + ] + }, + { + "cell_type": "markdown", + "id": "3645339f-324d-4832-b072-9be6162c9ff3", + "metadata": {}, + "source": [ + "In the below cell, I have stored the collected articles in a structured format such as CSV or JSON for further processing. It creates a DataFrame from a list of article data, saves it as a CSV file named **ev_articles.csv**, and displays the DataFrame for review. The **pd.Dataframe()** function creates a DataFrame named **articles_df** from the list of dictionaries **articles_data**. Each dictionary in the list represents a row in the DataFrame, with dictionary keys becoming column names." + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "id": "c6c2e563-874b-43c6-ad78-f8f7bc81bff8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
titleauthorpublication_datecontent
0Most Australians think there are too few publi...Jennifer Dudley-NicholsonFebruary 23, 2024Most Australians think the nation has too few ...
1Why Australian consumers are charging toward e...Neal Johnston, Glenn Maris, Damien Smith, Neal...27 Jul. 2022The CEO Imperative: Is your strategy set for t...
2EVs face future challenges despite increasing ...Harrison Vesey10 April 2024Professor David Hensher One in three Australia...
3EVs in Australia: Report outlines sales, and i...Mike Costello19 August 2020, 1:56pmGuest User Australia's electric-vehicle penetr...
\n", + "
" + ], + "text/plain": [ + " title \\\n", + "0 Most Australians think there are too few publi... \n", + "1 Why Australian consumers are charging toward e... \n", + "2 EVs face future challenges despite increasing ... \n", + "3 EVs in Australia: Report outlines sales, and i... \n", + "\n", + " author publication_date \\\n", + "0 Jennifer Dudley-Nicholson February 23, 2024 \n", + "1 Neal Johnston, Glenn Maris, Damien Smith, Neal... 27 Jul. 2022 \n", + "2 Harrison Vesey 10 April 2024 \n", + "3 Mike Costello 19 August 2020, 1:56pm \n", + "\n", + " content \n", + "0 Most Australians think the nation has too few ... \n", + "1 The CEO Imperative: Is your strategy set for t... \n", + "2 Professor David Hensher One in three Australia... \n", + "3 Guest User Australia's electric-vehicle penetr... " + ] + }, + "execution_count": 85, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Convert the articles data to a DataFrame\n", + "articles_df = pd.DataFrame(articles_data)\n", + "\n", + "# Save the DataFrame to a CSV file\n", + "articles_df.to_csv('ev_articles.csv', index=False)\n", + "\n", + "# Display the DataFrame\n", + "articles_df\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "b8532a3e-860a-4d5c-a594-b5528e60757d", + "metadata": {}, + "source": [ + "## Step 3: Data Preprocessing\n", + "To perform data preprocessing for each article, we need to clean and structure the data appropriately. This typically involves removing unwanted characters or HTML tags. Then we need to normalize text by converting it to lowercase, removing extra whitespace, and handling punctuation. After that, we need to break the text into tokens (words). All this is carried out in the further cells. " + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "id": "fcb4e4c7-f9ce-41c2-8f4e-b1166dcd13f5", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[nltk_data] Downloading package punkt to\n", + "[nltk_data] C:\\Users\\user\\AppData\\Roaming\\nltk_data...\n", + "[nltk_data] Package punkt is already up-to-date!\n", + "[nltk_data] Downloading package stopwords to\n", + "[nltk_data] C:\\Users\\user\\AppData\\Roaming\\nltk_data...\n", + "[nltk_data] Package stopwords is already up-to-date!\n", + "[nltk_data] Downloading package wordnet to\n", + "[nltk_data] C:\\Users\\user\\AppData\\Roaming\\nltk_data...\n", + "[nltk_data] Package wordnet is already up-to-date!\n" + ] + }, + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import re\n", + "import nltk\n", + "from nltk.corpus import stopwords\n", + "from nltk.stem import PorterStemmer, WordNetLemmatizer\n", + "from nltk.tokenize import word_tokenize\n", + "\n", + "# Download necessary NLTK data files\n", + "nltk.download('punkt')\n", + "nltk.download('stopwords')\n", + "nltk.download('wordnet')\n" + ] + }, + { + "cell_type": "markdown", + "id": "0b8887af-b132-4188-9dea-b1f4cd0687aa", + "metadata": {}, + "source": [ + "The **clean_text()** function removes unwanted characters and HTML tags from the text. It uses a regular expression to remove anything that looks like HTML tags. It is also used to remove special characters and numbers since we don' require them for sentiment analysis. It returns a cleaned version of the text with HTML tags, special characters, and extra whitespace removed. \n", + "\n", + "The **normalize_text()** function normalizes the text by converting it to lowercase and removing extra spaces. First, it converts all characters in the text to lowercase. Then it splits the text into words and then joins them back together with a single space between each word, effectively removing extra spaces. It returns the normalized text with all lowercase characters and consistent spacing.\n", + "\n", + "The **tokenize_text()** function tokenizes the text into individual words and a list of tokens (words) from the text.\n", + "\n", + "The **remove_stop_words()** function remove common stop words from the list of tokens. It returns a list of tokens with stop words removed.\n", + "\n", + "The **stem_tokens()** function apply stemming to the list of tokens. Stemming reduces words to their root form so that the kewords can be analysed easily. It returns a list of stemmed tokens (words reduced to their root form).\n", + "\n", + "Finally, the **lemmatize_tokens()** function applies lemmatization to the list of tokens. Lemmatization reduces words to their base or dictionary form, which is usually more meaningful than stemming. It returns a list of lemmatized tokens (words reduced to their base form)." + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "id": "bdb471d4-e732-4363-a62d-b3e1a98275ca", + "metadata": {}, + "outputs": [], + "source": [ + "def clean_text(text):\n", + " \"\"\"\n", + " Clean the text by removing unwanted characters and HTML tags.\n", + " \"\"\"\n", + " # Remove HTML tags\n", + " text = re.sub(r'<[^>]+>', '', text)\n", + " # Remove special characters and numbers\n", + " text = re.sub(r'[^a-zA-Z\\s]', '', text)\n", + " # Remove extra whitespace\n", + " text = text.strip()\n", + " return text\n", + "\n", + "def normalize_text(text):\n", + " \"\"\"\n", + " Normalize the text by converting to lowercase and removing extra spaces.\n", + " \"\"\"\n", + " # Convert to lowercase\n", + " text = text.lower()\n", + " # Remove extra whitespace\n", + " text = ' '.join(text.split())\n", + " return text\n", + "\n", + "def tokenize_text(text):\n", + " \"\"\"\n", + " Tokenize the text into words.\n", + " \"\"\"\n", + " tokens = word_tokenize(text)\n", + " return tokens\n", + "\n", + "def remove_stop_words(tokens):\n", + " \"\"\"\n", + " Remove stop words from the tokenized text.\n", + " \"\"\"\n", + " stop_words = set(stopwords.words('english'))\n", + " filtered_tokens = [word for word in tokens if word not in stop_words]\n", + " return filtered_tokens\n", + "\n", + "def stem_tokens(tokens):\n", + " \"\"\"\n", + " Apply stemming to tokens.\n", + " \"\"\"\n", + " stemmer = PorterStemmer()\n", + " stemmed_tokens = [stemmer.stem(word) for word in tokens]\n", + " return stemmed_tokens\n", + "\n", + "def lemmatize_tokens(tokens):\n", + " \"\"\"\n", + " Apply lemmatization to tokens.\n", + " \"\"\"\n", + " lemmatizer = WordNetLemmatizer()\n", + " lemmatized_tokens = [lemmatizer.lemmatize(word) for word in tokens]\n", + " return lemmatized_tokens\n" + ] + }, + { + "cell_type": "markdown", + "id": "484d6bf9-826f-4b57-9f5c-7b737c81979a", + "metadata": {}, + "source": [ + "This cell applies preprocessing functions to each article’s content, then converts the preprocessed data into a DataFrame and saves it to a CSV file. The **preprocessed_articles** list is initialized as an empty list to store the preprocessed article data. By looping through each article, many steps of preprocessing are applied like removing HTML tags, special characters, and extra whitespace using **clean_text** function, converting the text to lowercase and removing extra spaces using the **normalize_text** function, splitting the text into individual words (tokens) using **tokenize_text** function, filtering out common stop words from the tokens using **remove_stop_words** function and reducing to their root form using **stem_tokens** function.\n", + "\n", + "After all this, the preprocessed text is joined back into a single string and stored in a dictionary along with the article’s title, author, and publication date which is added to the **preprocessed_articles** list. Finally, we convert the list of preprocessed articles into a DataFrame using **pd.DataFrame** function, save it to a CSV file and display the resulting DataFrame to verify the output.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "id": "8f35cdf6-3bd8-49f9-956c-a0c587bd5b19", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
titleauthorpublication_datecontent
0Most Australians think there are too few publi...Jennifer Dudley-NicholsonFebruary 23, 2024australian think nation public charg station s...
1Why Australian consumers are charging toward e...Neal Johnston, Glenn Maris, Damien Smith, Neal...27 Jul. 2022ceo imper strategi set takeoff clever govern c...
2EVs face future challenges despite increasing ...Harrison Vesey10 April 2024professor david hensher one three australian c...
3EVs in Australia: Report outlines sales, and i...Mike Costello19 August 2020, 1:56pmguest user australia electricvehicl penetr wel...
\n", + "
" + ], + "text/plain": [ + " title \\\n", + "0 Most Australians think there are too few publi... \n", + "1 Why Australian consumers are charging toward e... \n", + "2 EVs face future challenges despite increasing ... \n", + "3 EVs in Australia: Report outlines sales, and i... \n", + "\n", + " author publication_date \\\n", + "0 Jennifer Dudley-Nicholson February 23, 2024 \n", + "1 Neal Johnston, Glenn Maris, Damien Smith, Neal... 27 Jul. 2022 \n", + "2 Harrison Vesey 10 April 2024 \n", + "3 Mike Costello 19 August 2020, 1:56pm \n", + "\n", + " content \n", + "0 australian think nation public charg station s... \n", + "1 ceo imper strategi set takeoff clever govern c... \n", + "2 professor david hensher one three australian c... \n", + "3 guest user australia electricvehicl penetr wel... " + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Apply preprocessing to each article's content\n", + "preprocessed_articles = []\n", + "\n", + "for article in articles_data:\n", + " # Clean the text\n", + " cleaned_content = clean_text(article['content'])\n", + " # Normalize the text\n", + " normalized_content = normalize_text(cleaned_content)\n", + " # Tokenize the text\n", + " tokens = tokenize_text(normalized_content)\n", + " # Remove stop words\n", + " filtered_tokens = remove_stop_words(tokens)\n", + " # Optionally apply stemming or lemmatization\n", + " stemmed_tokens = stem_tokens(filtered_tokens)\n", + " # lemmatized_tokens = lemmatize_tokens(filtered_tokens)\n", + " \n", + " # Store preprocessed data\n", + " preprocessed_article = {\n", + " 'title': article['title'],\n", + " 'author': article['author'],\n", + " 'publication_date': article['publication_date'],\n", + " 'content': ' '.join(stemmed_tokens) # Use lemmatized_tokens if preferred\n", + " }\n", + " preprocessed_articles.append(preprocessed_article)\n", + " \n", + "# Convert the preprocessed articles data to a DataFrame\n", + "preprocessed_articles_df = pd.DataFrame(preprocessed_articles)\n", + "\n", + "# Save the DataFrame to a CSV file\n", + "preprocessed_articles_df.to_csv('preprocessed_ev_articles.csv', index=False)\n", + "\n", + "# Display the DataFrame\n", + "preprocessed_articles_df\n" + ] + }, + { + "cell_type": "markdown", + "id": "592c4d07-49e8-4f5d-8165-3057d18f48dc", + "metadata": {}, + "source": [ + "In sentiment analysis, **polarity** and **subjectivity** are two key metrics used to assess the sentiment of a text. \n", + "\n", + "Polarity measures the sentiment of the text on a scale from -1 to 1. Negative sentiment indicates that the text expresses a strong negative sentiment or emotion. Neutral sentiment indicates that the text is neutral and does not convey any strong positive or negative sentiment. Positive sentiment indicates that the text expresses a strong positive sentiment or emotion. This can be useful for understanding overall attitudes or reactions.\n", + "\n", + "Subjectivity measures the degree to which the text expresses personal opinions, feelings, or beliefs, as opposed to objective facts. Zero subjectivity means the text is factual and does not include personal opinions or emotions. It is more about reporting facts.A subjectivity of 1 means the text is more personal and opinionated, including personal beliefs, emotions, or feelings. This can be useful for distinguishing between factual reports and personal opinions or feelings." + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "id": "7a2419ad-a537-4396-999f-efe9ad8fb316", + "metadata": {}, + "outputs": [], + "source": [ + "from textblob import TextBlob\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n" + ] + }, + { + "cell_type": "markdown", + "id": "16abc529-f4c0-42db-b793-624477ac2394", + "metadata": {}, + "source": [ + "This code defines a function **analyze_sentiment()** that uses the TextBlob library to analyze the sentiment of a given text. It takes a single argument **text**, which is a string of text that we want to analyze for sentiment. The TextBlob object **blob** has a sentiment property that returns a Sentiment namedtuple - polarity and subjectivity. The function returns the polarity and subjectivity scores as a tuple." + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "id": "7a253b62-1ce6-42c2-986c-bba61766c17a", + "metadata": {}, + "outputs": [], + "source": [ + "def analyze_sentiment(text):\n", + " \"\"\"\n", + " Analyze the sentiment of the given text using TextBlob.\n", + " \"\"\"\n", + " blob = TextBlob(text)\n", + " # Return polarity and subjectivity\n", + " return blob.sentiment.polarity, blob.sentiment.subjectivity\n" + ] + }, + { + "cell_type": "markdown", + "id": "d3c6d5f8-09c8-493b-b866-c0a2fd628a9d", + "metadata": {}, + "source": [ + "This code performs sentiment analysis on the preprocessed content of each article, stores the results, and saves them to a CSV file. The **sentiment_results[]** is an empty list initialized to store the sentiment analysis results for each article. In the 'for' loop, we iterate through each row in the preprocessed articles DataFrame (**preprocessed_articles_df**). Each row represents an article. For each article, the content is passed to the **analyze_sentiment()** function, which returns the polarity and subjectivity scores.\n", + "The results for each article, including its title, author, publication date, content, polarity, and subjectivity, are stored in a dictionary and appended to the above initialized list.\n", + "We then conver this list of dictionaries into pandas DataFrame. Finally, the DataFrame is displayed, showing the sentiment analysis results." + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "id": "1d55944e-1875-47bf-a203-5f2b5a360a6a", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
titleauthorpublication_datecontentpolaritysubjectivity
0Most Australians think there are too few publi...Jennifer Dudley-NicholsonFebruary 23, 2024australian think nation public charg station s...0.0022100.187689
1Why Australian consumers are charging toward e...Neal Johnston, Glenn Maris, Damien Smith, Neal...27 Jul. 2022ceo imper strategi set takeoff clever govern c...0.1020000.283466
2EVs face future challenges despite increasing ...Harrison Vesey10 April 2024professor david hensher one three australian c...0.1815630.347917
3EVs in Australia: Report outlines sales, and i...Mike Costello19 August 2020, 1:56pmguest user australia electricvehicl penetr wel...0.0112450.306212
\n", + "
" + ], + "text/plain": [ + " title \\\n", + "0 Most Australians think there are too few publi... \n", + "1 Why Australian consumers are charging toward e... \n", + "2 EVs face future challenges despite increasing ... \n", + "3 EVs in Australia: Report outlines sales, and i... \n", + "\n", + " author publication_date \\\n", + "0 Jennifer Dudley-Nicholson February 23, 2024 \n", + "1 Neal Johnston, Glenn Maris, Damien Smith, Neal... 27 Jul. 2022 \n", + "2 Harrison Vesey 10 April 2024 \n", + "3 Mike Costello 19 August 2020, 1:56pm \n", + "\n", + " content polarity subjectivity \n", + "0 australian think nation public charg station s... 0.002210 0.187689 \n", + "1 ceo imper strategi set takeoff clever govern c... 0.102000 0.283466 \n", + "2 professor david hensher one three australian c... 0.181563 0.347917 \n", + "3 guest user australia electricvehicl penetr wel... 0.011245 0.306212 " + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Apply sentiment analysis to each article's content\n", + "sentiment_results = []\n", + "\n", + "for index, article in preprocessed_articles_df.iterrows():\n", + " # Analyze sentiment\n", + " polarity, subjectivity = analyze_sentiment(article['content'])\n", + " \n", + " # Store the results\n", + " sentiment_results.append({\n", + " 'title': article['title'],\n", + " 'author': article['author'],\n", + " 'publication_date': article['publication_date'],\n", + " 'content': article['content'],\n", + " 'polarity': polarity,\n", + " 'subjectivity': subjectivity\n", + " })\n", + "\n", + "# Convert the results to a DataFrame\n", + "sentiment_df = pd.DataFrame(sentiment_results)\n", + "\n", + "# Save the sentiment analysis results to a CSV file\n", + "sentiment_df.to_csv('sentiment_analysis_results.csv', index=False)\n", + "\n", + "# Display the DataFrame\n", + "sentiment_df\n" + ] + }, + { + "cell_type": "markdown", + "id": "37a82af6-129d-4a96-ac4e-f063316184b9", + "metadata": {}, + "source": [ + "This code creates a visual representation of the sentiment analysis results for a set of articles, focusing on both polarity and subjectivity. The plotting style is configured to \"whitegrid\" for a clean and readable background. A figure is setup with two subplots arranged vertically, each subplot having its own set of axes. this code generates two horizontal bar plots within a single figure, visually comparing the polarity and subjectivity of the sentiment analysis for each article." + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "id": "8dfd03d0-cab3-4de2-939f-97b4a64bc416", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKAAAASgCAYAAADPWTC8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3yN5//H8XdE0BCxR1VtMUOsiC2ovVcFqQa192h8bWpTIqgVq7GJEbu09qraYlQIEqX2DEHy+8Mj9y9HduRU6ev5eOTxkHOuc9+f+zr3uTlv13XdFmFhYWECAAAAAAAAzCTJhy4AAAAAAAAAnzYCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAAAAA+iLCwsA9dQqw+hhrjg+MB8KEQQAEAAAD/cZcuXVKfPn1Uvnx5FSlSRBUqVFDv3r114cIFs+wvJCREY8eOla+vr/GYu7u7nJ2dzbK/hHj8+LEGDhyoY8eOxdjOzs4u0o+9vb3q1q2refPmKTQ0NF77dXZ2lru7+/uULkk6cuSI7OzsdOTIEUnSrVu39N133ykoKOi9tx2b169fy93dXQ4ODipRooQOHz4cbdunT5+qWLFiKly4sO7cuRPnfUR1PPHtOzs7O3l6esa5PYD3k/RDFwAAAADgw/nzzz/VsmVLFS9eXEOGDFH69Ol169YteXt7q0WLFlqyZImKFy+eqPv8+++/tXjxYo0bN854rGvXrnJ1dU3U/byP8+fPa8OGDWratGmsbZs1a6bmzZsbvwcHB2vHjh2aPHmyHj9+rH79+pmz1CgVLlxYK1euVN68eSVJBw8e1J49e/6Rfe/bt0/r1q1T165dVa5cORUqVCjatps2bZKNjY3evHmjNWvWqEuXLnHaR1THM2PGDKVKleq9agdgPgRQAAAAwH/YwoULlTZtWs2bN09Jk/7/14Pq1aurVq1amjVrlubOnWv2Or788kuz78NcsmTJEimkc3Jy0pUrV7R06VL17NlTVlZW/2hNqVKlSvTgMK4ePnwoSWrSpImyZ88eY1sfHx9VrFhRVlZWWr16tTp16qQkSRI2USemoAvAh8cUPAAAAOA/7O7duwoLC4s0Vcza2lr/+9//VLt2bZPHd+7cqSZNmqho0aIqX768fvjhBz1//tx43tPTUzVq1NDu3btVv359FSlSRDVr1tT69eslSYGBgapWrZokadCgQca0u3en4Dk7O2vGjBkaO3asHB0d5eDgoH79+unZs2eaO3euKlWqpJIlS6pHjx568OCBSY2rV69W3bp1VaRIEVWpUkWenp568+aN8by7u7vatWuntWvXqmbNmipSpIgaNmyovXv3Sno7fS18NJarq6vatm2boL4tUqSInj17pkePHkmSXr58qZkzZ6pWrVoqWrSovvrqK82dOzfGaXqBgYEaOHCgKlSooMKFC8vJyUkDBw40OWZnZ2eNHTtW33zzjezt7TV48GCTKXg+Pj4aNGiQJKlatWpyd3fXhAkTZG9vrydPnpjsb9asWSpZsqSCg4OjrOfNmzdaunSp6tevL3t7e1WpUkWTJ0/Wy5cvjb4NnwZXvXr1GPvu8uXLOnXqlKpUqaIGDRooKChI+/bti3T8dnZ2WrhwoWrVqqVixYpp7dq1kY4nvB8iTsF7+vSpRo8erYoVK6p48eJq2rSpdu/eHW09Dx8+1LBhw1SuXDkVLVpULVq00KFDh0zaHDhwQC1atJCDg4NKly6tLl26yN/fP9ptAvh/BFAAAADAf1iVKlV08+ZNff3111q6dKn8/f2NhZ1r1aqlxo0bG219fX3VrVs35c6dWzNnzlT37t21ceNGde3a1WQx6Dt37mjUqFFydXXV3Llz9cUXX+j777+Xv7+/MmXKpBkzZkiSunTpYvw5KgsWLNBff/2lqVOnqkuXLtq0aZOaNm2q/fv3a/To0erbt6927dql6dOnG6+ZM2eOhg4dKicnJ82ePVutW7fWvHnzNHToUJNtnz17Vl5eXurZs6dmzpwpS0tL9ejRQ48ePVLhwoU1bNgwSdKwYcM0fPjwBPXt1atXlTJlSqVPn15hYWHq3Lmz5s+fr+bNm2v27NmqVauWpk2bFu32g4OD5erqKn9/fw0fPlxeXl5ydXXV5s2bNXXqVJO2S5cuVdGiRTVr1iw1a9bM5LkqVaoYU9tmzJihrl27qlmzZnr58qW2bdtm0nbDhg2qU6eOPvvssyhrGjZsmMaNG6fq1avrp59+UuvWreXt7W2cA127djXZV0x9t3btWqVJk0ZVq1ZVqVKllCNHDi1fvjzKtp6enurYsaMmTpyocuXKRTqed71580Zubm7y9fVVp06dNGvWLOXOnVvdunWLcl2vly9f6ptvvtGuXbvUp08fzZgxQ1myZFGHDh2MEOrGjRvq2rWrihQpop9++kljxozR1atX9d1338V7rS/gv4gpeAAAAMB/mIuLi+7cuSMvLy+NGjVKkpQ2bVpVqFBBrq6usre3l/T2bmOTJ09WxYoVNXnyZOP1OXPmVLt27bRnzx5VqVJF0tvgZMyYMXJycjLaVK1aVXv27JGbm5sKFiwo6e20u5imTaVKlUpTp05V0qRJVa5cOa1bt063b9/W6tWrZWNjI+ntekPHjx+XJD158kSzZs1Sy5YtNWTIEElShQoVlCZNGg0ZMkTffvut8uXLZ7T18fExpv5ZW1urTZs2Onz4sGrWrGmsnZQ3b17jz9EJDQ3V69evjX66e/eufH199euvv6pDhw6ysLDQnj17dPDgQf3444+qW7euJKl8+fJKkSKFPDw85OrqatQWLiAgQFmyZNGECROMqWxly5bVqVOndPToUZO2n3/+ufr372/8Hr74uCSlS5fOOM6CBQvqiy++kCQ5ODhow4YNxvpVx48fV0BAgMaPHx/lcV6+fFlr1qxRv3799N133xnHkClTJg0cOFB79+5V5cqVo9zXu16/fq2NGzeqXr16SpYsmSSpcePG8vT01F9//aWsWbOatK9du7bJelyx7WPv3r06deqUZs6cqerVqxt9d+PGDR0+fFilSpUyab9hwwZduHBBq1atUrFixSRJlSpVUtu2bTV58mStXbtWp0+f1osXL9SpUydlzpxZ0tvpl7t27dLz589ZfwqIBSOgAAAAgP+4Xr16ad++fZoyZYqaNWumVKlSydfX11iEXJKuXLmiW7duydnZWa9fvzZ+SpcurVSpUunAgQMm24y4/lCWLFkkyWSqXlzY29ubrEuVIUMG5cqVywifJClNmjTGNLITJ07oxYsXkWoMn9oXscaIoUzEGqObehaTWbNmqXDhwipcuLAx7W/mzJlq2bKlevToIUk6evSokiZNqlq1apm8tkGDBsbz7ypYsKCWLVumbNmyKSAgQHv27JGXl5euXLmikJCQSG3jq2nTpjp27JhxJ7l169YpV65ccnBwiLJ9eI3hAVq4unXrytLS0iT0is3u3bt19+5dVa9eXY8fP9bjx4/l7Oys0NBQrV69OlL7+B7fH3/8ISsrK5NpnUmSJNGKFSvUvXv3SO0PHTqkjBkzqnDhwsZ58+bNG1WtWlVnz57Vo0ePVKxYMSVPnlzNmjXTmDFjtG/fPhUoUEB9+vQhfALigBFQAAAAAGRra6t69eqpXr16kiQ/Pz8NGDBAkyZNUv369Y2FpUeOHKmRI0dGev3ff/9t8nvEKVzhi0pHnKYXF1F9qbe2to62fXiN4aNzYqrx3SlmFhYWkpSgqVQtWrRQixYtjO2kTJlSX3zxhcnC448ePVLatGllaWlp8tqMGTNKUqS1mMItXLhQs2fP1sOHD5UhQwYVKVJEn332WaT2MfVLdOrUqaOxY8dqw4YNat++vbZu3Rpt34UfQ8SawyVNmlRp06aN9hiisnbtWklSu3btIj23Zs0ade3a1SR8jO/xPXz4UGnSpInzguYPHz7UnTt3VLhw4Sifv3PnjvLmzStvb2/NnTtXa9as0ZIlS5Q6dWq5uLiod+/exjkEIGoEUAAAAMB/1O3bt9W0aVP16tXLmIYVrlChQurTp4+6deumGzduKHXq1JKkgQMHqkyZMpG2ZWtr+4/UHJPwGidPnqycOXNGej5Dhgxm2W+mTJlUtGjRGNvY2trqwYMHevPmjUkIFR6KpU2bNtJrfH19NX78eA0YMEBNmjRRunTpJL0dsXbmzJn3rjtlypSqVauWtm7dqvz58+v58+dq2LBhjMcgvQ1jsmXLZjz+6tUrPXjwIMpjiMrdu3e1d+9eubi4RBoRdvLkSf3444/67bffVKNGjQQc1Vs2NjZ6+PChwsLCTIIhPz8/hYWFRQqabGxslDNnTpPppRGFT/Ozt7fXjBkzFBISoj/++EMrV67U7NmzVaBAgUgL9gMwxRQ8AAAA4D8qQ4YMSpo0qZYtW2bcxSyiK1euKHny5MqRI4dy586t9OnTKzAwUEWLFjV+MmfOrClTpsjPzy/O+313FFBiKVasmKysrHT79m2TGpMmTaoff/xRgYGBH6zGMmXK6PXr15EW/d64caMkqWTJkpFe88cffyh16tTq0KGDET49e/ZMf/zxR7xHakU3EqhZs2a6dOmSFi9erHLlyhlrG0V3DJK0efNmk8c3b96sN2/eRHkMUdmwYYNev36tb775Ro6OjiY/33zzjVKlSqUVK1Yk6HjClSpVSq9evTLubCi9HYE3aNAgzZkzJ8pj++uvv5Q+fXqTc+fAgQOaP3++LC0ttWjRIlWtWlUhISFKliyZnJycNHr0aEnSzZs343TswH8ZI6AAAACA/yhLS0uNGDFC3bp1U9OmTdW6dWvlyZNHwcHBOnDggJYuXapevXoZI1/69OmjYcOGydLSUlWrVtXjx481a9Ys3b59O9qpS1EJX8Pp0KFDypMnj7Ho8/tKmzatOnToIA8PDz19+lSOjo66ffu2PDw8ZGFhoQIFCsS7xt27d8vW1jZer41KpUqV5OjoqCFDhuj27dsqUKCAjh49qnnz5qlx48ZRLnRub2+v5cuXa/z48apatar+/vtveXl56e7du/EecRY+OuyXX35RpUqVlCdPHklvg69cuXLp6NGjke6s9668efOqcePGmj59uoKDg1W6dGmdP39eM2bMkKOjoypWrBinWnx8fFS4cOEoR6mlSJFCNWvWlI+Pj27cuBHttLbojidclSpV5ODgIHd3d/Xu3VvZs2fXhg0b5O/vb4RGETVp0kTe3t769ttv1blzZ2XNmlUHDx7UvHnz1KZNG1lZWals2bKaPHmyunXrpjZt2sjS0lIrVqxQsmTJVLVq1TgdO/BfRgAFAAAA/IdVqVJFq1atkpeXl2bPnq379+8rWbJkKlSokKZOnaqvvvrKaNu8eXOlTJlS8+fP18qVK2Vtba0SJUpo8uTJxl3a4iJVqlT69ttvtXLlSu3ZsyfSAubvo3fv3sqYMaOWLVum+fPny9bWVk5OTurbt6/J4uWxyZcvn+rVq6elS5dq37592rRp03vVZWFhoTlz5mj69OlatGiR7t+/ry+++EJ9+/bVt99+G+VrGjdurMDAQK1du1bLli1T5syZVblyZbm4uGjo0KHy9/ePFLxEx9HRUeXKldOUKVN06NAhzZ0713iuSpUqun//vnG3uJiMGTNGOXLk0Nq1azVv3jxlypRJrq6u6tq1a5zWWzp16pQuX76sgQMHRtumUaNGWrt2rVauXKmvv/463scjvQ1X582bp8mTJ8vDw0PBwcGys7PTggULjDs7RmRtba2lS5dqypQpmjRpkp48eaJs2bKpX79+cnNzkyQVKFBAs2fP1syZM9W3b1+9efNGRYoU0YIFC5Q7d+5Yjx34r7MIi+9KgAAAAACAT0JYWJjq1q2rChUq6H//+9+HLgfAJ4wRUAAAAADwH/P06VMtWrRIZ86c0Y0bN9S2bdsPXRKATxwBFAAAAAD8x6RIkUIrVqxQaGioxo4dG68plACQEEzBAwAAAAAAgFnFvkocAAAAAAAA8B4IoAAAAAAAAGBWBFAAAAAAAAAwKxYhBwAA/1knTpxQWFiYrKysPnQpAAAAH51Xr17JwsJCDg4OsbZlBBQAAPjPCgsLM34Qd2FhYQoJCaHf4ol+Sxj6LWHot4Sh3xKGfkuYT6Hf4vPvKEZAAQCA/ywrKyuFhIQob968sra2/tDlfDSeP3+u8+fP02/xRL8lDP2WMPRbwtBvCUO/Jcyn0G9nzpyJc1tGQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAA4D/PwsLiQ5cAAADwSSOAAgAA/2nJkiXTZ599FuVzoaGh/3A1AAAAn6akH7oAAACAD23S5DW6EXjX5LHsX2TQgP7NPlBFAAAAnxYCKAAA8J93I/Cu/P3/+tBlAAAAfLKYggcAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmRQAFAAAAAAAAsyKAAgAAAAAAgFkRQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAigAAAAAAACYFQEUAAAAAAAAzIoACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmRQAFAAAAAAAAsyKAAgAAAAAAgFkRQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZffAAytnZWXZ2dlq4cGGUzw8bNkx2dnby9PRMtH3++eef2r17d6zt+vXrJzs7O+3cuTPR9h3RH3/8oWPHjr3XNjw9PeXs7Gz8bmdnJx8fn/ctLcFevXqlRYsWGb+/W19U4lNzYGCg7OzsdOTIkTjXFLGfE/L6T8GDBw+0evVqs+9n5MiRcnBwUMmSJXX37l2z7+99xff8jEv7hHJ3d1fbtm3Nsu3Y/NuuG3Fx8+ZNbd682fjd2dk5Uf+eiK+wsDCtW7dO9+7d+2A1fEjPnz/X0qVLo30+/Nob3U+nTp30/PlzOTg4aPz48dFup2bNmho6dKg5DgEAAABm9sEDKEmysrLS9u3bIz3++vVr7dixQxYWFom6v06dOunMmTMxtnny5Il27typXLlyacWKFYm6/3AuLi66fv16om5z//79qlOnTqJuMz42bdqkcePGxes15q7ZHP38sZk4caI2btxo1n1cuHBBy5Yt0/fff68NGzYoQ4YMZt3fh+Dm5qY1a9Z86DIS3cd43fj++++1b98+4/c1a9bIzc0tsUuLs99//13u7u4KDg7+YDV8SAsWLJCXl1es7Tw9PbV///5IP5MmTZK1tbXq1KmjzZs3KzQ0NNJrjx8/roCAADVv3twchwAAAAAz+1cEUE5OTjp58qRu3bpl8vjhw4dlbW2trFmz/uM1bdq0SZaWluratasOHDigwMDAf7yGhMiYMaNSpEjxwfYfFhYW79d86Jr/CxLyvsTX48ePJUnly5fXF198Yfb9fQgpU6ZUunTpPnQZie5DfwYT4/xMly6dUqZMmQjVJMw/8Rn7N4vr8dva2ipjxoyRflKnTi1Jatq0qf7+++8oR6muX79e+fPnl729faLWDgAAgH/GvyKAsre31+eff65t27aZPL5lyxbVrl070gioEydOyNXVVSVLlpSjo6MGDRqkBw8eGM+fPn1aLi4ucnBwUOnSpdWjRw/dvHlT0ttpGkFBQZoxY0aM0118fHxUpkwZVatWTVZWVlq1apXJ81FNxXn3sT179qhJkyYqVqyYnJyc5O7urkePHkl6O+VFkgYNGiR3d3djesKcOXNUvnx5VatWTU+fPtWlS5fUqVMnlS5dWkWKFFG1atW0YMGCaOuOOJUmJCREEyZMkLOzs4oUKaIyZcqoV69eun//vqT/nxKxfft2NW/eXEWKFJGzs7NWrlxpbO/evXvq2bOnHB0dZW9vr6+//lpHjx6Nts8GDRpk1BHxC8TcuXNVqVIl2dvbq23btgoICIiyZnd3d7m7u2vChAlycnJSsWLF1KlTJ92+fTvKffr7+6t8+fIaOHCg3rx5E2V/ROzncKdOnTKOuVq1alq7dq3J69auXavatWvL3t5etWvX1uLFi43/kY/uvXry5ImGDh2qsmXLqmTJknJ1dY11pN3OnTvVvHlzFS9eXEWLFlWTJk1MRnW0bdtWQ4cOVfPmzVWqVCljFFNM9b3L3d1d69at09GjR43+ePPmjRYtWqSaNWuqaNGiqlmzppYvXx6pbzt37ixHR0eVLFlSPXv2VFBQUJT78PHxMT5P1atXN/ra399fHTt2lIODgypUqKB+/frpzp07kqTx48erfv36xjYePXqkggULatSoUcZjv/76qxwcHPTy5ctI+/T09FSrVq00c+ZMOTo6qlSpUho0aJCePn1qtIlqallUj4Vvo0SJEurfv78ePnwY5XG++xm/e/euBg4caPRRp06ddO3atShfK0nXrl1Tly5djGtX3759TaZsvXr1ShMmTFDZsmVVvHhxde3a1WQq47Fjx+Tq6qoSJUqoSJEiql27tjZs2GA87+7urp49e8rNzU0lSpTQvHnzJEm+vr6qXbu2ihYtqubNm2vJkiXGufBun8TlM3j9+nXjfa1YsaIWLlyoGjVqRDuN782bN5o0aZIqV66sIkWKqFatWsb5FtV1IzQ0VHPmzFHNmjVVpEgRlShRQh06dDBGMrZt21ZHjx7VunXrjPfj3Sl4u3fvVosWLYxzb9y4cXrx4oXJMa9Zs0bt2rWTvb29KlSooBkzZhjPBwcHa/DgwSpfvryKFi2qRo0aaceOHVEe35EjR+Tq6ipJqlatmtEPsf1d9a7YrrdRTTOM+JiPj48qVaqkVatWqUKFCnJwcFC3bt1M3jtnZ2fNmjVL7du3l729vWrUqBFpem5sdTs7O2vChAmqU6eOHB0d1bZtW82YMUNBQUGys7N7r/+wKVGihHLnzh1pxGZISIi2bt2qpk2bGo+tX79edevWVdGiRVWxYkWNGTNGISEhCd43AAAAzOtfEUBJUu3atU0CqJCQEO3cuVN169Y1aXf69Gm1bdtW+fLl06pVq+Th4aFTp06pffv2evPmjd68eWMENhs3btSiRYt08+ZN/e9//5P0dppGlixZ5ObmFu16IX/++adOnz6tWrVqKWXKlKpSpYrWrl2rV69exfl47t+/r+7du6tp06basmWLZsyYod9//10TJ06U9HbKiyT973//0+DBg43XrVu3TosXL9a0adNkaWkpNzc3pUmTRitWrNCmTZtUq1YtTZgwQefPn4+1hokTJ2rHjh0aP368tm/frvHjx+vw4cP66aefTNqNGzdOnTt31tatW1WlShWNGDFCN27ckCSNGDFCL1++lLe3t3x9fZUrVy517dpVz58/j7S/OnXqGP28f/9+OTg4SJKCgoJ0/PhxzZ07V97e3rpz547JMb9r06ZNevjwoby9vTVv3jydO3dO06ZNi9Tu2rVrateunSpVqqTx48fL0tIyUpvo+nnx4sXq0qWLtmzZoooVK2rIkCFGcLBy5UpNnDhR3bt31+bNm9W7d2/NmzdPkydPNtl2xPcqZcqU6tixo27cuKE5c+Zo1apVKl68uFq1aiU/P78oj/Ps2bPq0aOH6tatK19fX61atUrp0qXTwIEDTb5ErV69Wq6urlq2bJkqVqwY5/rCDR48WLVr15aDg4PRH+PHj9esWbPUvXt3+fr6qnXr1hozZoyxDk9QUJBatmypZMmSafHixVqwYIHu3LmjNm3amAQ84erUqWN8nlavXq3Bgwfr9u3bcnFxUY4cObRmzRrNnj1bT58+VcuWLfX8+XNVrVpVly5dMgKpQ4cOKSwszCS43L17typUqKDkyZNHeWxnzpzR/v37tWDBAs2cOVO///67evfuHWXb6AQFBenw4cNauHChZs+erTNnzhiBSExev34tNzc3Xb58WbNmzdKqVasUGhqqDh06RBmGPn78WK1bt1ZISIgWL16shQsX6vr16yb1njhxQo8fP9ayZcs0Z84cnTx50rhm3L59W+3bt1fRokW1bt06rV+/Xvb29ho8eLBJSLV9+3aVK1dOa9euVb169fTbb7/p+++/V7NmzbRx40Y1adIk2nMlXEyfweDgYLVr106hoaFavny5pk6dKh8fH+OaEZVly5Zp27Ztmjp1qrZv3642bdpoxIgROnbsWJTXjSVLlsjLy0vu7u7avn27Zs6cqYCAAGNtIE9PTzk4OKh27dpRTon85Zdf1KVLF1WpUkU+Pj4aOXKktmzZor59+5q0mzBhgho3bqzNmzerTZs28vT01O+//y5J8vDw0MWLFzV37lxt2bJFlSpVUp8+faIMVxwcHEzO/zp16sT6d1VU4nO9jc79+/eN69LixYv1119/qUOHDnr9+rXRZtasWXJwcND69evVunVrDRs2TFu2bJEU+9+x4by9vTVkyBDNnz9fs2bNkpubm7JkyaL9+/e/96jlpk2baseOHSbB865duxQcHKyGDRtKejvld8iQIerRo4e2b9+usWPHasOGDZo/f/577RsAAADmk/RDFxCudu3a8vLy0u3bt5U5c2YdOHBA6dKlU6FChUzaLViwQHZ2dsYipHny5NGPP/6ohg0bav/+/SpevLgePHigTJkyKVu2bMqePbumTZtmjDJIly6dLC0tZW1trTRp0kRZi4+Pj5InT67q1atLkurWravt27dr586dql27dpyO5/bt2woJCdHnn3+ubNmyKVu2bJo9e7bxD/iMGTNKkmxsbGRjY2OMjHJxcVHevHklvf0i4erqqtatWxtTS3r27Kn58+fr4sWLKliwYIw1FC1aVLVq1VKpUqUkSdmyZVO5cuV06dIlk3bt2rVTtWrVJEl9+vTR0qVLderUKWXPnl3Xr19X/vz5lT17dqVIkUKDBw9W/fr1owx7UqRIIRsbG5Pjk96u8TV58mSlSpVKkvT1119r6tSp0dZtY2OjUaNGycrKSnny5FGdOnW0Z88ekzaBgYEaOHCgKleurNGjR0e7Tlh0/dytWzdj5ESfPn20fPlynTt3Tjly5NCsWbPUpUsXI/zMnj27nj59qpEjR6pXr17GtiO+V4cOHdLJkyd1+PBh47zq27evjh8/riVLlkS5qK6lpaWGDh0qFxcX4zFXV1d17NhR9+7dM77EFSxY0GSkUGz1vRvW2NjYKEWKFLKyslLGjBn19OlTLV++XO7u7sZ2c+bMqcDAQM2dO1fffPONli1bJmtra02ePFnJkiWTJE2fPl3VqlXThg0b1Lp1a5N9pEiRQra2tpLefsZsbGzk5eWlLFmyaMiQIUa7adOmqWzZstq2bZsaNGggW1tbHThwQI0aNdLBgwdVrVo17dy5U3fv3lWGDBm0d+/eGAMlCwsLTZs2TZkzZ5b09qYFHTt21JUrV5Q7d+5oXxdR8uTJNXXqVGPNqmHDhsnNzU3Xrl1Tjhw5on3doUOHdPHiRW3btk25cuWSJP3www9atGiRHj16FGmq3pYtW/Ts2TP9+OOPRl/98MMP2rx5sxE4ZsyYUaNHj1aSJEmUO3du1alTRwcPHpQkvXz5Uj169FD79u2N8/27777T+vXrFRAQYNRva2urDh06GPsdMGCAatWqpfbt20uScuXKpYCAgBgX/Y7pM7hlyxbdv39fPj4+xrk+adIkIxiIyvXr12Vtba0vvvhCmTJlUps2bZQ7d27lypUryuvGl19+qQkTJqhq1aqS3l67atWqZfwnRZo0aWRlZaUUKVJEOSVy7ty5qlGjhrp27Wocc1hYmLp166bLly8bn9tGjRoZdXfu3FleXl46fvy4SpcurevXrytlypTKnj27UqdOrV69eql06dLGexdRsmTJTM7/FClSxPp3VeXKlaPsp7heb6MTPoquSJEikt6+N3Xq1NGhQ4dUsWJFSVKFChXUvXt3SVLu3Ll16tQpLV68WHXq1Ilz3ZUrV1a5cuWM/VpbW8vS0tLk2h+Vjh07Rnk8Hh4eqlSpkqS378vUqVP122+/qVatWpLejnaqXr260qZNK+nt3wEWFhbKli2bPv/8c33++efy8vIy/p4BAADAv8+/JoAqUqSIsmfPru3bt8vV1VVbtmyJNPpJki5duqTy5cubPFagQAHZ2Njo4sWLqly5sjp06KDRo0dr+vTpKlu2rCpXrhzn4Oj169fauHGjKleubPxDtkqVKkqZMqVWrFgR5+0ULFhQ9erVU+fOnZUxY0aVL19eVapUUY0aNWJ8XcQvvOnSpZOLi4s2bdokPz8/Xb9+XRcuXJCkaKdbRdSwYUMdPHhQkydPVkBAgK5cuaKrV68agVS4PHnyGH8O/yIYPtqre/fuGjBggLZv366SJUuqQoUKqlevXrQjUqKSPn16ky8FqVOnNpkK864vv/xSVlZWJjW9O/psxIgRevXqlbJmzZqgRerDAwNJxhfHly9f6v79+7p165Z+/PFHeXh4GG1CQ0P18uVLBQYGGsce8b06d+6cwsLCjC/M4UJCQqKcPia9PUdsbW01d+5cXblyRdeuXTPe34gjDSLuJy71RXw/o3LlyhW9evVKJUuWNHm8TJkyWrx4se7du6dLly6pSJEiRvgkvQ0HcuXKFSnAjI6fn5/+/PNPYyRcuJcvX8rf319JkyZVxYoVdfDgQTVq1EgHDhzQsGHDdOrUKR05ckR58uTR33//HeUX9XA5c+Y0wifp7fQd6e11Iq4BVI4cOUwWTC9WrJiktyMhYwqgLl26JFtbW5NzKXPmzPr++++jbZ8zZ06TAKNAgQIqUKCA8fuXX36pJEn+f2Cqra2t8Vn58ssv1aRJEy1ZskSXLl0yuR5Ed75Ib8/Nr776yuSx0qVLxxhAxfQZ9PPzU65cuUwC/PBrcHRat26tnTt3qnLlyipYsKDKly+vunXrKn369FG2d3Z21qlTp+Th4aGrV6/q6tWrunz5ssl7HZNLly5F+vujTJkyxnPhAdS7n5WIx9mxY0d17txZTk5Osre3V/ny5VW/fv0Yj/PdGmL7u+pdiXG9TZkypRE+hR+jra2tLl26ZARQjo6OJq9xcHAw7gwb17pj+mzE5IcffjA+YxFlypTJ+HOGDBlUuXJl+fr6qlatWrp3757279+vOXPmGG0qVqwoBwcHNWvWTF988YUxHTrisQMAAODf5V8TQEn/Pw2vZcuW2rVrV5S3jY9uodOwsDDjC1P//v3l4uKiPXv26NChQxo9erTmz5+v9evXm3yhjsru3bt19+5d/fLLLyajr968eaMjR47o6tWrJl84I4o4xUGSpkyZom7dumnv3r06ePCgBgwYoJIlS2rx4sXR7j/iQsB37txRy5YtlS5dOjk7O6tChQoqWrRojF/IIxo2bJi2b9+uRo0aydnZWd26dTNGmUUUVZ+E93ONGjW0b98+7du3TwcPHtTChQs1Y8YMrVq1Svny5YtTHfH53/vo6nlX48aNlT9/fo0fP141atRQ/vz547WPiF/yw4WFhRnB3qBBg0z+dz9c1qxZ9ffff0syfa9CQ0OVKlWqKNfAie54jh49qvbt26tKlSoqWbKk6tevr+DgYHXr1s2k3bv7ia2+2ET3GQrfdtKkSWNsEzGYiEloaKjKli2r4cOHR3ou/Et8tWrVNHbsWF2/fl23b99W6dKl5ejoqCNHjigwMFAlS5Y0RjxE5d1awoOY6M65dz+jUbUN30Zsx5k0afwun3FpH9Nn5fLly3JxcVHhwoVVrlw5ffXVV0qbNm2kO4K9u5h40qRJ4xRYRxTTZ9DS0jLe28uZM6d27Niho0eP6sCBA9q9e7fmzZuncePGqXHjxpHaz507VzNnzlTjxo3l5OSkdu3aadeuXdq8eXOc9hfV+Rvx/A4X07XPwcFBe/bs0YEDB3To0CGtX79eP/30k+bPny8nJ6cE1RD+eHTnVkKut++e01Ft+82bNybn1rvnYmhoqHFNjGvdCV20PnPmzHEKr5o1a6aePXvq0aNH8vX1VebMmU2uecmTJ9eSJUvk5+dn3Emvc+fOatSoUbzvqAgAAIB/xr9mDSjpbQB1/PhxrV27VtmzZ49yJIednZ3++OMPk8cuXLigp0+fKk+ePLpy5YqGDx+u9OnTq1WrVpo+fbrmz58vf39/Y7RATNauXau0adNq/fr1Jj+zZs1SWFiYsRi5lZWVnj17ZvLaiIsPnzp1SmPHjlXu3LnVrl07zZ07V2PHjtXhw4dNFh2OSfg6LMuXL1fXrl1Vo0YNYwpZbHccevDggVauXKnhw4dr0KBBatKkiQoWLKgrV67E+W5FISEhGjdunG7cuKE6derohx9+0M6dO5UkSRLjf8vflZDRSAlRt25dubi4qEiRIho0aFC0a6rEV/r06ZUuXTrduHFDOXLkMH6iW4cqXP78+fX06VO9evXK5HXz5s3Trl27onzNggUL5OjoKE9PT7Vr107ly5fXX3/9JSn69zeh9UV8X/LkySMrK6tIn6Njx44pY8aMsrW1lZ2dnc6cOWOyFtXdu3d17dq1WEdYhcuXL5/8/f2VNWtWo05bW1uNHTvWGEVVsWJFPXz4UEuWLFGxYsVkbW2tcuXK6fDhw/rtt9+MqaHRuXr1qp48eWL8fuLECUkywmMrKyuTNauiWiA8ICDApM0ff/whCwsLY5RMdPLmzatHjx6ZbPP+/ftydHTUyZMno2wfEBBgUu+5c+fk5OQU6Q6gUVmxYoXSp0+vhQsXqmPHjqpcubKx9lNMn+kCBQro1KlTJo+F91NCFChQQNeuXTNZqN3f39/kuN61ZMkS7dixw7hhgK+vr5ycnIx1h969bsyePVvdunXTiBEj1LJlSxUvXlwBAQFxvnbZ2dnp+PHjJo8dO3ZMUuRRT9GZPn26/vjjD1WrVk1DhgzR9u3bjVG6UXn3GGL7u+pdcbnevns+P336NNLfJw8fPjRZj+vPP//U06dPTf5D5d2bIxw/ftx4Pr51R3f876tSpUpKkyaNdu7cqc2bN6tJkyYm/3GwZ88ezZgxQ4UKFdJ3332nJUuWqGfPnsY5BQAAgH+ff1UAVbBgQeXIkUNTpkyJcvqdJH377be6ePGiRo8eLX9/fx05ckT9+/dXoUKF5OTkpLRp02rz5s0aNmyY/P39dfXqVa1bt062trbGlJyUKVMqICDAZOFe6e0X7L1796pFixYqUKCA8ufPb/xUq1ZNZcqUkY+Pj0JCQlS8eHE9fPhQXl5eCgwM1IoVK7R3715jW6lSpdKyZcs0adIkXbt2TZcuXdKWLVuUM2dOY0SHtbW1/P39o70rUpYsWRQcHKxt27bp5s2b2r9/v7GIbmx3+kmVKpVsbGy0a9cuXbt2TRcvXtTQoUN17ty5ON8lKFmyZDpz5oyGDh2qkydPKjAwUD4+Pnr+/HmkaVXhrK2tJb1dYDumaXaJIUmSJBo9erQuXrwY48KzsfVzRBYWFurYsaN+/vlneXt76/r16/rll180YsQIpUiRItqRIRUrVlTBggXVp08fHT58WNeuXdO4cePk4+MT7Ze2rFmz6uLFizp27JgCAwO1du1aY1pddO9RQuuztrbW33//rRs3bihVqlRq2bKlpk+frk2bNunatWtaunSpli1bJjc3N1lYWKhVq1Z69uyZBgwYoAsXLuj06dPq1auX0qZNG+1n810uLi568uSJ+vfvrwsXLujChQvq06ePzpw5Y4xYs7GxUalSpbRy5UpjVImTk5OuXbumU6dOxRpAPX/+XAMHDtSlS5d08OBBjRo1SnXq1FG2bNkkScWLF9fq1at1/vx5+fn5acSIEZH66OXLl+rdu7f8/Px04MABjR49Wo0aNTK2ER0nJycVKVJE33//vU6fPq0///xT33//vdKlS6fChQtHal+/fn3Z2toafXr27FkNHz5c+fPnV5YsWWLtzyxZsujWrVvas2ePgoKCtGPHDo0YMUJSzNeDjh07atu2bVq4cKECAgK0du1aeXt7x7q/6NSrV09p06Y13teTJ09qwIABkqIPIe7fv69Ro0Zp165dCgoK0r59+3T+/HnjOvLudSNr1qw6cOCALl++rCtXrmjq1KnasWOHyXGmTJlSQUFBUYZ3HTp00I4dOzRr1ixdvXpVv/32m0aPHq2qVavGOYC6ceOGhg8frkOHDikoKEjbt2/XzZs3Y732XbhwQc+ePYv176p3xeV6W7x4cW3ZskXHjx/X5cuX9b///S/KUXMDBgzQ2bNndfLkSQ0cONC4I2y4zZs3a+nSpQoICND8+fP1yy+/GOuGxbfuiMf/6NEjXb16NcYbdjx69Eh37tyJ9PNukJY0aVI1atRIS5cu1blz59SkSROT562srDRz5kwtWrRIN27c0NmzZ7V79+5o3x8AAAB8eP+qAEp6Owrq6dOnqlOnTpTPFytWTPPnz9fZs2fVqFEj9e7dWw4ODlq4cKGsrKyUNm1azZs3T0FBQWrRooUaN26swMBALVy40FiHqG3bttq9e7fc3NxMtr1x40aFhYWpVatWUe7722+/1cOHD7V161aVLVtWPXr00IIFC1S3bl0dOHBAPXv2NNrmyZNHnp6eOnz4sBo1aqRWrVrJ0tJS8+bNM/4X183NTd7e3tHecSt84eDx48erdu3aGjt2rJo1a6bSpUtH+h/sd1lZWcnDw0OXLl1S/fr11aFDBwUHB6tv3766fPmygoODY3x9uKlTpyp79uzq0qWLatWqpRUrVmjy5MmR1pEKV7ZsWRUrVkxff/21fvvttzjt433ky5dPHTt21IwZM3T58uUo28TWz1G1d3d3l7e3t+rUqaMxY8aoRYsWGjlyZLSvsbS01IIFC1SkSBH17t1bDRo00O+//64ZM2ZE+6WtZ8+eKl68uDFtZPXq1Ro7dqxSpEgR4/ubkPoaNWqk4OBg1atXT7dv39agQYPk6uqqyZMnq27dulq+fLmx+LYkffHFF/L29tbjx4/VsmVLtW/fXhkzZtTy5cuVOnXqOPVj9uzZ5e3trWfPnqlVq1Zq06aNrKystGTJEpOFo6tWraqQkBCVLVtWkvT5558rZ86cyps3r7Jnzx7jPrJmzaqCBQuqdevW6tu3r6pVq2ay4PuIESNka2urFi1aqEePHmrevHmksKdIkSIqWLCgXF1d1bt3b1WqVCnKaYPvSpIkiWbNmqUsWbLo22+/VatWrZQ8eXLNnz8/ymlQn332mby8vPT69Wt9/fXX6tChg/LmzRvjyLWIXF1dVbt2bQ0cOFD16tXTTz/9pL59+ypbtmwxni+VKlXSqFGjtHTpUtWrV0+rV69Wq1at4jyV8l3JkiXT/Pnz9erVK6NfmzZtKin6aYvdu3dXs2bN9MMPP6hmzZoaNmyYWrVqpU6dOkmKfN2YOHGiXrx4oaZNm6pNmza6dOmSRo4cqXv37unmzZuS3t7M4NKlS2rQoEGkEZA1a9bUjz/+qK1bt6p+/foaPny46tatG+e+lqThw4fLyclJAwYMUM2aNeXh4aH+/ftHu9h6/vz5VblyZfXu3VsrV66M9e+qqMR2ve3bt68KFSqkb7/9Vu3atVPx4sWNdc8iql+/vr777jt16NBB+fLl05w5c0zCwcaNG+uXX35R/fr1tWHDBk2bNs2Y2p2QuiXpq6++UsaMGdWgQYNo7/wpST169FCFChUi/YTf9COipk2bGqMEP//8c5PnypUrpzFjxmjNmjWqV6+e2rdvrxw5cujHH3+Mdt8AAAD4sCzC4jqnAQD+RTw9PbVu3Tr9+uuvH7qUf7WjR48qQ4YMJouyz549W2vWrNHOnTvjvb3AwEAFBASoQoUKxmO3b99WpUqVtHTp0mjDaZifj4+PBg0apIsXL0bbxtnZWY0bN1aPHj3+wcr+3cID3HleB+Tv/5fJc3nyZNX0aZ0/RFn/es+fP9f58+dVsGBBYwQgYke/JQz9ljD0W8LQbwlDvyXMp9Bv4f+WKlq0aKxt/3UjoAAAiWf//v1q3769Dh8+rJs3b2rXrl1avHhxtCN5YvPy5Ut999138vLy0o0bN+Tn56ehQ4cqZ86cUd7dDAAAAACkf9ld8AAAiat79+7GWln3799X1qxZ1a5dO2PNn/jKkyePfvzxR82ePVvTp09XihQp5OTkFOsULQAAAAD/bQRQAD5KPXr0YBpRHCRLlkxDhgzRkCFDEm2btWrVUq1atRJte0gcTZo0ibRY97uYsgoAAIAPhSl4AAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAigAAAAAAACYFQEUAAAAAAAAzIoACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmRQAFAAAAAAAAsyKAAgAAAAAAgFkRQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAigAAAAAAACYFQEUAAAAAAAAzIoACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWST90AQAAAB9a9i8yxOkxAAAAJAwBFAAA+M8b0L9ZlI+HhoYqSRIGjAMAALwv/kUFAAD+00JCQhQcHBzlc4RPAAAAiYN/VQEAgP+8sLCwD10CAADAJ40ACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmRQAFAAAAAAAAsyKAAgAAAAAAgFkRQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAA4D/PwsLiQ5fwUbGwsNBnn31Gv8UT/ZYw9FvC0G8A/m2SfugCAAAAPqRkyZLps88++9BlfFQ+++wzFSpU6EOX8dGh3xKGfkuY2PrtTWioLJMwHgHAP4cACgAA/OcN816ngNt3P3QZAPCPyJk5g0a1afyhywDwH0MABQAA/vMCbt/VxaBbH7oMAACATxZjLgEAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmRQAFAAAAAAAAsyKAAgAAAAAAgFkRQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAigAAAAAAACYFQEUAAAAAAAAzIoACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmRQAFAAAAAAAAsyKAAgAAAAAAgFkRQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAihEqXv37mrevHmkx1u0aCE7OzsdPXrU5PGNGzeqQIECunfvntzd3dW2bdtErykgIEB2dnZq1KhRom9bkp4/f66lS5e+93bs7Ozk4+MjSfL09JSzs/N7bxOftrZt28rd3f0f329gYKDs7Ox05MgRs+0jLCxM69at071798y2j8Rw5MgR2dnZKTAwMMHbiPjZTwy//fabLl++HO3z/8T7F5PYztv49Gli9D8AAAD+3QigECUnJyedP39eL168MB57+PChzpw5o6xZs2rfvn0m7Y8dO6YCBQooffr0ZqvJx8dHuXLl0vnz53Xq1KlE3/6CBQvk5eWVqNt0c3PTmjVrEnWbQGLJmjWr9u/fLwcHB7Pt4/fff5e7u7uCg4PNto9PUVBQkDp37hxjcPdPvH/vw8HBQfv371fWrFk/dCkAAAD4FyCAQpTKli2rV69e6cyZM8ZjBw8eVPr06dW0adMoA6hy5cqZrZ43b95o/fr1atKkifLkyaMVK1Yk+j7CwsISfZspU6ZUunTpEn27QGKwtLRUxowZlSxZMrPtwxyfq/+CuPTbP/H+vY9kyZIpY8aMsrS0/NClAAAA4F+AAApRypMnjzJnzqzjx48bj+3bt08VKlRQhQoVdOHCBd29e1eSdP/+ffn7+6tChQpG21evXmnChAkqW7asihcvrq5duxrtu3XrJldXV5P9XblyRXZ2dvrzzz+jrGf//v26ffu2ypcvr6+++kpbt27V48ePTdpENf0l4mPBwcEaPHiwypcvr6JFi6pRo0basWOHpLdT5WbMmKGgoCBjGoi7u7t69uwpNzc3lShRQvPmzVNoaKjmzJmjmjVrqkiRIipRooQ6dOig69evR1n3u1Pwjh07JldXV5UoUUJFihRR7dq1tWHDBuN5d3d3ubu7a8KECXJyclKxYsXUqVMn3b59O8rth/e1h4eHqlatqmLFiqlJkyY6cOCA8by/v786d+4sR0dHlSxZUj179lRQUJDxfNu2bTV58mT973//U6lSpVSiRAn169dPT58+Ndp4eXmpevXqKlKkiJydnTVz5kzjC3JU0wzffczOzk4rV66Ui4uLihYtqtq1a+v48eNauXKlqlSpohIlSqh3794mI+6OHz+u1q1by97eXlWqVNHIkSNNanJ2dtaECRNUp04dOTo66ujRowoICFD79u1VsmRJOTg4qH379rp48WK0fffo0SMNGTJEFStWVOHCheXk5KQhQ4YYo3WOHDmiQoUKae7cuXJ0dFSTJk0UGhqq27dvq0+fPipVqpQcHR3VuXNnBQQERLsfSTp9+rTatWsnBwcHlStXTsOHDzcZFfTs2TMNGjRIpUqVUsmSJeXu7q7nz58bz+/cuVPNmzdX8eLFVbRoUTVp0sQkCG7btq2GDh2q5s2bq1SpUtq4caMkadGiRXJ2dpa9vb2+/fZbzZgxw3hv3p3CFZdz4ezZs2rdurWKFSumatWqaePGjSpUqFCU08COHDlifNarVatmfBZPnDghV1dXlSxZUo6Ojho0aJAePHggSerRo4c6d+5sbOPChQuys7MzGZ34888/q0aNGpKkmzdvqk+fPnJyclLhwoVVqVIlTZo0SaGhoZLejpysUaOGfvjhB5UsWVJdu3aV9Paz2Lx5c9nb26tBgwa6cOFCjO+f9HZKXJMmTWRvb68aNWpo2rRpCgkJSXD7Z8+eafTo0apQoYIcHBzUpk0bnT17VoGBgapWrZokydXVVZ6enlGeizdu3DB5/8LCwrR48WLVrFlT9vb2qlu3rjZt2hRlbZ6enqpQoYLRT9Lba6SDg4NWr14t6e21o2PHjnJwcFCFChXUr18/3blzx2Q7MZ23706ri+1aFVFYWJjmzZunatWqqVixYmrYsKFxToeL6boEAACAfx8CKETLyclJJ06cMH7fv3+/ypcvL3t7e9nY2Gj//v2SpD/++EMpUqRQyZIljbYnTpzQ48ePtWzZMs2ZM0cnT57UxIkTJUlNmjTR0aNH9ddffxnt169fr6JFiypfvnxR1rJ27Vp9+eWXKly4sOrUqaPg4GCtX78+Xsfj4eGhixcvau7cudqyZYsqVaqkPn36KDAwUG5ubnJzc1OWLFlMpoxs375d5cqV09q1a1WvXj0tWbJEXl5ecnd31/bt2zVz5kwFBARo/Pjxse7/9u3bat++vYoWLap169Zp/fr1sre31+DBg41wTpI2bdqkhw8fytvbW/PmzdO5c+c0bdq0aLc7ZswYrVixQt9//718fX1VsWJFde7cWVeuXFFQUJBatmypZMmSafHixVqwYIHu3LmjNm3amIQKixYtUoYMGbRmzRpNmjRJu3bt0qJFiyRJv/76q+bMmaORI0dqx44d6t+/v3766adIXwZjM3XqVHXo0EEbNmyQjY2NOnfurO3bt2vu3LkaN26cdu7caXzxvXDhgr799ltVrFhRGzdu1OTJk3Xu3Dm5ubmZfMH09vbWkCFDNH/+fBUvXlx9+/ZV5syZtXbtWq1evVpJkiRR9+7do63J3d1dfn5+mjFjhrZv365BgwZp/fr1WrlypdHmzZs32rNnj1auXKkxY8boxYsXxhpn3t7e+vnnn5U2bVq1aNEi2qDwxo0b+uabb5QpUyatXLlSnp6eOnDggEaOHGm02bFjhzJlyiQfHx9NnDhRW7Zs0bx58yS9DX169OihunXrytfXV6tWrVK6dOk0cOBAk0Bj9erVcnV11bJly1SxYkUtXbpUU6dOVdeuXbVhwwaVKVNGM2fOjPF9iulcuH37tr755htly5ZNa9eu1bBhwzR16lS9efMmym05ODjI09PTqK1OnTo6ffq02rZtq3z58mnVqlXy8PDQqVOn1L59e71580ZVq1bV0aNH9fr1a0nSgQMHZGFhYRJw7d692whounTpoidPnmjhwoXatm2b3NzcNH/+fP36669G++vXr+vvv//W+vXr1adPH924cUNubm4qWLCg1q1bp27dumnWrFkx9svevXvVu3dvtWjRQps2bdLw4cO1detWDRgwIMHte/furb1792rcuHFav369smfPLjc3N6VMmdL4LHh6esrNzU1S5HPRwsLCZJ/z5883PmebNm3S119/rYEDB+rw4cOR6mvUqJHu3r1r0q87d+5UWFiYateurdu3b8vFxUU5cuTQmjVrNHv2bD19+lQtW7Y0CUZjOm/fFdO16l1Tp07V8uXLNXToUPn6+srV1VUjRoww1ulLrOsSAAAA/jlJP3QB+PdycnLSuHHjFBYWposXL+rOnTsqX768LC0t5eTkpH379qlRo0b6/fffVapUKSVPntx4bcaMGTV69GglSZJEuXPnVp06dXTw4EFJUuXKlZUhQwZt3LhRnTp1UmhoqDZs2KDvvvsuyjoePHigX3/9Ve3bt5ck5c+fX/nz59fKlSsjjaSKyfXr15UyZUplz55dqVOnVq9evVS6dGnZ2toqZcqUsra2Nqa0hLO1tVWHDh2M37/88ktNmDBBVatWlSRly5ZNtWrV0rZt22Ld/8uXL9WjRw+1b9/e+OL43Xffaf369QoICFCGDBkkSTY2Nho1apSsrKyUJ08e1alTR3v27Ilym0+fPtWaNWs0dOhQ1apVS5LUp08fhYWF6enTp1q7dq2sra01efJkY5rO9OnTVa1aNW3YsEGtW7eWJOXNm1d9+/aVJOXMmVPly5c3wsfr168rWbJkypYtmz7//HN9/vnnypQpkz7//PM4970kNW3a1Bh507BhQ40aNUrDhg1Tzpw5lT9/fs2fP98YAefl5aXy5csbI2Fy5sypKVOmqHr16jp69KgcHR0lvT2XIk79vH79usqVK6ds2bLJyspKY8eO1ZUrVxQaGqokSSLn7eXLl1fp0qVlZ2cnSfriiy/k7e2tS5cumbRzc3NTzpw5Jb0NUh4/fqxJkyYpadK3l9AxY8boyJEjWrVqlXr06BFpP6tWrVKaNGk0duxY4zU//PCDScBrb2+vPn36SHp7npUvX15nz56V9Haq1dChQ+Xi4mK0d3V1VceOHXXv3j0jMC1YsKDq169vtPHy8pKrq6uaNWsm6W1Yc+7cOfn5+UX3NsV4LqxcuVI2NjYaM2aMrKyslDdvXg0ZMsQYVfSuZMmSydbWVpKULl06pUiRQgsWLJCdnZ2GDh0q6e1oyx9//FENGzbU/v37VaVKFQ0ePFgnT55UqVKldPDgQVWrVk2HDh3S69evFRISoqNHj6pz58568eKFGjZsqNq1axt90K5dO82bN08XL15U9erVjVq6du2q7NmzS5KmTJmiDBkyaPjw4bK0tFSePHn0119/ady4cdH2y+zZs9WiRQt9/fXXxns0cuRIffPNNwoMDNQXX3wRr/YhISHau3evvLy8jNGjI0aMUOrUqfXo0SNj6m749SlcxHMx4oLd4aOfXF1djRtItG3bVi9evDDCvIiyZ8+u0qVLa+PGjXJycpIk+fr6qnr16kqVKpXmz5+vLFmyaMiQIcZrpk2bprJly2rbtm1q0qSJpJjP24hiu1ZF9Pz5cy1atEg//vijqlSpYmw7KChIXl5eat26daJdlwAAAPDPIYBCtJycnPTw4UNduXJF+/fvV6FChYwvReXLl9eMGTMkvZ3KUrduXZPXfvnllyZf+G1tbY3pVUmTJlWDBg20YcMGderUSYcPH9b9+/dVr169KOvw9fXVq1evVKdOHeOxunXraurUqTp27JhKlSoVp+Pp2LGjOnfuLCcnJ9nb26t8+fKqX7++bGxson1Njhw5TH53dnbWqVOn5OHhoatXr+rq1au6fPmyMmfOHOv+v/zySzVp0kRLlizRpUuXdP36dWPaT8QRJF9++aWsrKyM321sbPTq1asot3n16lW9evVKxYoVM3k8PEDw9PRUkSJFTNaIyZgxo3LlymUSsuTOndvk9TY2NsYUxwYNGmjt2rWqWbOm8ubNq3LlyqlmzZrx/qIXsS8/++wz41jDpUiRwhjN4+fnp2vXrkW5uLK/v78RQL37/vTp00djx47VsmXLVKZMGVWsWFH16tWLMnySJBcXF/36669at26dAgICdPnyZQUGBkbqj/Av/OG1PXr0SKVLlzZp8/LlS/n7+0e5n0uXLqlw4cJG+CS9XWetbNmyUe5DevuZCZ8qWbBgQdna2mru3Lm6cuWKrl27FuW5E7E/Hjx4oKCgIBUvXtxku6VKlYoxgIrpXPDz81ORIkVMzs93+yE2ly5dUvny5U0eK1CggGxsbHTx4kVVrlxZxYoV04EDB2Rvb69jx47p559/1u7du3X27Fndu3dP1tbWKlGihCwtLdWmTRtt27ZNp0+f1rVr13Tx4kXdvXvXZGqZZNq/ly5dUqFChUzWJipRokSMdfv5+en06dMmNxUIH43n7+8fKYCKrX349MuI70/y5Mk1aNAgSYr2bnDvnifhHjx4oDt37kS6FnTs2DHaY2ratKlGjx6tESNG6NmzZzpw4IAxesnPz09//vlnpM/gu+d5TOdtRLFdqyKOxLp8+bJevnypfv36mXx2wwPIFy9eJNp1CQAAAP8cAihEK3PmzMqVK5dOnDihAwcOmKzxVKFCBQ0bNkznzp3ThQsXNHbsWJPXxrbobNOmTeXl5aWzZ89q48aNqlatmjFS4l3h68Y0btzYeCz8i9zy5cujDaDe/V9/BwcH7dmzRwcOHNChQ4e0fv16/fTTT5o/f74xAuBdKVKkMPl97ty5mjlzpho3biwnJye1a9dOu3bt0ubNm2M8XuntlyoXFxcVLlxY5cqV01dffaW0adMaoxXCxWdB4YhBQFSiWw8lNDTU5LUx7TNdunTasGGDcR7s379fS5YsUY8ePaKd3hbViIuI4Uu46IKh0NBQ1a9f32QtoIj1hHv3/WndurVq1aqlPXv26NChQ5o+fbp++uknrV+/3hhhFnEfnTp10p9//ql69eqpTp06Kly4sDEyJ6KIo/tCQ0OVK1cu/fTTT5HaWVtbR3k8UR37u2L6zBw9elTt27dXlSpVVLJkSdWvX1/BwcHq1q2bSbuI/RG+z/iuiRPTuWBpaRkp2Imv6OoJCwszzklnZ2ft3LlTZcqUUerUqWVvb6+iRYvqyJEjCgoKUtWqVWVpaannz5+rTZs2evHihWrVqqXGjRvL3t7eGNkXUcS+sbCwiHQcsb1HoaGh6tChg8l1KFzEUZNxbR8+IjS+Ip6LEcV2LYjKV199pZEjR+q3337T3bt3lTFjRiMUDQ0NVdmyZTV8+PBIr4sY2sd1gfH41Bd+jkybNi1SICq9PUdTpEgR7+sSAAAAPizWgEKMypUrp+PHj+vEiRMmoxayZcumnDlzaunSpUqXLp0xhSmu8uTJIwcHB23dulW7du0ypnO8y8/PT+fPn1fnzp21fv1642fDhg2qWLGiduzYYSxebGVlZTKV49q1aybbmj59uv744w9Vq1ZNQ4YM0fbt25U9e3Zt375dkiKtpxKV2bNnq1u3bhoxYoRatmyp4sWLKyAgIE5f8lesWKH06dNr4cKF6tixoypXrmys/ZTQhXNz5MghKysrk7sVSlKLFi20aNEi2dnZ6cyZMybrBN29e1fXrl1Tnjx54rSPjRs3avny5cYC5qtWrVLz5s21ZcsWSW/7/dmzZyavebfv4ytfvny6fPmycuTIYfy8fv1a48aNM1k7LKJ79+5p1KhRevXqlZo0aaJJkyZp48aNunPnjo4ePRqp/fnz57V37155eHiof//+atCggb788ktdv349xvcjf/78unnzpmxsbIzaPv/8c02ZMkW///57lK/Jmzev/Pz8TEYr/fLLL3J2dtbLly9j7Y8FCxbI0dFRnp6eateuncqXL2/0Q3S12tjYKFu2bDp58qTJ4+/+Hh8FChSQn5+fyYi8iNMIo/Lu58rOzk5//PGHyWMXLlzQ06dPjXPS2dlZZ8+e1S+//GKEw+XKldPhw4dN1n/av3+/zp07pyVLlqhnz56qU6eOUqVKpXv37sX4HhYoUEBnz541+VxENW0sonz58unq1asm5+StW7c0ceLESOd/XNqHH2vEz+7r16/l7Oysbdu2xel6FJGNjY0yZcoU6VrQs2fPaKcWWltbq3bt2tqxY4c2b96shg0bGqFwvnz55O/vr6xZsxr129raauzYsZGmqMZFbNeqiHLnzq2kSZPq5s2bJv23Z88eeXl5KUmSJLFelwAAAPDvQwCFGDk5OWnr1q2ysLCINEWlYsWK2rp1q5ycnOL9ZUl6OwrK29tbKVKkiDQlJ5yPj48+++wzubm5GWs/hf907NhRISEhxgip4sWLa/Xq1Tp//rz8/Pw0YsQIk9EcN27c0PDhw3Xo0CEFBQVp+/btunnzpjHFxNraWo8ePTKmikQla9asOnDggC5fvqwrV65o6tSp2rFjR4x3wgqXJUsW3bp1S3v27FFQUJB27NihESNGSFKcXh+Vzz77TG3atJGHh4d27dql69ev68cff9SlS5dUqVIltWrVSs+ePdOAAQN04cIFnT59Wr169VLatGkjTZuMzsuXLzVhwgStX79egYGBOnbsmH7//Xej34oXL66HDx/Ky8tLgYGBWrFihfbu3Zug4wnn5uYmPz8/jRw5Uv7+/jpx4oT69eungICAaKcg2draavfu3RoyZIjOnz+vGzduaMWKFbKyslKRIkUitc+QIYOSJk2qrVu36saNGzpz5ox69+6tO3fuxPh+NGjQQLa2turZs6dOnTolf39/ubu7a+/evdEGsS4uLnrw4IGGDx8uf39//f7775o4caLKli0b7YiWiLJmzaqLFy/q2LFjCgwM1Nq1a+Xh4SEp5nOnY8eO8vb2lo+Pj65duyYvLy8jcE0IFxcXPX78WEOHDpW/v78OHjyo0aNHS4o+wA0fFXbhwgU9e/ZM3377rS5evKjRo0fL399fR44cUf/+/VWoUCEjbMqbN6+yZcum1atXG485OTnp8OHDevjwoXG9yJIli6S3IWlQUJCOHTumrl276tWrVzH2S6tWrRQcHKz//e9/8vf312+//WYslh6djh07avv27ZoxY4auXr2qQ4cOadCgQXry5EmUI6Bia58rVy5jBNLhw4d19epVDR06VC9fvlSZMmWMfrt06ZKePHkSY23hvvvuOy1evFgbNmzQ9evXtWTJEu3atcsI7KLSpEkT/fbbbzp58qTJfwS4uLjoyZMn6t+/vy5cuKALFy6oT58+OnPmjPLnzx+neiKK7VoVkY2Njb7++mt5eHhow4YNunHjhrEofqZMmSTFfl0CAADAvw9T8BAjR0dHvXjxQpUrV440haJChQr6+eefow2PYlO7dm2NHj1ajRo1inIaR0hIiHx9fVW/fv0op+c5OjqqcOHCWrVqldzc3DRixAiNGDFCLVq0UKZMmdSrVy/dunXLaD98+HBNmDBBAwYM0MOHD5UtWzb1799fDRs2lPR2OsqqVavUoEEDeXt7R1nzxIkTNWrUKDVt2lQpU6ZUsWLFNHLkSI0YMUI3b96Mcf0RV1dXXblyxbhzWc6cOdW3b19Nnz5dZ86cifQlLK769u0rS0tLDR8+XE+ePFGBAgU0d+5cY+qKt7e3Jk2aZNwNr3z58po0aZJSp04dp+03b95cDx8+1KxZs/TXX3/J1tZWNWvWVP/+/SW9XcuoR48eWrBggaZPn65KlSqpZ8+eWrJkSYKOR3obas2fP18eHh5q3LixrK2t5eTkpO+//z7aKWJJkybVvHnzNGHCBLVr107BwcEqWLCg5s6da7LWVLjMmTNr/Pjx8vT01NKlS5UxY0ZVqVJF7dq1M7mD2rtsbGzk7e2tiRMnGnduK1y4sBYsWBDtqLLMmTNrwYIFmjRpkho1aiRbW1vVqVPHWP8mNj179tTdu3eNKYl58+bV2LFjNWDAAJ05cyba/bZq1UqPHj3StGnT9ODBA5UpU0aNGzeONAIprtKnT6/58+dr7NixatiwobJkyaJWrVpp4sSJ0U6xyp8/vypXrqzevXurb9++xl3qpk2bpkaNGilVqlSqXr26+vXrZ7KNqlWravHixcaUsOLFiytFihRydHQ0whl7e3sNGjRIixYt0rRp05Q5c2bVqVNHWbNmjTTSJqLMmTNr8eLFGjt2rBo3bqysWbOqS5cuJnclfFetWrU0depUzZkzR7Nnz1aaNGnk7OxsfA4S0n7s2LGaOHGievXqpZCQEBUrVkxeXl7GNNOmTZtq4sSJunbtmmrUqBFtbeHCpyN6eHjozp07ypkzp6ZOnaoyZcpE+5pSpUopY8aMSp8+vckaYtmzZ5e3t7emTJmiVq1aydLSUiVKlNCSJUtMpsHGR0zXqjt37pi0HTRokNKmTSsPDw/9/fffypo1q3r27GncFCK26xIAAAD+fSzCEjr3B3hPN27c0FdffaWtW7dGO6oFQMLt3btXefPmNQlGhw4dquvXr2vx4sXx3t7ly5f16NEjlSxZ0njs+PHjatWqlXbv3m3ciQ74mISHlZN2HNbFoFuxtAaAT4Ndtixa0i/6G1X8lz1//lznz59XwYIFo13fE5HRbwnzKfRb+L+lihYtGmtbpuDhH/fXX39p+/btGjJkiCpWrEj4BJjJhg0b1LVrV508eVJBQUFav369Nm7caIz6i69bt27J1dVV69evV1BQkE6cOKFx48apTJkyhE8AAAAAYsQUPPzjHjx4IHd3d+XMmVMzZsz40OUAn6yhQ4dq/Pjx6tatmx4/fqwcOXLof//7X7SL/semQoUKGjx4sObMmaOhQ4fKxsYmxmloAAAAABCOAAr/uEKFCsV65ywA7y9NmjQaP358om7TxcVFLi4uibpNAAAAAJ8+puABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAigAAAAAAACYFQEUAAAAAAAAzIoACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmlTShL9yzZ48OHjyov//+W3379tX58+dVuHBhZcuWLTHrAwAAAAAAwEcu3gFUcHCwunXrpoMHDypVqlR69uyZOnTooOXLl8vPz0/e3t7Kly+fOWoFAAAAAADARyjeU/B+/PFHnTt3TosWLdLhw4cVFhYmSZowYYIyZ84sDw+PRC8SAAAAAAAAH694B1Bbt25V3759VbZsWVlYWBiPZ8qUSV26dNEff/yRqAUCAAAAAADg4xbvAOrx48fRrvNka2ur58+fv3dRAAAAAAAA+HTEO4DKly+ffH19o3zu119/Zf0nAAAAAAAAmIj3IuRdunRR9+7d9fDhQ1WtWlUWFhb6/fff5ePjoxUrVmjKlCnmqBMAAAAAAAAfqXgHUNWrV9ekSZM0ZcoU7dmzR5I0fvx4pU+fXiNGjFCtWrUSvUgAAAAAAAB8vOIdQElS/fr1Vb9+fV25ckUPHz5U6tSplTt3biVJEu8ZfQAAAAAAAPjEJSiACpc7d+7EqgMAAAAAAACfqDgFUAUKFJCFhUWcNmhhYSE/P7/3KgoAAAAAAACfjjgFUN26dYtzAAUAAAAAAABEFKcAqkePHsafb968qQwZMihZsmSR2r18+VLnzp1LvOoAAAAAAADw0Yv3quHVqlXThQsXonzu9OnT+vbbb9+7KAAAAAAAAHw64jQCasKECXr48KEkKSwsTLNmzVLatGkjtTt//rxsbGwStUAAAAAAAAB83OIUQOXOnVs//fSTpLeLjJ89ezbSFDxLS0vZ2Nho0KBBiV8lAAAAAAAAPlpxCqCaN2+u5s2bS5KcnZ01c+ZMFSxY0KyFAQAAAAAA4NMQpwAqol9//dUcdQAAAAAAAOATFacAytXVVcOHD1eePHnk6uoaY1sLCwstXrw4UYoDAAAAAADAxy9OAVRYWFiUf46tLQAAAAAAABCnAKpp06ZKly6dJOnnn382a0EAAAAAAAD4tCSJS6NBgwbpxo0b5q4FAAAAAAAAn6A4BVBMqwMAAAAAAEBCxSmAAgAAAAAAABIqTmtASdKaNWu0d+/eWNtZWFioW7du71UUAAAAAAAAPh1xDqBWrVoVp3YEUAAAAAAAAIgoXgGUvb29OWsBAAD4IHJmzvChSwCAfwzXPAAfQpwDKAAAgE/VqDaNP3QJAPCPehMaKsskLAkM4J/DFQcAAPynhYSEKDg4+EOX8VEJDg6Wn58f/RZP9FvC0G8JE1u/ET4B+Kdx1QEAAP95YWFhH7qEj0pYWJiCg4Ppt3ii3xKGfksY+g3Av02cpuBduHDB3HUAAAAAAADgE8UIKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALOK0yLkUfH399eBAwf0999/q23btrpx44YKFCigVKlSJWZ9AAAAAAAA+MjFO4AKDQ3VsGHDtHbtWoWFhcnCwkK1a9fWrFmzdP36dXl7eytLlizmqBUAAAAAAAAfoXhPwZs1a5Z8fX31ww8/6MCBAwoLC5MkDRgwQKGhoZo6dWqiFwkAAAAAAICPV7wDqLVr16pnz55q2rSp0qRJYzxesGBB9ezZUwcOHEjM+gAAAAAAAPCRi3cAdffuXRUsWDDK5zJnzqzHjx+/d1EAAAAAAAD4dMQ7gMqRI4f27NkT5XNHjx5Vjhw53rsoAAAAAAAAfDrivQj5N998o2HDhunVq1eqWrWqLCwsdO3aNR05ckQLFiyQu7u7OeoEAAAAAADARyreAVTz5s11//59/fTTT1q+fLnCwsLUt29fWVlZqUOHDmrVqpU56gQAAAAAAMBHKt4BlCR16tRJrVu31vHjx/Xo0SOlTp1axYoVM1mUHAAAAAAAAJASGEBJUqpUqVSpUqXErAUAAAAAAACfoDgFUM7OzrKwsIjTBi0sLLRz5873KgoAAAAAAACfjjgFUGXKlIlzAAUAAAAAAABEFKcAavz48ZEee/PmjSwtLSVJwcHBev36tWxsbBK3OgAAAAAAAHz0ksT3Ba9fv9bw4cPVokUL47ETJ07IyclJEyZMUGhoaKIWCAAAAAAAgI9bvAOo6dOna+PGjapbt67xWKFChdS/f3+tWrVK8+fPT9QCAQAAAAAA8HGL913wfH199f333+vrr782HkuTJo3atWunpEmTasmSJfruu+8StUgAAAAAAAB8vOI9AurBgwfKnj17lM/lzp1bt27deu+iAAAA/kncbCV+LCws9Nlnn9Fv8US/JQz9ljD0W8LQbwlDvyXMf63f4j0CKnfu3Nq+fbvKly8f6blff/1VOXLkSJTCAAAA/gnJkiXTZ5999qHL+Kh89tlnKlSo0Icu46NDvyUM/ZYw9FvC0G8JQ78ljLn67U1oqCyTxHu8kdnFO4BydXWVu7u7Hj58qOrVqyt9+vS6f/++fvvtN23dulXjxo0zR50AAABmM2TXal19cOdDlwEAAPBecqXNqB+qNf/QZUQp3gFUo0aN9OzZM82aNUs7duwwHk+bNq2GDh2qRo0aJWZ9AAAAZnf1wR1dvPvXhy4DAADgkxXvAEqSWrduLRcXF129elUPHz5U6tSplTt3biX5Fw7xAgAAAAAAwIeVoABKertYVu7cuROzFgAAAAAAAHyC4hRAFSxYUCtXrpS9vb0KFCgQ4wrtFhYW8vPzS7QCAQAAAAAA8HGLUwDVrVs3Zc6c2fjzf+UWgQAAAAAAAHh/cQqgunfvbvy5R48eMba9devW+1UEAAAAAACAT0q8Vw0vWLCgTp8+HeVzx44dU+3atd+7KAAAAAAAAHw64jQCasGCBXr+/LkkKSwsTKtXr9bevXsjtTtx4oSSJUuWuBUCAAAAAADgoxanAOrly5eaMWOGpLeLjK9evTpSmyRJksjGxkZdunRJ3AoBAAAAAADwUYtTANWlSxcjWCpQoIBWrVole3t7sxYGAAAAAACAT0O814AqV66cnj17Zo5aAAAAAAAA8AmKdwB14sQJWVhYmKMWAAAAAAAAfILiHUBVrFhRGzdu1KtXr8xRDwAAAAAAAD4xcVoDKqLkyZNr48aN2rp1q/LkySNra+tIbZYsWZIoxQEAAAAAAODjF+8A6tatW3JwcDB+DwsLM3n+3d8BAAAAAADw3xbvAOrnn3+O8vHbt29r9erVWrNmzXsXBQAAAAAAgE9HvAOod+3bt08rVqzQnj179Pr1a2XPnj0x6gIAAAAAAMAnIkEB1P3797VmzRqtWrVKQUFBSpUqlRo3bqyGDRuqVKlSiV0jAAAAAAAAPmLxCqAOHz6slStXaufOnXrz5o1KliypoKAgzZw5U2XKlDFXjQAAAAAAAPiIxSmAWrRokVauXKmrV68qR44c6tq1qxo3bixra2uVKVNGFhYW5q4TAAAAAAAAH6k4BVDjx4+XnZ2dlixZYjLS6cmTJ2YrDAAAAAAAAJ+GJHFpVLduXV27dk2dOnVS165d9csvv+j169fmrg0AAAAAAACfgDiNgJoyZYqePn0qX19f+fj4qEePHkqbNq2qV68uCwsLpuABAAAAAAAgWnEaASVJqVKlUqtWrbR69Wr5+vqqYcOG+vXXXxUWFqb//e9/8vDw0OXLl81ZKwAAAAAAAD5CcQ6gIsqXL5/c3d21Z88eeXp6Knfu3Jo3b57q16+vBg0aJHaNAAAAAAAA+IjFaQpetC9OmlQ1atRQjRo1dPfuXa1bt07r1q1LrNoAAAAAAADwCUjQCKioZMiQQR07dtSWLVsSa5MAAAAAAAD4BCRaAAUAAAAAAABEhQAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAigAAAAAAACYFQEUAAAAAAAAzIoACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFPAe2rZtKzs7u2h/7t+/r0GDBqlcuXJ68+ZNlNv46aefVKpUKb148SLe+3/48KHatWunokWLqlmzZu97OAkSEhKinj17yt7eXhUqVFBoaGisr3nw4IFWr179D1QXP23btpW7u3uibePIkSOys7NTYGBgYpT3r5IYfRUfnp6ecnZ2Nn7/888/tXv37gRv71N5b5ydneXp6fmhy4jVH3/8oWPHjsW5vbu7u9q2bWvGigAAAPBPS/qhCwA+drVr19bgwYOjfC5t2rRq2rSpfHx8dODAAVWqVClSm/Xr16tevXpKkSJFvPe9ceNGHTt2TMuWLVPmzJnj/frEsG/fPm3fvl1z5syRnZ2dkiSJPdeeOHGiAgMD1bx583+gQnwK3Nzc1Lp1a+P3Tp06qXHjxqpSpUqCtufg4KD9+/crXbp0iVThh7FmzRolT578Q5cRKxcXF40bN06lSpX60KUAAADgAyGAAt5TihQplDFjxmifL1WqlHLmzClfX99IAdTJkycVEBCgKVOmJGjfjx8/VsaMGWVvb5+g1yeGx48fS5IqV64sCwuLOL0mLCzMnCXhE5QyZUqlTJky0baXLFmyGD+3H4uPPUADAADAfwdT8IB/QNOmTbVz504FBwebPL5u3ToVKFBARYoUkSQFBASoffv2KlmypBwcHNS+fXtdvHgxym26u7vL09NTN2/elJ2dnXx8fBQaGqo5c+aoZs2aKlKkiEqUKKEOHTro+vXrxuuePXum0aNHq0KFCnJwcFCbNm109uxZ4/njx4+rdevWsre3V5UqVTRy5Eg9ffo0yho8PT2NaVgFChSQp6enfHx8ZGdnZ9Iu4mPu7u5at26djh49ajwW1XSud6eyFSpUSHPnzpWjo6OaNGmi0NBQ3b59W3369FGpUqXk6Oiozp07KyAgIMb34vTp02rXrp0cHBxUrlw5DR8+3OR9efbsmQYNGqRSpUqpZMmScnd31/Pnz43nd+7cqebNm6t48eIqWrSomjRpon379sW4z3BhYWGaN2+eqlWrpmLFiqlhw4bauHGj8Xz4ce7Zs0f16tVTkSJFVKtWLe3cudNo8+bNG02dOlUVKlRQ8eLF1bNnT40ZM8ZkupK/v786duwoBwcHVahQQf369dOdO3eM5+Nznklvp1mOHTtWTk5OKlmypCZNmhRpquX77tPOzk5Lly5VixYtVLRoUdWvX1+7du0yno84Bc/Z2VlBQUGaMWOGcdxPnjzR0KFDVbZsWZUsWVKurq46c+ZMtMf07hQ8Z2dneXl5qUePHnJwcJCjo6N++OEHvX792nhNTOdO27ZtNXToUDVv3lylSpUy3te1a9eqdu3asre3V+3atbV48WKTvjt27JhcXV1VokQJFSlSRLVr19aGDRuM5+/du6eePXvK0dFR9vb2+vrrr3X06FHj+YhT8Dw9PdWuXTvNnTtXlSpVUtGiRdWmTRv5+/sb7e/fv2/ymZk8ebJcXV2jncYX1VTFdx9r27atxowZo759+6pYsWKqVKmS5s6dawTN4Z/zQYMGGZ/p2I77XWPGjFHp0qV1+vRpSfF/vwEAAPDhEUAB/4BGjRrp5cuXJl+oQ0JCtHXrVpNpaH379lXmzJm1du1arV69WkmSJFH37t2j3ObgwYPl5uamLFmyaP/+/apTp46WLFkiLy8vubu7a/v27Zo5c6YCAgI0fvx443W9e/fW3r17NW7cOK1fv17Zs2eXm5ubHj16pAsXLujbb79VxYoVtXHjRk2ePFnnzp2Tm5tblKOW3Nzc9L///U+StH//frm5ucXaF4MHD1bt2rWNKVBx9ebNG+3Zs0crV67UmDFj9OLFCyN88Pb21s8//6y0adOqRYsWun37dpTbuHHjhr755htlypRJK1eulKenpw4cOKCRI0cabXbs2KFMmTLJx8dHEydO1JYtWzRv3jxJ0tmzZ9WjRw/VrVtXvr6+WrVqldKlS6eBAwcqJCQk1mOYOnWqli9frqFDh8rX11eurq4aMWKEli5danKckyZN0uDBg7Vp0yblz59f33//vZ49eyZJmjx5slauXKnhw4dr7dq1ypgxo37++Wfj9bdv35aLi4ty5MihNWvWaPbs2Xr69KlatmxpBGnxOc8k6YcfftCWLVs0fvx4rVixQrdu3TJZzyex9jl58mQ1bNhQGzZsUOXKldW9e3cdP348Uj1r1qxRlixZ5ObmJk9PT4WFhaljx466ceOG5syZo1WrVql48eJq1aqV/Pz8Yn1fwnl4eKh06dLauHGjBg4cKG9vb23atElS3M6d1atXy9XVVcuWLVPFihW1cuVKTZw4Ud27d9fmzZvVu3dvzZs3T5MnTzb6rX379ipatKjWrVun9evXy97eXoMHD9bdu3clSSNGjNDLly/l7e0tX19f5cqVS127djUJRSM6duyY/vjjD82dO1fLli3TvXv3jBpDQ0PVqVMnXbt2TfPnz9eCBQt08uRJk0AroZYvXy4bGxv5+PioT58+mjlzpvG5Cf+c/+9//9PgwYPjdNwRTZw4URs2bNDChQtlb2+faO83AAAA/llMwQPek6+vr7Zv3x7p8erVq2vSpEmSpEyZMqlSpUry9fVVvXr1JEm//vqrXrx4ofr16xuvuX79usqVK6ds2bLJyspKY8eO1ZUrVxQaGhppbSUbGxtZW1vL0tLSmEr05ZdfasKECapataokKVu2bKpVq5a2bdsmSbpy5Yr27t0rLy8vVahQQdLbL7ipU6fWgwcP5OXlpfLly6tz586SpJw5c2rKlCmqXr26jh49KkdHR5MaUqZMKRsbG0mK83QmGxsbpUiRQlZWVvGeAuXm5qacOXNKevtl//Hjx5o0aZKSJn17KRszZoyOHDmiVatWqUePHpFev2rVKqVJk0Zjx441XvPDDz/oxIkTRht7e3v16dNH0tv+LF++vDFCzNLSUkOHDpWLi4vR3tXVVR07dtS9e/eUNWvWaGt//vy5Fi1apB9//NFYt+jLL79UUFCQvLy8TNY36t27t5ycnCRJXbt21fbt23Xp0iUVKFBAy5Yt06BBg1SjRg1J0pAhQ0zqX758ubJkyaIhQ4YYj02bNk1ly5bVtm3b1KRJk3idZ0+fPpWPj4+GDx+uypUrS5LGjh2rw4cPJ/o+mzRpYvRD//79dfToUXl7e6tEiRImNaVLl06WlpaytrZWmjRpdOjQIZ08eVKHDx9WmjRpJL0NvI4fP64lS5aYBLAxqVChglxdXSVJ2bNn188//6zjx4+rUaNGcTp3ChYsaPJ5njVrlrp06aK6desa23z69KlGjhypXr166eXLl+rRo4fat29vTF/97rvvtH79egUEBChDhgy6fv268ufPr+zZsytFihQaPHiw6tevL0tLyyiP4fXr15o4caJsbW0lSV9//bVxHTp69KhOnz6trVu3Knfu3Mb7FHFx94TKlSuXRowYIQsLC+XJk0f+/v5asmSJOnbsaHzObWxsZGNjowcPHsR63OGmTp2qtWvXatGiRSpUqJAk6fDhw4nyfgMAAOCfRQAFvCdnZ2f1798/0uPW1tYmvzdr1ky9evXS/fv3lS5dOq1fv141atQwvihKUp8+fTR27FgtW7ZMZcqUUcWKFVWvXr04LewdXsupU6fk4eGhq1ev6urVq7p8+bKxQPmlS5ckScWLFzdekzx5cg0aNEiS5Ofnp2vXrsnBwSHStv39/SMFUP+08PBJelvro0ePVLp0aZM2L1++NJlyFNGlS5dUuHBhI0CQpLJly6ps2bJR7kOSbG1tFRQUJOltwGBra6u5c+fqypUrunbtmi5cuCBJ0d7lMNzly5f18uVL9evXz+T9fP36tUJCQkzughgeDkhSqlSpJEmvXr2Sv7+/Xrx4YfL+WVhYqGTJkkYdfn5++vPPPyO9hxH7JT7n2dWrV/Xq1SsVLVrUeCx58uRGGJCY+3z3/HJwcNCBAwei6k4T586dU1hYmBG8hgsJCdHLly9jfX24PHnymPxuY2OjV69eSYrbuZMjRw7jz/fv39etW7f0448/ysPDw3g8NDRUL1++VGBgoPLkyaMmTZpoyZIlunTpkq5fvx7pfOrevbsGDBig7du3q2TJkqpQoYLq1asX7cLjGTJkMLmmRDwGPz8/2drampxfGTJkUK5cueLcR9FxdHQ0WQPOwcFB8+bN04MHDyKtU/Xll1/GetzS2zXyfv/9d6VLl84k3E2s9xsAAAD/LAIo4D2lTJnS5ItndKpUqaI0adJo69atql27tvbt26f58+ebtGndurVq1aqlPXv26NChQ5o+fbp++uknrV+/3mRUQHTmzp2rmTNnqnHjxnJyclK7du20a9cubd68WZJMvjxHJTQ0VPXr1zdGQEX0PosdxxbORCXi2jvhIn7pDg0NVa5cufTTTz9Favdu+BcutuOXFO3IEuntCJL27durSpUqKlmypOrXr6/g4GB169Yt1u2GT2GcNm2aSQAQLlmyZFH+OeLrw+uPaRH30NBQlS1bVsOHD4/0XPhotficZ+Ghwrv7jNiXibXPd9+fN2/exCl8DQ0NVapUqeTj4xPpuaj6MjrR9XtUtUUl4p0sw9d5GjRokMqVKxepbdasWXX58mW5uLiocOHCKleunL766iulTZvWZFpujRo1tG/fPu3bt08HDx7UwoULNWPGDK1atUr58uWL0zGEs7S0jLR2V0JE9Xl+t3/C9xPV5ykuxy29/RzPnj1b/fr10w8//GDcrCGx3m8AAAD8s1gDCviHJE2aVA0aNNDWrVu1bds2ZcmSxWT0xL179zRq1Ci9evVKTZo00aRJk7Rx40bduXMnzmu0zJ49W926ddOIESPUsmVLFS9eXAEBAcaX6PARHhEX6339+rWcnZ21bds25cuXT5cvX1aOHDmMn9evX2vcuHH666+/4lSDlZWVJJksXP7uwuDv3i3PysrKpH1oaKhu3LgR437y58+vmzdvysbGxqj1888/15QpU/T7779H+Zq8efPKz8/P5Av0L7/8Imdn5ziNnFiwYIEcHR2NxZ7Lly9v9Etsd/bLnTu3kiZNqps3b5r07549e+Tl5RWnoCVHjhxKkSKFTp48afL4qVOnjD/ny5dP/v7+ypo1q7EPW1tbjR07VpcuXYr3eZYrVy4lT57cZC2m169fGyNWEnOf7y4ifeLECRUuXDjWfsmfP7+ePn2qV69emfTtvHnzTNZdex/xPXfSp0+vdOnS6caNGyY1nTt3TtOmTZMkrVixQunTp9fChQvVsWNHVa5c2VgDKSwsTCEhIRo3bpxu3LihOnXq6IcfftDOnTuVJEkS7d69O97HUKBAAT158sRkhOCDBw907dq1aF8Tl8+zFPm9O378uL744guT0VjhYjvucPnz55eDg4NGjBihTZs2GYvx/xPvNwAAABIfARTwnl68eKE7d+5E+fPuwtTNmjXT8ePHtXr1ajVt2tQkiLG1tdXu3bs1ZMgQnT9/Xjdu3NCKFStkZWVl3CUvNlmzZtWBAwd0+fJlXblyRVOnTtWOHTuMOnLlyqWvvvpKI0eO1OHDh3X16lUNHTpUL1++VJkyZeTm5iY/Pz+NHDlS/v7+OnHihPr166eAgIBIU9OiU7x4cVlYWMjT01OBgYHaunWr1q1bZ9LG2tpaf//9txEyFS9eXAcOHNDevXt17do1jR49Wo8fP45xPw0aNJCtra169uypU6dOyd/fX+7u7tq7d2+ku/CFc3Fx0YMHDzR8+HD5+/vr999/18SJE1W2bNlopzRFlDVrVl28eFHHjh1TYGCg1q5da0yvim0RchsbG3399dfy8PDQhg0bdOPGDa1Zs0aTJk1SpkyZYt23JH322Wdq27atpk+frp07d+rq1auaMGGCSQDl4uKiJ0+eqH///rpw4YIuXLigPn366MyZM8qfP3+8z7OUKVOqTZs2mj59unbs2CF/f38NHz7cZKH3xNrn4sWL5evraxzXxYsX9c0330TZFylTplRAQIDu3r2rihUrqmDBgurTp48OHz6sa9euady4cfLx8Yk0rS6h4nvuWFhYqGPHjvr555/l7e2t69ev65dfftGIESOUIkUKJUuWTFmyZNGtW7e0Z88eBQUFaceOHRoxYoSkt+dTsmTJdObMGQ0dOlQnT55UYGCgfHx89Pz58yinycbG0dFRxYoV08CBA3Xy5ElduHBB/fv3V3BwcKRQOFz+/PllbW2tuXPn6vr169q3b58WLlwYqd2xY8c0ffp0BQQEaM2aNVq6dKk6dOhgPG9tbS1/f389ePAg1uN+V6VKlVSvXj2NGDFCjx49+kfebwAAACQ+puAB72nr1q3aunVrlM95eHioVq1axu958uSRvb29Tp06FWnqWNKkSTVv3jxNmDBB7dq1U3BwsAoWLKi5c+fqyy+/jFMtEydO1KhRo9S0aVOlTJlSxYoV08iRIzVixAjdvHlTn3/+ucaOHauJEyeqV69eCgkJUbFixeTl5aV06dIpXbp0mj9/vjw8PNS4cWNZW1vLyclJ33//fZyntmTPnl0jR47UnDlztGzZMpUsWVIDBw7U999/b7Rp1KiRfvnlF9WrV087duyQm5ubrl+/rl69eilZsmRq1qyZ6tatG+OoIhsbG3l7e2vixIlq37693rx5o8KFC2vBggXRfgnNnDmzFixYoEmTJqlRo0aytbVVnTp11Ldv3zgdW8+ePXX37l1jimLevHk1duxYDRgwQGfOnIn1y++gQYOUNm1aeXh46O+//1bWrFnVs2dPky/qsenVq5devXqlIUOGKDg4WFWrVlW1atWMUTjZs2eXt7e3pkyZolatWsnS0lIlSpTQkiVLjGmU8T3P+vXrp+TJk2vUqFF69uyZateubbJwdWLt8+uvv9aiRYuMBde9vLxUoECBKGtq27atJkyYoD///FMbN2403tfevXsrODhYefLk0YwZM4zF3N9XQs4dNzc3JU+eXD///LPGjx+vDBkyqEWLFurZs6ektwvYX7lyxbiLYs6cOdW3b19Nnz5dZ86cUaVKlTR16lSNGzdOXbp00ZMnT5Q7d25NnjxZpUqVStBxeHp6atSoUWrXrp2SJ08uFxcXXblyxRjp9K5UqVJp0qRJmjx5surUqaMCBQro+++/jzTttFq1avL391eDBg2UKVMmDRo0SK1atTLpi/nz58vf31/Tp0+P9bjfFX73zB9++EGTJk0y+/sNAACAxGcRFtu8EQDAv8Yvv/yikiVLmqzJ5ebmpixZsmjs2LEfsLL3Y2dnp3HjxqlJkyYfupRP1v3793Xq1ClVqFDBCJxCQkLk6Oio4cOHq1GjRgnabtu2bZUtW7aP9u5z4dMHx1/cp4t34zbVGAAA4N/KLkNWLW3W9R/bX/i/pSLetCg6jIACgI+Il5eXli1bpoEDBypVqlTatWuXDh8+rAULFnzo0vAvlzRpUvXp00dff/21WrVqpVevXsnLy0vJkiWLctQRAAAAkJhYAwoAPiKTJ09WypQp1a5dO9WrV0++vr7y8PAwWdAeiErq1Kk1e/ZsnTx5Uo0aNVLLli119+5dk6mSAAAAgLkwBQ8AAPxnMQUPAAB8Sv7NU/AYAQUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmRQAFAAAAAAAAsyKAAgAAAAAAgFkRQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAigAAAAAAACYFQEUAAAAAAAAzIoACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmRQAFAAAAAAAAsyKAAgAAAAAAgFkRQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZpX0QxcAAADwoeVKm/FDlwAAAPDe/s3/piGAAgAA/3k/VGv+oUsAAABIFG9CQ2WZ5N834e3fVxEAAMA/KCQkRMHBwR+6jI9KcHCw/Pz86Ld4ot8Shn5LGPotYei3hKHfEsZc/fZvDJ8kAigAAACFhYV96BI+KmFhYQoODqbf4ol+Sxj6LWHot4Sh3xKGfkuY/1q/EUABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAigAAAAAAACYFQEUAAAAAAAAzIoACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKz+j737jq/xfPw//g4Su0FttUuMCIkZMROKoCL2SolZq6gRn9pqb0GtWLVHxBalqD1be4aYbWqPGkHO74/8cn9zZCKnqfb1fDzyIPe5znVf93Xf507OO9d1HQIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAID/PCsrq8RuAgAAwL8aARQAAPhPs7GxUcqUKRO7GZKkMFNYYjcBAADAIpIldgMAAAASm//52brz7HaitiFTquzyLNQhUdsAAABgKQRQAADgP+/Os9v64+n1xG4GAADAvxZT8AAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALCo/3QA1apVK9nZ2cX4df/+ffXv31/ly5fXmzdvoq3jhx9+UKlSpfTixYv32r+Pj8+HHoYmTZokOzs7LVy48IPris6lS5e0a9euD6rD399fdnZ2xveurq7y9fX9wJb9n0OHDkU5f4UKFZKTk5OaNm2qAwcOJNi+PsSzZ8+0ZMkSi+9n586dunz5sqT/65ubN29KSrjrLrHcvHlTdnZ2OnToUGI35YPF9jr4WI/z7dc6/n1evXqlBQsWGN/7+vrK1dU18RokyWQyae3atbp3716itgMAAAAx+08HUJJUq1Yt7d27N9qv9OnTq0GDBrp375727dsX7fMDAgJUp04dpUiR4p337evrq+++++6D2h8WFqaAgADlzZtXK1as+KC6YtKxY0edOnUqQetcvXq1vL29E7ROSVq1apVx/nbv3q25c+cqWbJk6tixo27dupXg+3tX8+bNk5+fn0X3cevWLXXq1CnGN2IJcd3B8rJly6a9e/fK0dExsZvyTtzd3bV3797EbgYsaOPGjRo1apTxvbe3t1avXp2ILZKOHDkiHx8fPX/+PFHbAQAAgJj95wOoFClSKFOmTNF+WVlZqVSpUsqTJ482bNgQ5bm//fabgoOD1bBhw/fad7p06ZQ2bdoPav/evXv1xx9/qE+fPgoKCtKRI0c+qL6/S4YMGZQ6dWqL1Btx/rJkySInJyeNHTtWL1++1I4dOxJ8f+/KZDIl+j4S4rqD5SVNmlSZMmWSjY1NYjflnUTcU/Hv9fY9JnXq1MqQIUMitSbc33FvBQAAwIf5zwdQ8dGgQQNt3749yl9W165dq0KFCsne3l6SFBwcrLZt26pkyZJydHRU27ZtdeHChRjrjTwVyt/fX9WrVzf+tbe3l6enp44dOxZr2/z9/VWwYEG5uroqW7ZsWr58eZTH354O8/a2kydPqnnz5nJ0dFTp0qXVrVs33b59W1L4FKFbt25p2rRpatWqlSTJzs5OU6dOVdWqVVWhQgUFBwfr9u3b6tmzp5ydnVW0aFFVqlRJ48aNU1hYWLTtjjz1KCwsTLNmzVKNGjVkb28vJycntWvXTtevXzfK+/j4vPcUj+TJk0uSkiVLZmw7fvy4WrRoIQcHB1WpUkVDhw7V06dPzdo3Y8YMtW3bVg4ODqpevbpWrVplVu+vv/4qLy8vlSxZUmXLllX//v314MEDszrGjBkjd3d3lS1bVq1atdK0adN069Ytsylxb4tPvW9P24rYdvPmTbm5uUmSvLy8op3e9a7XXWhoqMaNG6eKFSvK0dFRjRs3Nhvh8ubNG40bN06VK1eWvb29atasqWXLlsVwNuIuHxoaqjFjxsjV1VX29vYqU6aMvvnmG92/fz/GOtesWaNatWrJwcFBtWrV0sKFC82uvYCAANWuXVvFihVTxYoVNWLECIWGhsZY39viur7j049PnjxRv379VKpUKZUrV07z58+PdZ9vT8Fr1aqVxowZo969e8vR0VEVKlTQsmXLdOzYMdWrV0/FixdX06ZNFRwcbPb8iFGaDg4Oaty4sVmbfHx81L17d3l7e8vJyUlz5syRJO3atUuNGzc29jNq1ChjmrGPj48aNWpk1tZbt26pUKFC2r9/f5T7i52dnVavXq3WrVvLwcFBFSpU0LRp08yev2HDBtWqVUvFihVTo0aNtGjRolin8ZlMJi1cuFA1atSQg4ODateurY0bNxqP//777+rdu7dcXFxUokQJtW3bVufPnzc7bh8fH40ZM0bOzs4qXry4OnbsqJCQEKNMbNdMfO6rrq6umj17tjp06KDixYvL1dVV27dv1/bt21WjRg2jXZFHKgYFBal9+/ZGv3/77be6c+eO8XirVq00cOBANWrUSKVKldL69euj9E18Xo+xvV4irpvAwEA1atRI9vb2cnV1NUbY+vv7q3///sa5PXTokNkUvIjnb9q0SR4eHipWrJg8PT0VFBSk6dOnq3z58ipTpoyGDh1qFhrt3LlTnp6exv128uTJZq/R2K6jQ4cOycvLS5Lk5uYmf3//KP0CAACAxEcAFQ8eHh5RRtCEhoZqy5YtZm/EevXqpSxZsmjNmjVatWqVkiRJoq5du8Z7P7///ruWL1+ucePGae3atUqZMqV8fHxi/Mvuw4cPtWPHDtWsWVNWVlaqVauWAgMDY32j/rY3b96oY8eOKl26tNavX68FCxbo9u3b+t///icpfKpc1qxZ5e3tbRZmLF26VFOnTtW0adOUJ08eff3113ry5Inmz5+vrVu3ytvbW3PnztXPP/8cZxsWLVokPz8/+fj4KDAwUNOnT1dwcLBGjx5tlPnuu+/ea4rHnTt3NGzYMKVJk8YIZs6fP682bdqoYsWKWr9+vcaPH68zZ87I29vbrK9nzJghR0dHBQQEqEWLFho0aJA2b94sKTy0a9WqlQoUKKCVK1dqypQpOnHihNq2bWu2XtjixYs1YMAAzZ07VzNmzJC3t7eyZs2qvXv3Klu2bFHaG996Y5ItWzYjKPP19Y3XNMe4rrv+/ftr3759Gj9+vNauXatatWqpU6dOxrpgS5cu1datWzVp0iQFBgaqZcuWGjJkiI4ePRrt/uIqP3bsWG3btk2jR49WYGCgRo8erYMHD+qHH36Itr4VK1Zo7Nix6tq1qzZt2qQePXpozpw5Gj9+vKTw8z1gwAB169ZNgYGBGjlypNatW6e5c+fG2TcR4nN9x9WPPXr00MmTJzVz5kzNnz9fu3bteudpoT/++KMKFy6s9evXy83NTd9//72GDBmi//3vf1q8eLH+/PNPTZgwwew5o0ePVqdOnbR27Vrly5dP3t7eunHjhvF4YGCgypcvrzVr1qhOnTr66aef9PXXX6tKlSry9/fX0KFDtXnzZvXq1UuS5OnpqZMnT5oFxBs2bFDWrFlVrly5aNs9ZswY1a9fX5s2bVLLli3l6+trjNbcuXOn+vXrp4YNG2r9+vXy9PQ0zl1M5s6dq0mTJqldu3bauHGjmjZtqr59++rgwYN6+vSpmjVrppCQEP3www9avny5UqRIoZYtW5r198aNG/Xw4UMtXrxYc+bM0ZkzZzR58mRJCXPNSOH3EHd3d23YsEGFChVS3759NXPmTI0bN04zZ87UqVOnjNAvJCREzZs3V+7cubV69WrNnDlTT58+VZMmTfTs2TOjzlWrVsnLy0tLly5VxYoVo+wzrtdXXK+XCKNGjVKnTp20ZcsWValSRUOGDNGNGzfk7u5u/HyIbYropEmT9L///U+rVq3S48eP1axZMwUHB+vHH39Uz549tXTpUu3cuVOS9Msvv6hHjx5q3LixNm7cqMGDB2vLli3q06ePWZ0xXUeOjo7Gz6dVq1bJ3d39nc4TAAAA/h7J4i7y77ZhwwYFBgZG2V6tWjWNGzdOkpQ5c2ZVqlRJGzZsUJ06dSRJP//8s168eKG6desaz7l+/brKly+vHDlyyNraWiNHjtSVK1cUFhamJEnizvpevXqloUOHqnDhwpKkNm3aqEuXLrpz544yZ84cpfzGjRsVGhqq2rVrS5Jq166tefPmyd/fX+3atYvX8T99+lQPHjxQ5syZlSNHDuXMmVOTJ082/iqfIUMGJU2aVKlSpVK6dOmM59WrV0/FihWTJL148UL16tVTrVq1jFCldevWmjNnji5cuKBq1arF2oZcuXJpzJgxqlq1qiQpR44cqlmzprZu3WqUie+UsTp16sjKykqSjMCmdOnSWrJkibJkySJJ8vPzk4uLizp16iRJypMnjyZMmKBq1arp8OHDKlu2rCSpQoUKRoCYL18+nThxQgsXLpS7u7vmzZsnOzs7DRw4UJKUP39+TZw4UfXq1dPevXtVuXJlSVLlypVVvnx5o32pUqUyplZFJ771xiRp0qTGVBhbW9t4TXOM7bp7/vy5Nm7cqICAALPHz58/Lz8/P1WpUkXXr19XqlSp9Nlnnylz5sxq2bKl8uXLp7x580a7v7jKFytWTDVr1lSpUqUkhV8P5cuX18WLF6Otb8aMGfr666+N10HOnDn19OlTDR06VN98841u3rwpKysr5ciRQ9mzZ1f27Nnl5+enNGnSxNk3Uvyv79j68enTp9q7d68WLFhgHNeECROMaz6+ChcurLZt20qSWrZsqeXLl6tVq1bGNVurVi1t377d7DkdOnQw7lvDhw/XwYMHtXLlSn377beSwq+TyPeL7t27q3r16urcubMkKW/evDKZTOrSpYsuX76s0qVLK2fOnFq/fr3x+tiwYYPq1asX433Ow8ND9erVkyR16tRJfn5+On78uEqXLi0/Pz/VrFnTOK68efMqODjYbJHryCJGP3l5eRl/AGjVqpVevHih169fa/369Xrw4IH8/f2N10LE63vJkiXq27evpPB7yrBhw2Rtba38+fPL3d1du3fvlqQPvmYiVKlSRR4eHpKkxo0ba8eOHerZs6ccHBwkSeXLl9elS5ckScuWLVPWrFk1YMAA4/mTJ09WuXLltHXrVnl6ekoKvwYi/9x5W1yvr7heLxFat25thPY9e/bUkiVLdOLECdWpU8e4H8c21dLb21tlypSRJFWvXl0//vijhg0bppQpUyp//vzy9fXVpUuX5OrqqpkzZ6px48Zq2rSppPCfCUOHDtVXX32lmzdv6rPPPpMU+3Vka2srKfxn1vusyQgAAADL+88HUK6ururdu3eU7alSpTL7vmHDhsY0oAwZMiggIEDVq1c3fumVwn9JHzlypJYuXaoyZcqoYsWKqlOnTrzCpwj58+c3/h/xS/6rV6+iLbtmzRoVLVpUefLkkSTZ29srT548Wrlypdq2bWsEMbGJePM5fPhwTZ06VeXKlVPlypVVq1atWJ+XO3du4/8Rowu2bt2qkydP6tq1a7pw4YLu3r0b4xS8yFxdXXXixAlNmTJFV69e1dWrV3X58mUjMHoXs2fPVpYsWfT06VPNnj1bJ06cUOfOnVWoUCGjzNmzZ3Xt2rVo/3IfFBRkvJmP+DeCo6OjMern4sWLcnFxMXu8UKFCSps2rS5cuGAERZH7KT7iW29Ci+m6O3v2rCSpefPmZuVfvXqlTz75RJLUokULbd++XZUrV1bhwoXl4uKi2rVr69NPP412X3GVr1evnvbv36/x48crODhYV65c0dWrV43gJrL79+/rjz/+0MSJEzVlyhRje1hYmF6+fKmbN28aUwcbNmyozz77TC4uLnJzczOmzsblXa7vmPoxIjyLCG0lKWPGjMqZM2e82hAhV65cxv9TpkwpSWZ1pEiRIsr9IvJ1bG1tLXt7e7Mw7+1r9OLFi0Y4ESEiSLh48aI+//xzeXh4aMOGDeratavOnj2ry5cva8aMGTG2O3K/SOF9E9HOM2fO6IsvvjB7vHTp0jEGUA8ePNCdO3dUvHhxs+3t27eXJA0ZMkR58uQxW5MoRYoUcnBwMDvuXLlyydraOto2feg1EyFy30acr8jnMEWKFEbYf/bsWV26dCnKfenly5cKCgqKts7oxPb6is/rJWLK8rv8LIrr2FOlSqWMGTMafRBx7BFT7M6ePauTJ0+ajXKNGDkYFBRkBFCxXUcAAAD45/vPB1CpU6eOV0hQpUoVpUuXTlu2bFGtWrW0Z8+eKNMxWrRooZo1a2r37t06cOCApk6dqh9++EEBAQHKmDFjvNoT3YLD0U3BO3/+vM6ePSsrKysVKVLE2B4WFiaTyaT9+/dHCTIivD2Vq3fv3mrevLnR7uHDh2vu3LkKCAiIcQHkyH9hfvbsmVq2bKkXL16oZs2aql+/vhwcHNSiRYt4HfPs2bM1ffp01a9fX87OzmrdurV27NihTZs2xev5kWXPnt14szJx4kS1a9dOHTp0kL+/v3Gew8LCVLduXWMEVGSR37RGXjMq4nkRYWJM0yJNJpPZm9p3/Ut8fOt92+vXr99pP2+L6bqLaM+SJUuijKaK6Is8efJo27ZtOnz4sPbt26ddu3Zpzpw5GjVqlOrXrx+l3rjKDxo0SIGBgfLw8JCrq6u6dOkiPz8/s/V5IkQEQP379zcbaRYhW7ZssrGx0aJFi3T27FnjExI7deokDw8Ps0/yism7XN8x9WNEGPx2YPX2NRaX6K6BuALut/fx5s0bs+e8fY1Gdw1GtDuirvr162vatGk6deqUNm/eLCcnp1jvo7Hd15IlSxavoDpCbK+DmNovhR9D5L6IbXH35MmTv/M1E90U2ejOb0x/GAgLC1O5cuU0ePDgKI9FHgEa1z0lttdXxJS92F4vf/75p6T4/yyKydvHHtt1GhYWpnbt2kV7v4g8yupD2wQAAIDExRpQ8ZQsWTJ9+eWX2rJli7Zu3RplvZN79+5p2LBhevXqlTw9PTVu3DitX79ed+7c0eHDhxO8PatXr5a1tbWWLl2qgIAA42vZsmWytrY2FoyNeLMWeYHtiEWKJenKlSsaPHiwPv30UzVr1kxTp07V3LlzFRQUZLZob2z27t2rM2fOaNGiRerevbvc3d2VJk0a3bt3L15vDmbOnKkuXbpoyJAhatKkiUqUKKHg4OAPfmORNGlSjR49WkmSJFG/fv2MN7kFChTQ5cuXlTt3buPr9evXGjVqlH7//Xfj+adOnTKr7/jx40bYZ2dnF2WB+PPnz+vp06dR/kofWVyj0uJTr7W1tdn5fPr0qdlCxvEZ+RZfBQoUkBS+llbk/vL39zcW+l20aJG2bdsmFxcX9e3bVxs2bJCzs7OxXtbbYiv/4MEDrVixQoMHD1b//v3l6empwoUL68qVK9FeD59++qkyZMigGzdumLUv8no+u3fv1rRp01SkSBF16NDBuE5jat/bPvT6lmRMyzt+/Lix7fHjx2brKFlK5Os4NDRUZ86cUdGiRWMsb2dnZ9ZOScb6QRHXYI4cOVS2bFkFBgZqy5YtxvSw91GoUCGdOHHCbNuvv/4aY/m0adMqc+bMUV6f3bt316hRo2RnZ6fg4GCz18TLly91+vRpff755/FqU1zXTFz31fdRoEABBQUFKVu2bMZ1bGtrq5EjR8Y4/TQ6sb2+4vN6iY+EvMdI4cd+9epVszb98ccfGjt2rP76669EaRMAAAAS3n8+gHrx4oXu3LkT7dfbn5LVsGFDHT9+XKtWrVKDBg3MfuG1tbXVrl27NGDAAJ07d043btzQ8uXLjSkvCSk0NFQbNmxQjRo15OTkpIIFCxpfjo6OqlOnjnbs2KE7d+6oRIkSsrKyMj4hbcuWLVq7dq1RV/r06bVp0yYNGjRIQUFBunr1qtauXStbW1vly5dPUvgoseDgYN29ezfa9mTNmlWStH79et26dUtHjx5V586d9erVq3h90li2bNm0b98+Xb58WVeuXNGkSZO0bds2s+c+efLknRZXj5AlSxb17dtXv/76q5YsWSIpfG2Ss2fPaujQoQoKCtKvv/6qb7/9VsHBwcZ0RknatGmTlixZouDgYM2dO1c//fSTsVZOmzZtdOHCBQ0fPlxBQUE6dOiQevfurSJFisjZ2TnG9qRKlUqPHj3S1atXo506Ep96S5Qooc2bN+v48eO6fPmy/ve//ylp0qRm+5DCp0s9efLknfsssgIFCqhq1aoaPHiwfv75Z924cUNz5szRrFmzjKlE9+/f17Bhw7Rjxw7dunVLe/bs0blz52JcnDi28mnSpFHatGm1Y8cOY6rbwIEDdebMmWivJSsrK7Vv314//vijFi9erOvXr+unn37SkCFDlCJFCtnY2Mja2lrTp0/XggULdOPGDZ0+fVq7du0ya9+dO3difKP7ode3FD7tqmbNmho2bJj279+vixcvqm/fvu/0SXzva/Lkydq1a5dxrTx//lyNGzeOsXy7du20bds2zZgxQ1evXtXOnTs1fPhwVa1a1SxcrV+/vpYuXaqHDx/GOWU3Nu3bt9fWrVs1f/58BQcHa82aNVq8eHGsz+nQoYMWLlyodevW6fr161q0aJF27NghNzc31a1bV+nSpTMWfT9//rx69+6tZ8+eqUmTJvFqU1zXTFz31ffRvHlzPXnyRL1799b58+d1/vx59ezZU6dOnVLBggXjXU9sr6/4vF7iI+Iec/r0aePTET9E+/btFRgYqGnTpunq1as6cOCA+vfvrydPnsS6zlR0bTp//ny8QysAAAD8vf7zU/C2bNmiLVu2RPvYlClTVLNmTeP7/Pnzy8HBQSdOnIjyiVzJkiXTnDlzNGbMGLVu3VrPnz9X4cKFNXv2bLM1PxLCzp079fDhwxinuLVu3Vpr167VqlWr1LlzZw0dOlSzZs3S0qVLVbJkSfXt21f9+vWTFB5AzZkzRxMmTFDjxo315s0blShRQvPnzzcW3I34+PdLly5F+7HfDg4O6t+/vxYsWKDJkycrS5Yscnd3V7Zs2aKMUojO2LFjNWzYMDVo0ECpU6dW8eLFNXToUA0ZMkS3b99W9uzZNWLECB0+fDhen6r3tkaNGmnjxo2aOHGi3NzcVKJECc2dO1dTpkxR/fr1lSpVKjk7O6tfv35mb8Dq16+vn376SaNHj1aePHk0efJkYw2m4sWLa+7cuZo8ebI8PDyUJk0aVatWTd9++22sU4S++OILrVy5Ul9++aUWL14cZR2b+NTbq1cvPXz4UG3atFHatGnl7e2tx48fG3WkT59eDRo00NixY3Xt2jVVr179nfssskmTJmnSpEkaNGiQHj16pFy5cmnEiBHGdJmuXbvq1atX+v7773Xnzh1lypRJzZo1U8eOHaOtL7bySZMm1ZQpUzR69GjVrVtXtra2Klu2rHr16qVZs2bp+fPnUerz9vZW8uTJ9eOPP2r06NHKmDGjGjdurO7du0sKX+h5xIgRmjdvniZNmqQUKVKocuXK8vHxMeqIWHC+W7duUer/0Os7wpgxYzRmzBj17NlTYWFhatKkyXuFqu+qWbNmGjNmjG7fvq3ixYvrxx9/jPZDDSLUqFFDEydO1A8//KAZM2YoQ4YMqlOnjtGfkcsNGzZM1apVe+fFuSOrVKmShg0bplmzZmnChAmyt7dXs2bNYg2hIqZETpkyRXfu3FGePHk0adIkY62qxYsXa/To0WrdurUkqWTJklq2bFm819yK65rJmTNnrPfV95EzZ04tXrxYEyZMULNmzZQ0aVI5OTlp0aJFZlOD4xLX6zGu10t8lCtXTsWLF1fTpk2ND+v4EDVr1tSkSZM0a9YszZw5U+nSpYtxfcaYFCxYUJUrV1aPHj3Uq1eveH0CKAAAAP5eViYWUACicHV1Vf369aMNJPDvs2XLFt24cUMdOnRI7KYkmJs3b8rNzU2LFi2KsqD+P8nhw4eVMWNGY8SlFD4td/Xq1VE+0Q+whIggef+rNfrjqeWnxcYma5pc6ug0JFHbEF/Pnj3TuXPnVLhw4Sgf3IKY0W/vh357P/Tb+6Hf3g/99n7+Df0W8btU5A9cisl/fgoegP+2sLAwLVy48INHiuH97N27V23bttXBgwd1+/Zt7dixQwsXLlS9evUSu2kAAAAAEtB/fgoegP+2JEmSaNGiRfFe/wYJq2vXrnr27Jn69u2r+/fvK1u2bGrdurWx3hoAAACAfwcCKCAa77PWFD5e/8bw6bPPPtOFCxcSuxlxsrGx0YABAzRgwIDEbgoAAAAAC2IKHgAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYVLLEbgAAAEBiy5Qqe2I34R/RBgAAAEshgAIAAP95noU6JHYTJElhpjAlsWKAOgAA+PfhNxwAAPCfFhoaqufPnyd2MySJ8AkAAPxr8VsOAAD4zzOZTIndBAAAgH81AigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKCuTyWRK7EYAAAAkhuPHj8tkMsna2lpWVlaJ3ZyPhslk0qtXr+i3d0S/vR/67f3Qb++Hfns/9Nv7+Tf0W2hoqKysrOTk5BRn2WR/Q3sAAAD+kSJ+2ftYf+lLLFZWVrKxsUnsZnx06Lf3Q7+9H/rt/dBv74d+ez//hn6zsrKK9+9RjIACAAAAAACARbEGFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAB+tsLAwTZ06VRUrVlSJEiXUvn173bhxI8byDx480LfffqvSpUurTJkyGjp0qJ4/f25WZsuWLXJ3d5eDg4M8PDx04MCBd67jny6h+y0sLExz585VjRo1VKJECdWuXVurVq0yq+OHH36QnZ1dlK+PiSWuty+++CJKn/j4+LxTHf90Cd1v0V1HEV+3b9+WJB07dizaxw8dOmTx400o79pvkZ/Xrl07+fr6RnmM+1vsz4uu37i/xf28mK437m+xPy+6fvvX399MAAAAHylfX19T2bJlTTt37jSdO3fO5O3tbfriiy9ML1++jLZ8y5YtTQ0aNDCdPn3atH//flPVqlVNffv2NR4/cOCAqWjRoqaFCxeaLl++bBo9erTJ3t7edPny5XjX8TFI6H6bMWOGqVSpUqZNmzaZrl27Zlq+fLmpSJEiprVr1xplvvnmG1OfPn1Mf/75p9nXxySh++2vv/4yFSpUyLRz506zPnn8+HG86/gYJHS/vX0NXbp0yVS2bFmzMkuWLDFVq1YtStmY9vlP9K79ZjKZTC9fvjT169fPVLBgQdPUqVPNHuP+9n79xv3t/fqN+9v79du//f5GAAUAAD5KL1++NDk6OpqWLFlibHv06JHJwcHBtGHDhijljx8/bipYsKDZm609e/aY7OzsTH/88YfJZDKZvL29Td98843Z85o0aWIaOHBgvOv4p7NEv1WsWNE0Y8YMs+f179/f1Lx5c+P7WrVqmebPn5/AR/P3sUS/nThxwlSwYEHTw4cPo90n11u4uI65W7duppo1a5q9+Ro8eLCpU6dOCXgkf6937TeTyWQ6duyYqXbt2iY3NzdTqVKloryx5f72fv3G/e39+o372/v129v+bfc3puABAICP0vnz5/XXX3/J2dnZ2PbJJ5+oSJEiOnLkSJTyR48eVaZMmZQ/f35jW5kyZWRlZaVjx44pLCxMx48fN6tPksqWLWvUF1cdHwNL9NuYMWNUv359s+clSZJEjx8/liSFhoYqODhY+fLls9BRWV5C95skXbhwQRkzZpStrW20++R6CxfbMe/du1fbtm3T8OHDZWNjY2y/cOGCWR0fm3ftN0navXu3KlasqICAAKVNm9bsMe5v799v3N/evd8k7m/v22+R/Rvvb8kSuwEAAADv448//pAkZcuWzWx75syZjcciCwkJiVLWxsZG6dKl0++//67Hjx/r2bNnypo1a4z1xVXHxyCh+y1JkiRR3tTevn1bmzZtUtOmTSVJly9f1ps3bxQYGKgRI0bo5cuXKl26tPr06aPMmTMn5OFZTEL3mxT+JiJVqlTq3r27jh8/rvTp06tBgwby8vJSkiRJuN7+v9iOeeLEiXJzc1OpUqXMtl+6dEnp06eXp6enQkJCVLBgQfXs2VMODg4fekh/i3ftN0nq2bNnjPVxf3u/fuP+9n79JnF/e99+i+zfeH9jBBQAAPgoRSxUGvmvgpKUPHlyvXz5Mtryb5eNXP7Fixdx1hdXHR+DhO63t929e1ft27fXp59+qq+//lqSdPHiRUlSypQpNWXKFI0YMUJXrlyRl5eX0e//dJbot0uXLunx48eqUaOG/Pz81KxZM02ZMsVYlJbrLfbyR44c0ZkzZ9S5c2ez7b///ruePHmiZ8+eacCAAZoxY4YyZsyoli1b6vLlyx96SH+Ld+23uHB/S5hj4P4Wf9zfPuwY/q33N0ZAAQCAj1KKFCkkhU9/iPi/JL18+VIpU6aMtnxoaGiU7S9fvlSqVKmUPHlyo763H4+oL646PgYJ3W+RXblyRR06dNCbN2+0aNEiffLJJ5IkDw8PVapUSRkyZDDKFihQQJUqVdLPP/8sd3f3BDk2S7JEv82ZM0cvX740pmHY2dnp6dOn+uGHH9StWzeut0iiO+a1a9fKwcFBRYsWNdueLVs2HTlyRClTppS1tbUkqVixYjp79qx+/PFHDR069IOPy9Letd/iwv3t/fotMu5v74b724ddb//W+xsjoAAAwEcpYsj7n3/+abb9zz//VJYsWaKUz5o1a5SyoaGhevjwoTJnzqx06dIpVapUsdYXVx0fg4TutwjHjh1T06ZNlTJlSi1fvlw5c+Y0e07kN2eSjD6PaZrCP40l+s3GxibKGiAFCxbUs2fP9OjRI663/y+6Yw4LC9PPP/+sunXrRrvfTz75xHhzJoVPpcqfP79CQkLe+1j+Tu/ab3Hh/vZ+/RaB+9u74/72/tfbv/n+RgAFAAA+SoUKFVKaNGl06NAhY9vjx4919uxZlS5dOkr50qVL648//tC1a9eMbYcPH5YklSxZUlZWVnJycjK2RTh06JCx/kJcdXwMErrfJOnkyZNq166dChQooCVLlkT5xXvSpEmqUaOGTCaTse3mzZt68OCBPv/88wQ9PktJ6H4zmUyqVq2apk2bZva8U6dOKVOmTEqfPj3X2/8X3TFfvnxZDx48UPny5aPU8csvv8jR0VE3btwwtr1+/Vrnz5//115vceH+9n79JnF/e59+4/72/teb9O++vxFAAQCAj5KNjY1atmyp8ePHa8eOHTp//rx69uyprFmz6osvvtCbN290584dYw2O4sWLy8nJST179tTJkyd18OBBDRo0SB4eHsYbijZt2mjTpk2aP3++goKCNHbsWJ07d05fffVVvOv4p0vofnv9+rV69+6tTz/9VKNHj9bLly91584d3blzR/fv35ckVa9eXbdu3dKQIUN09epVHTlyRN26dZOTk5MqVqyYmN0Rbwndb1ZWVqpevbr8/Py0efNmXb9+XStWrNDcuXPVvXv3eNXxMbDE61SSzp49K2tr62g/eczJyUnp06dXv379dPr0aV24cEH9+vXTw4cP1bp167/r0D/Iu/ZbfHB/e/d+4/72fv3G/e39X6fSv/z+ZgIAAPhIvX792jR27FhTuXLlTCVKlDC1b9/edOPGDZPJZDLduHHDVLBgQdOaNWuM8nfv3jV169bNVKJECVPZsmVNgwcPNr148cKszrVr15qqV69uKlasmKl+/fqm/fv3mz0enzr+6RKy344dO2YqWLBgtF9Vq1Y16ti/f7+pSZMmphIlSpjKlClj6t+/v+nhw4d/74F/oIS+3l69emWaNm2ayc3NzVS0aFFTjRo1TCtWrDDbJ9db9Mc8e/ZsU/ny5WPc57Vr10zdunUzlSlTxlS8eHGTt7e36cKFC5Y5QAt5136LrGrVqqapU6dG2c797d36jfvb+19v3N/e/3X6b76/WZlMkcYKAgAAAAAAAAmMKXgAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAA4F/MZDIldhMAgAAKAAAAAN5Vq1atZGdnZ/Zlb2+vKlWqaOjQoXr06FG86/Lx8ZGrq2uCtMvOzk6+vr6SpNDQUI0cOVIbNmxIkLoB4EMkS+wGAAAAAMDHqEiRIho8eLDx/atXr3TmzBlNnDhR586d07Jly2RlZfW3tmnFihXKmjWrJOnPP//UwoULNWrUqL+1DQAQHQIoAAAAAHgPadKkUYkSJcy2lS5dWn/99ZemTp2qEydORHnc0v7u/QFAfDEFDwAAAAASkL29vSTp9u3bkqTNmzfL09NTjo6OcnFx0aBBg2KdovfixQtNmDBBX3zxhezt7eXk5KQ2bdro3LlzRhkfHx999dVXGjx4sJycnOTu7q43b94YU/Bu3rwpNzc3SVL//v3l6uqqXbt2yc7OTnv37jXb39GjR2VnZ6djx44ldFcAgIEACgAAAAAS0NWrVyVJOXPm1IwZM9SrVy+VKFFCU6dOVZcuXRQYGKhWrVrpxYsX0T6/b9++WrNmjTp06KB58+apf//+unTpkr799luzBcWPHj2q33//XdOnT9e3336rpEmTGo9lzpxZ06ZNkyR9/fXXmjZtmipWrKjMmTNr3bp1ZvsLCAhQnjx5VLJkyYTuCgAwMAUPAAAAAN6DyWTS69evje8fPXqkw4cP64cffpCjo6Ny5cqlH374QY0bN9agQYOMcgULFlSLFi20Zs0atWjRwqzO0NBQ/fXXXxowYIDc3d0lSWXKlNHTp081evRo3b17V5kyZZIkvX79WsOGDTPWfIrMxsZGhQsXliTlypVLRYoUkSTVr19fP/74o/766y+lTp1aL1680JYtW9ShQ4eE7RwAeAsBFAAAAAC8hyNHjqho0aJm25IkSaLy5ctr2LBh+u233xQaGqo6deqYlSlVqpRy5Mihw4cPRwmgbGxs5OfnJ0kKCQnR1atXFRwcrJ07d0oKD6gipEuXLtrwKTYNGjTQrFmz9NNPP8nDw0M//fSTnj17Jg8Pj3eqBwDeFQEUAAAAALyHokWLaujQoZIkKysrJU+eXNmyZVOaNGkkyVhTKWPGjFGemzFjRj158iTaevfs2aORI0fqypUrSp06tQoVKqRUqVJJktkUvNSpU79zm3Pnzq0yZcooICBAHh4eCggIUPny5ZUlS5Z3rgsA3gVrQAEAAADAe0idOrWKFSumYsWKyd7eXgUKFDDCJ0mytbWVJN29ezfKc+/cuaP06dNH2X79+nV16dJFhQsX1k8//aRjx45p6dKlqlq1aoK1u0GDBjp8+LCCgoJ04MABNWjQIMHqBoCYEEABAAAAgAUUL15cNjY22rhxo9n2o0eP6vbt23JycorynNOnT+vly5fq0KGDcuXKJSsrK0nho6Ik8xFQcYm8KHlkNWrUUMqUKTVkyBClTp1a1apVi3edAPC+mIIHAAAAABaQLl06dejQQdOnT5e1tbWqVq2qmzdvasqUKfr8889Vv379KM8pWrSokiVLpnHjxsnb21uhoaHy9/fXrl27JEnPnj2L9/7Tpk0rSTpw4IDy58+v4sWLS5JSpkyp2rVra8WKFWrWrJlsbGw+/GABIA6MgAIAAAAAC+nWrZsGDx6sgwcPqlOnTpo2bZpq1qyppUuXGus6RZY7d25NmDBBISEh+vrrr41Pz/vxxx9lZWWlo0ePxnvfadKkUZs2bbR9+3a1b99er169Mh6rUqWKJMnT0/PDDhAA4snK9C5jOAEAAAAAH73BgwfrxIkTCggISOymAPiPYAoeAAAAAPxHLFq0SFeuXNHKlSs1bty4xG4OgP8QAigAAAAA+I84evSo9uzZo6+++kp16tRJ7OYA+A9hCh4AAAAAAAAsikXIAQAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAvDeTyZTYTYjTx9DGhJTQx/tv679/2/EAHwsCKAAAAOBf4OLFi+rZs6dcXFxkb2+vChUqqEePHjp//rxF9hcaGqqRI0dqw4YNxjYfHx+5urpaZH/v4/Hjx+rbt6+OHj0aZ9mff/5ZX331lUqVKqVixYqpevXqGjFihO7du/fO+23VqpVatWoVaxlfX1/Z2dm9c92xSYhz8na7jh07pg4dOiRoO2Pyxx9/qEWLFipWrJicnZ31/PnzGMvu27dPdnZ2qlu37jvt4+3juXnzpuzs7OTv7x+v5x86dEh2dnY6dOjQO+0XAAEUAAAA8NG7dOmSmjRpoocPH2rAgAGaN2+e+vbtq9u3b6tx48b67bffEnyff/75pxYuXKjXr18b2zp37qxp06Yl+L7e17lz57Ru3TqFhYXFWm7t2rXq3Lmz8ubNq3HjxmnOnDn66quvFBgYqCZNmujRo0cJ3rZGjRppxYoVCVpnQpyTt9u1atUqBQUFJWg7Y7Jw4UL99ttvGjNmjKZNm6aUKVPGWHbNmjUqWLCgLl68qGPHjsV7H28fT+bMmbVixQpVqVLlQ5oOIB6SJXYDAAAAAHyY+fPnK3369JozZ46SJfu/X/GrVaummjVrasaMGZo9e7bF25ErVy6L78MSpk+frtq1a2vIkCHGtnLlyqlUqVKqV6+eVq1apXbt2iXoPrNmzaqsWbMmaJ3Reddz8ne1KzoPHz5U5syZ5e7uHmu5x48fa/v27Ro6dKhmzZql5cuXq2TJku+1TxsbG5UoUeK9ngvg3TACCgAAAPjI3b17VyaTKcpIn1SpUul///ufatWqZbZ9+/bt8vT0VLFixeTi4qLvv/9ez549Mx739fVV9erVtWvXLtWtW1f29vaqUaOGAgICJIVPW3Jzc5Mk9e/f35ji9fZ0L1dXV02bNk0jR45U2bJl5ejoqG+//VZ//fWXZs+erUqVKqlkyZLq1q2bHjx4YNbGVatWqXbt2rK3t1eVKlXk6+urN2/eGI/7+PiodevWWrNmjWrUqCF7e3vVq1dPv/zyi6TwqVJeXl6SJC8vr1inxEX039sKFSqk/v37y97e3jju6KZrxTTNbfr06SpfvrwcHR3VuXNn3bhxw6yP356CF9d5kaTffvtN3t7ecnJyUrly5dSrVy+FhITE65wMHDhQLi4uZv0oSSNGjFDZsmX16tUrs3b5+Pho7dq1unXrlnHcDRo0UNOmTaMca+vWrdWmTZtoejfckydPNGrUKFWrVk3FihVTnTp1tHr1auNxV1dX+fv76/bt27Kzs5Ovr2+MdW3YsEGvX79WxYoV9eWXXyowMFAPHz40K+Pv768iRYpo1apVcnFxUZkyZfTNN99EOZ7ozumVK1fUtWtXlSlTRqVLl1bHjh1jHQV28eJFdezYUU5OTnJyclKXLl3MzrUUPrqrZs2aKlasmCpWrKghQ4bo6dOnMdYJ/BsRQAEAAAAfuSpVquj27dtq2rSplixZoqCgICNQqVmzpurXr2+U3bBhg7p06aJ8+fJp+vTp6tq1q9avX6/OnTubhTB37tzRsGHD5OXlpdmzZ+uzzz5Tv379FBQUpMyZMxvTur7++utYp3jNmzdPv//+uyZNmqSvv/5aGzduVIMGDbR3714NHz5cvXr10o4dOzR16lTjObNmzdLAgQPl7OysmTNnqkWLFpozZ44GDhxoVvfp06fl5+en7t27a/r06UqaNKm6deumR48eqWjRoho0aJAkadCgQRo8eHCs/bdp0yZ16dJFGzduVEhIiPFY69atVa5cuficBjPHjh3Tpk2bNGjQIH3//fc6f/68vLy8Ygwd4nNezp49q5YtW+rly5caO3ashg4dqtOnT6tt27bxOif16tXT3bt3zdYvCgsL05YtW1S7dm1ZW1uble/cubMqV66sTJkyGdPUGjZsqF9//VXXrl0zyv3+++86dOiQPD09oz22Fy9eqHnz5tqwYYPatWunGTNmqGTJkvruu+80c+ZMSdK0adPM9tWoUaMY+3bNmjWqWLGiMmbMKA8PD7169Upr166NUu7NmzeaN2+eRowYof79++vbb7+NcjxvCwkJUZMmTRQcHKwhQ4Zo3Lhxunv3rr766qsoIZckXb16VU2bNtW9e/c0ZswYjRgxQjdu3FCzZs2M9cM2btyocePGqUWLFvLz81OXLl20bt06DR8+PMZjBP6NmIIHAAAAfOSaN2+uO3fuyM/PT8OGDZMkpU+fXhUqVJCXl5ccHBwkhX/61/jx41WxYkWNHz/eeH6ePHnUunVr7d6923hT/vz5c40YMULOzs5GmapVq2r37t3y9vZW4cKFJYVP8SpSpEiMbUuTJo0mTZqkZMmSqXz58lq7dq1CQkK0atUqpU2bVpK0Z88eHT9+XFL4SJkZM2aoSZMmGjBggCSpQoUKSpcunQYMGKA2bdqoQIECRll/f39jmlmqVKnUsmVLHTx4UDVq1NDnn38uSfr888+N/0dn+PDhCgsL07Zt27R9+3bjuNzc3NSmTRtlyZIlvqfCkDRpUs2bN8+YzpYvXz55eHgoICBALVu2NCsb3/Myc+ZMpUuXTvPmzVPy5Mklha9h9O233yooKCjOc1KyZEnlyJFDGzduVPny5SWFjxS7c+eO6tWrF6V8rly5lCFDBrNpanXq1NHo0aO1bt06de/eXZK0bt06pU6dWtWrV4+2L/z9/XXx4kUtX75cjo6OkqSKFSvq9evXmjFjhpo2baoiRYpE2Vd0Lly4oDNnzhiBZfbs2VWuXDmtWLEi2hFYnTp1Mgua3t7H2yPMFixYoNDQUM2fP1+ZMmWSFD4SrlmzZjpx4oRSpEhhVj5iraoFCxYoTZo0kiRnZ2dVq1ZNc+fOVb9+/XT48GF99tlnatGihZIkSaIyZcooVapUFllbDPgnYwQUAAAA8C/wzTffaM+ePZowYYIaNmyoNGnSaMOGDWrcuLEWLVokKXxq0R9//CFXV1e9fv3a+CpdurTSpEmjffv2mdUZOQiICFLefsMeFwcHB7N1qTJmzKi8efMa4ZMkpUuXTk+ePJEk/frrr3rx4kWUNkZMI4vcxgwZMpitcRTRxtg+PS06adOm1dSpU7V9+3YNGjRINWrU0OPHjzV//nzVrFlTv/766zvVJ0lOTk5maykVLlxYOXPm1JEjR6KUje95OXbsmCpVqmSET5Lk6Oion3/+2QifYmNlZaUvv/xS27dvV2hoqCRp06ZNypMnj4oXLx6v40qbNq2++OILrV+/3ti2du1aubu7RwlnIhw+fFg5cuQwwqcIX375pV6+fKkTJ07Ea99S+OinTz75RKVKldLjx4/1+PFj1ahRQ1evXtXBgwejlI9Pv0R27NgxlShRwgifpPDraufOnapcuXKU8gcPHlSZMmWUIkUK47ylSZNGpUqV0v79+yWFryd29epVeXp6atq0aTp16pTq1q0b5yclAv82jIACAAAA/iVsbW1Vp04d1alTR1L4lK0+ffpo3Lhxqlu3rjGFaOjQoRo6dGiU5//5559m30f+FLIkScL/dh3dWkmxiRgVElmqVKliLB/Rxg4dOkT7eOQ2vv0paVZWVpIU56fexSRilEqLFi0UFham7du3y8fHR8OHD4+y7lNcMmbMGGXbp59+qsePH0fZHt/z8vDhQ3366afv1I631atXTz/88IP27NmjihUratu2bfrqq6/eqY6GDRtq/fr1Onr0qJImTarg4GCNGTMmxvKPHj0yC3QiRPRRdH0SnVevXmn9+vV6/PixMYIrsuXLl0eZLhnbtRadhw8f6rPPPnun8ps3b9bmzZujPJYhQwZJkru7u8LCwrR06VLNmDFDvr6+ypEjh3r37h3nguvAvwkBFAAAAPARCwkJUYMGDfTNN99EWTenSJEi6tmzp7Eo8ieffCJJ6tu3r8qUKROlLltb27+lzbGJaOP48eOVJ0+eKI9HF+x8iMDAQA0ePFjLli1T3rx5je1JkiTRF198oSNHjmjlypWS/i/gensR7+hGhUU3verOnTtRRgFJivd5SZs2re7fvx/l8d27d8d7pE/evHnl4OCgLVu2KEmSJHr8+LG+/PLLeD03QpkyZZQrVy5t3bpVSZIkUb58+WKdNmdra2u2ZlSEO3fuSAqfLhofO3fu1IMHDzR8+HDlzp3b7LFly5Zp+/btunfv3geFdDH18YEDB6INptKmTavy5ctHO/0v8si/iGD4yZMn2rt3r+bMmaM+ffqoZMmS7zXFE/gYMQUPAAAA+IhlzJhRyZIl09KlS/Xy5csoj1+5ckXJkydX7ty5lS9fPn366ae6efOmihUrZnxlyZJFEyZM0NmzZ+O936RJkybkYRiKFy8ua2trhYSEmLUxWbJkmjhxom7evJmgbSxQoIAePnyohQsXRvt4cHCwChYsKOn/RnNFXqT81atXOnnyZJTnHTt2zJhWKEknTpzQrVu3ol3QPL7npVSpUtq3b58xfU4KH+XWoUMHnTlzJt7npF69etqzZ482bdokJycn5cyZM8ayESPfIrOyspKnp6e2b9+un3/+2WyR++iULl1at27dijKVcf369bK2tjbWKIvLmjVrlDVrVjVq1Ehly5Y1+2rVqpVevXqlNWvWxFpHdMcTWalSpXTixAmzEOrevXtq166ddu/eHaV8mTJldPnyZRUuXNg4b/b29lqwYIF++uknSVKPHj3UpUsXSeGBVa1atdS5c2e9fv06yqhD4N+MEVAAAADARyxp0qQaMmSIunTpogYNGqhFixbKnz+/nj9/rn379mnJkiX65ptvjFE0PXv21KBBg5Q0aVJVrVpVjx8/1owZMxQSEqKiRYvGe78RazgdOHBA+fPnj/caQnFJnz692rVrpylTpujp06cqW7asQkJCNGXKFFlZWalQoULv3MZdu3bJ1tY22ufmy5dPHTp00KxZs3T79m19+eWXypo1q+7du6d169bpwIEDmj9/vqTwkTyOjo768ccflTt3btna2mrRokV68eJFlKleYWFh6tChgzp16qQHDx5owoQJKliwYLSjjZImTRqv89K5c2c1adJEHTt2lJeXl168eKHJkyfLwcFBLi4uRjAV1zlxd3fX6NGjtXnz5lg/HVAKH5119+5dY5RV5syZJUmenp7y9fWVpGgXMI/M09NTS5cuVZcuXdS9e3d99tln+vnnn7VmzRp17drVGAEWmz///FN79uzRV199ZYxEi6xkyZLKlSuXVqxYofbt28f7eN7WunVrBQQEqF27durYsaOsra31ww8/KGvWrKpbt67Onz9vVr5z585q2rSpOnbsqGbNmil58uRasWKFtm/fbiyUXq5cOQ0ePFhjxoxRpUqV9PjxY02bNk158uR5p+sZ+NgRQAEAAAAfuSpVqmjlypXy8/PTzJkzdf/+fdnY2KhIkSKaNGmSvvjiC6Nso0aNlDp1as2dO1crVqxQqlSp5OTkpPHjx8c6EuZtadKkUZs2bbRixQrt3r07ygLmH6JHjx7KlCmTli5dqrlz58rW1lbOzs7q1auX2eLlcSlQoIDq1KmjJUuWaM+ePdq4cWO05Xr16qXChQtr1apV+v777/X06VNjoevVq1ebhQSjR4/W8OHDNWDAAKVJk0YNGzZUyZIltWrVKrM6q1WrpuzZs6tPnz56/fq1qlatqu+++85sAfHI4nNeihQpoh9//FETJkxQjx49lCZNGlWuXFm9e/eWjY2NbGxs4nVOMmTIoAoVKmjfvn2qWbNmrH3o6emp3bt3G+FRxNpcWbJkUaFChZQxY8Y4p5ClTJnSaHdEsJgvXz6NGDFCDRs2jPW5EQICAvTmzZtY10yqV6+efH19tWfPnngfz9v1ZcuWTUuXLtW4cePk4+MjGxsblS1bVpMmTYp2imqhQoW0ZMkSTZo0SX379pXJZFLBggU1ffp0ubm5SZKaNm2qV69eafny5Vq6dKlSpEghZ2dn9enTR9bW1vE6fuDfwMr0rqsIAgAAAAA+yPjx47V48WL99ttvid2U9xISEqKqVatq6tSpqlatWmI3B8BHgBFQAAAAAPA3efr0qXbu3KmdO3cqV65cid2cd3bu3Dnt2LFDgYGBypMnj1xdXRO7SQA+EixCDgAAAAB/kwsXLmjw4MF6+fKlfHx8Ers57+zly5eaP3++3rx5o4kTJ8a5qDcARGAKHgAAAAAAACyKuBoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEXxKXgAAOA/69dff5XJZJK1tXViNwUAAOCj8+rVK1lZWcnR0THOsoyAAgAA/1kmk8n4wvszmUwKDQ2lHz8AfZgw6McPRx9+OPowYdCPH+7v6MN3+T2KEVAAAOA/y9raWqGhofr888+VKlWqxG7OR+vZs2c6d+4c/fgB6MOEQT9+OPrww9GHCYN+/HB/Rx+eOnUq3mUZAQUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAgP88KyurxG7CR83KykopU6akHz8AfZgw6EcA+OdKltgNAAAASEw2NjZKmTJlYjfjo5YyZUoVKVIksZvxUaMPE8Z/tR/DwsKUJAljCwD8sxFAAQCA/7xx41frxs27id0MAHhnOT/LqD69GyZ2MwAgTgRQAADgP+/GzbsKCvo9sZsBAADwr8U4TQAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACwq0QMoV1dX2dnZaf78+dE+PmjQINnZ2cnX1zfB9nnp0iXt2rUrznLffvut7OzstH379gTbd2THjh3T0aNHP6gOX19fubq6Gt/b2dnJ39//Q5v23l69eqUFCxYY37/dvui8S5tv3rwpOzs7HTp0KN5titzP7/P8f4MHDx5o1apVFt/P0KFD5ejoqJIlS+ru3bsW39+HetfrMz7l35ePj49atWplkbrj8k+7b8TH7du3tWnTJuN7V1fXBP058a5MJpPWrl2re/fuJVobEtOzZ8+0ZMmSGB+PuPfG9NWxY0c9e/ZMjo6OGj16dIz11KhRQwMHDrTEIQAAAMDCEj2AkiRra2sFBgZG2f769Wtt27ZNVlZWCbq/jh076tSpU7GWefLkibZv3668efNq+fLlCbr/CM2bN9f169cTtM69e/fK3d09Qet8Fxs3btSoUaPe6TmWbrMl+vljM3bsWK1fv96i+zh//ryWLl2qfv36ad26dcqYMaNF95cYvL29tXr16sRuRoL7GO8b/fr10549e4zvV69eLW9v74RuWrwdOXJEPj4+ev78eaK1ITHNmzdPfn5+cZbz9fXV3r17o3yNGzdOqVKlkru7uzZt2qSwsLAozz1+/LiCg4PVqFEjSxwCAAAALOwfEUA5Ozvrt99+0x9//GG2/eDBg0qVKpWyZcv2t7dp48aNSpo0qTp37qx9+/bp5s2bf3sb3kemTJmUIkWKRNu/yWR65+ckdpv/C97nvLyrx48fS5JcXFz02WefWXx/iSF16tTKkCFDYjcjwSX2azAhrs8MGTIoderUCdCa9/N3vMb+yeJ7/La2tsqUKVOUr08++USS1KBBA/3555/RjlINCAhQwYIF5eDgkKBtBwAAwN/jHxFAOTg4KHv27Nq6davZ9s2bN6tWrVpRRkD9+uuv8vLyUsmSJVW2bFn1799fDx48MB4/efKkmjdvLkdHR5UuXVrdunXT7du3JYVP07h165amTZsW63QXf39/lSlTRm5ubrK2ttbKlSvNHo9uKs7b23bv3i1PT08VL15czs7O8vHx0aNHjySFT3mRpP79+8vHx8eYnjBr1iy5uLjIzc1NT58+1cWLF9WxY0eVLl1a9vb2cnNz07x582Jsd+SpNKGhoRozZoxcXV1lb2+vMmXK6JtvvtH9+/cl/d+UiMDAQDVq1Ej29vZydXXVihUrjPru3bun7t27q2zZsnJwcFDTpk11+PDhGPusf//+Rjsiv4GYPXu2KlWqJAcHB7Vq1UrBwcHRttnHx0c+Pj4aM2aMnJ2dVbx4cXXs2FEhISHR7jMoKEguLi7q27ev3rx5E21/RO7nCCdOnDCO2c3NTWvWrDF73po1a1SrVi05ODioVq1aWrhwofEX+ZjO1ZMnTzRw4ECVK1dOJUuWlJeXV5wj7bZv365GjRqpRIkSKlasmDw9Pc1GdbRq1UoDBw5Uo0aNVKpUKWMUU2zte5uPj4/Wrl2rw4cPG/3x5s0bLViwQDVq1FCxYsVUo0YNLVu2LErfdurUSWXLllXJkiXVvXt33bp1K9p9+Pv7G6+natWqGX0dFBSk9u3by9HRURUqVNC3336rO3fuSJJGjx6tunXrGnU8evRIhQsX1rBhw4xtP//8sxwdHfXy5cso+/T19VWzZs00ffp0lS1bVqVKlVL//v319OlTo0x0U8ui2xZRh5OTk3r37q2HDx9Ge5xvv8bv3r2rvn37Gn3UsWNHXbt2LdrnStK1a9f09ddfG/euXr16mU3ZevXqlcaMGaNy5cqpRIkS6ty5s9lUxqNHj8rLy0tOTk6yt7dXrVq1tG7dOuNxHx8fde/eXd7e3nJyctKcOXMkSRs2bFCtWrVUrFgxNWrUSIsWLTKuhbf7JD6vwevXrxvntWLFipo/f76qV68e4zS+N2/eaNy4capcubLs7e1Vs2ZN43qL7r4RFhamWbNmqUaNGrK3t5eTk5PatWtnjGRs1aqVDh8+rLVr1xrn4+0peLt27VLjxo2Na2/UqFF68eKF2TGvXr1arVu3loODgypUqKBp06YZjz9//lzfffedXFxcVKxYMXl4eGjbtm3RHt+hQ4fk5eUlSXJzczP6Ia6fVW+L634b3TTDyNv8/f1VqVIlrVy5UhUqVJCjo6O6dOlidu5cXV01Y8YMtW3bVg4ODqpevXqU6blxtdvV1VVjxoyRu7u7ypYtq1atWmnatGm6deuW7OzsPugPNk5OTsqXL1+UEZuhoaHasmWLGjRoYGwLCAhQ7dq1VaxYMVWsWFEjRoxQaGjoe+8bAAAAlvWPCKAkqVatWmYBVGhoqLZv367atWublTt58qRatWqlAgUKaOXKlZoyZYpOnDihtm3b6s2bN3rz5o0R2Kxfv14LFizQ7du39b///U9S+DSNrFmzytvbO8b1Qi5duqSTJ0+qZs2aSp06tapUqaI1a9bo1atX8T6e+/fvq2vXrmrQoIE2b96sadOm6ciRIxo7dqyk8CkvkvS///1P3333nfG8tWvXauHChZo8ebKSJk0qb29vpUuXTsuXL9fGjRtVs2ZNjRkzRufOnYuzDWPHjtW2bds0evRoBQYGavTo0Tp48KB++OEHs3KjRo1Sp06dtGXLFlWpUkVDhgzRjRs3JElDhgzRy5cvtXjxYm3YsEF58+ZV586d9ezZsyj7c3d3N/p57969cnR0lCTdunVLx48f1+zZs7V48WLduXPH7JjftnHjRj18+FCLFy/WnDlzdObMGU2ePDlKuWvXrql169aqVKmSRo8eraRJk0YpE1M/L1y4UF9//bU2b96sihUrasCAAUZwsGLFCo0dO1Zdu3bVpk2b1KNHD82ZM0fjx483qzvyuUqdOrXat2+vGzduaNasWVq5cqVKlCihZs2a6ezZs9Ee5+nTp9WtWzfVrl1bGzZs0MqVK5UhQwb17dvX7E3UqlWr5OXlpaVLl6pixYrxbl+E7777TrVq1ZKjo6PRH6NHj9aMGTPUtWtXbdiwQS1atNCIESOMdXhu3bqlJk2ayMbGRgsXLtS8efN0584dtWzZ0izgieDu7m68nlatWqXvvvtOISEhat68uXLnzq3Vq1dr5syZevr0qZo0aaJnz56patWqunjxohFIHThwQCaTySy43LVrlypUqKDkyZNHe2ynTp3S3r17NW/ePE2fPl1HjhxRjx49oi0bk1u3bungwYOaP3++Zs6cqVOnThmBSGxev34tb29vXb58WTNmzNDKlSsVFhamdu3aRRuGPn78WC1atFBoaKgWLlyo+fPn6/r162bt/fXXX/X48WMtXbpUs2bN0m+//WbcM0JCQtS2bVsVK1ZMa9euVUBAgBwcHPTdd9+ZhVSBgYEqX7681qxZozp16mjnzp3q16+fGjZsqPXr18vT0zPGayVCbK/B58+fq3Xr1goLC9OyZcs0adIk+fv7G/eM6CxdulRbt27VpEmTFBgYqJYtW2rIkCE6evRotPeNRYsWyc/PTz4+PgoMDNT06dMVHBxsrA3k6+srR0dH1apVK9opkT/99JO+/vprValSRf7+/ho6dKg2b96sXr16mZUbM2aM6tevr02bNqlly5by9fXVkSNHJElTpkzRhQsXNHv2bG3evFmVKlVSz549ow1XHB0dza5/d3f3OH9WRedd7rcxuX//vnFfWrhwoX7//Xe1a9dOr1+/NsrMmDFDjo6OCggIUIsWLTRo0CBt3rxZUtw/YyMsXrxYAwYM0Ny5czVjxgx5e3sra9as2rt37wePWm7QoIG2bdtmFjzv2LFDz58/V7169SSFT/kdMGCAunXrpsDAQI0cOVLr1q3T3LlzP2jfAAAAsJxkid2ACLVq1ZKfn59CQkKUJUsW7du3TxkyZFCRIkXMys2bN092dnbGIqT58+fXxIkTVa9ePe3du1clSpTQgwcPlDlzZuXIkUM5c+bU5MmTjVEGGTJkUNKkSZUqVSqlS5cu2rb4+/srefLkqlatmiSpdu3aCgwM1Pbt21WrVq14HU9ISIhCQ0OVPXt25ciRQzly5NDMmTONX+AzZcokSUqbNq3Spk1rjIxq3ry5Pv/8c0nhbyS8vLzUokULY2pJ9+7dNXfuXF24cEGFCxeOtQ3FihVTzZo1VapUKUlSjhw5VL58eV28eNGsXOvWreXm5iZJ6tmzp5YsWaITJ04oZ86cun79ugoWLKicOXMqRYoU+u6771S3bt1ow54UKVIobdq0Zscnha/xNX78eKVJk0aS1LRpU02aNCnGdqdNm1bDhg2TtbW18ufPL3d3d+3evduszM2bN9W3b19VrlxZw4cPj3GdsJj6uUuXLsbIiZ49e2rZsmU6c+aMcufOrRkzZujrr782ws+cOXPq6dOnGjp0qL755huj7sjn6sCBA/rtt9908OBB47rq1auXjh8/rkWLFkW7qG7SpEk1cOBANW/e3Njm5eWl9u3b6969e8abuMKFC5uNFIqrfW+HNWnTplWKFClkbW2tTJky6enTp1q2bJl8fHyMevPkyaObN29q9uzZ+uqrr7R06VKlSpVK48ePl42NjSRp6tSpcnNz07p169SiRQuzfaRIkUK2traSwl9jadOmlZ+fn7JmzaoBAwYY5SZPnqxy5cpp69at+vLLL2Vra6t9+/bJw8ND+/fvl5ubm7Zv3667d+8qY8aM+uWXX2INlKysrDR58mRlyZJFUviHFrRv315XrlxRvnz5YnxeZMmTJ9ekSZOMNasGDRokb29vXbt2Tblz547xeQcOHNCFCxe0detW5c2bV5L0/fffa8GCBXr06FGUqXqbN2/WX3/9pYkTJxp99f3332vTpk1G4JgpUyYNHz5cSZIkUb58+eTu7q79+/dLkl6+fKlu3bqpbdu2xvXeoUMHBQQEKDg42Gi/ra2t2rVrZ+y3T58+qlmzptq2bStJyps3r4KDg2Nd9Du21+DmzZt1//59+fv7G9f6uHHjjGAgOtevX1eqVKn02WefKXPmzGrZsqXy5cunvHnzRnvfyJUrl8aMGaOqVatKCr931axZ0/gjRbp06WRtba0UKVJEOyVy9uzZql69ujp37mwcs8lkUpcuXXT58mXjdevh4WG0u1OnTvLz89Px48dVunRpXb9+XalTp1bOnDn1ySef6JtvvlHp0qWNcxeZjY2N2fWfIkWKOH9WVa5cOdp+iu/9NiYRo+js7e0lhZ8bd3d3HThwQBUrVpQkVahQQV27dpUk5cuXTydOnNDChQvl7u4e73ZXrlxZ5cuXN/abKlUqJU2a1OzeH5327dtHezxTpkxRpUqVJIWfl0mTJmnnzp2qWbOmpPDRTtWqVVP69Oklhf8MsLKyUo4cOZQ9e3Zlz55dfn5+xs8ZAAAA/PP8YwIoe3t75cyZU4GBgfLy8tLmzZujjH6SpIsXL8rFxcVsW6FChZQ2bVpduHBBlStXVrt27TR8+HBNnTpV5cqVU+XKleMdHL1+/Vrr169X5cqVjV9kq1SpotSpU2v58uXxrqdw4cKqU6eOOnXqpEyZMsnFxUVVqlRR9erVY31e5De8GTJkUPPmzbVx40adPXtW169f1/nz5yUpxulWkdWrV0/79+/X+PHjFRwcrCtXrujq1atGIBUhf/78xv8j3ghGjPbq2rWr+vTpo8DAQJUsWVIVKlRQnTp1YhyREp1PP/3U7E3BJ598YjYV5m25cuWStbW1WZveHn02ZMgQvXr1StmyZXuvReojAgNJxhvHly9f6v79+/rjjz80ceJETZkyxSgTFhamly9f6ubNm8axRz5XZ86ckclkMt4wRwgNDY12+pgUfo3Y2tpq9uzZunLliq5du2ac38gjDSLvJz7ti3w+o3PlyhW9evVKJUuWNNtepkwZLVy4UPfu3dPFixdlb29vhE9SeDiQN2/eKAFmTM6ePatLly4ZI+EivHz5UkFBQUqWLJkqVqyo/fv3y8PDQ/v27dOgQYN04sQJHTp0SPnz59eff/4Z7Rv1CHny5DHCJyl8+o4Ufp+IbwCVO3duswXTixcvLil8JGRsAdTFixdla2trdi1lyZJF/fr1i7F8njx5zAKMQoUKqVChQsb3uXLlUpIk/zcw1dbW1nit5MqVS56enlq0aJEuXrxodj+I6XqRwq/NL774wmxb6dKlYw2gYnsNnj17Vnnz5jUL8CPuwTFp0aKFtm/frsqVK6tw4cJycXFR7dq19emnn0Zb3tXVVSdOnNCUKVN09epVXb16VZcvXzY717G5ePFilJ8fZcqUMR6LCKDefq1EPs727durU6dOcnZ2loODg1xcXFS3bt1Yj/PtNsT1s+ptCXG/TZ06tRE+RRyjra2tLl68aARQZcuWNXuOo6Oj8cmw8W13bK+N2Hz//ffGayyyzJkzG//PmDGjKleurA0bNqhmzZq6d++e9u7dq1mzZhllKlasKEdHRzVs2FCfffaZMR068rEDAADgn+UfE0BJ/zcNr0mTJtqxY0e0Hxsf00KnJpPJeMPUu3dvNW/eXLt379aBAwc0fPhwzZ07VwEBAWZvqKOza9cu3b17Vz/99JPZ6Ks3b97o0KFDunr1qtkbzsgiT3GQpAkTJqhLly765ZdftH//fvXp00clS5bUwoULY9x/5IWA79y5oyZNmihDhgxydXVVhQoVVKxYsVjfkEc2aNAgBQYGysPDQ66ururSpYsxyiyy6Pokop+rV6+uPXv2aM+ePdq/f7/mz5+vadOmaeXKlSpQoEC82vEuf72PqT1vq1+/vgoWLKjRo0erevXqKliw4DvtI/Kb/Agmk8kI9vr372/21/0I2bJl059//inJ/FyFhYUpTZo00a6BE9PxHD58WG3btlWVKlVUsmRJ1a1bV8+fP1eXLl3Myr29n7jaF5eYXkMRdSdLlizWMpGDidiEhYWpXLlyGjx4cJTHIt7Eu7m5aeTIkbp+/bpCQkJUunRplS1bVocOHdLNmzdVsmRJY8RDdN5uS0QQE9M19/ZrNLqyEXXEdZzJkr3b7TM+5WN7rVy+fFnNmzdX0aJFVb58eX3xxRdKnz59lE8Ee3sx8WTJksUrsI4sttdg0qRJ37m+PHnyaNu2bTp8+LD27dunXbt2ac6cORo1apTq168fpfzs2bM1ffp01a9fX87OzmrdurV27NihTZs2xWt/0V2/ka/vCLHd+xwdHbV7927t27dPBw4cUEBAgH744QfNnTtXzs7O79WGiO0xXVvvc799+5qOru43b96YXVtvX4thYWHGPTG+7X7fReuzZMkSr/CqYcOG6t69ux49eqQNGzYoS5YsZve85MmTa9GiRTp79qzxSXqdOnWSh4fHO3+iIgAAAP4e/5g1oKTwAOr48eNas2aNcubMGe1IDjs7Ox07dsxs2/nz5/X06VPlz59fV65c0eDBg/Xpp5+qWbNmmjp1qubOnaugoCBjtEBs1qxZo/Tp0ysgIMDsa8aMGTKZTMZi5NbW1vrrr7/Mnht58eETJ05o5MiRypcvn1q3bq3Zs2dr5MiROnjwoNmiw7GJWIdl2bJl6ty5s6pXr25MIYvrE4cePHigFStWaPDgwerfv788PT1VuHBhXblyJd6fVhQaGqpRo0bpxo0bcnd31/fff6/t27crSZIkxl/L3/Y+o5HeR+3atdW8eXPZ29urf//+Ma6p8q4+/fRTZciQQTdu3FDu3LmNr5jWoYpQsGBBPX36VK9evTJ73pw5c7Rjx45onzNv3jyVLVtWvr6+at26tVxcXPT7779Livn8vm/7Ip+X/Pnzy9raOsrr6OjRo8qUKZNsbW1lZ2enU6dOma1FdffuXV27di3OEVYRChQooKCgIGXLls1op62trUaOHGmMoqpYsaIePnyoRYsWqXjx4kqVKpXKly+vgwcPaufOncbU0JhcvXpVT548Mb7/9ddfJckIj62trc3WrIpugfDg4GCzMseOHZOVlZUxSiYmn3/+uR49emRW5/3791W2bFn99ttv0ZYPDg42a++ZM2fk7Owc5RNAo7N8+XJ9+umnmj9/vtq3b6/KlSsbaz/F9pouVKiQTpw4YbYtop/eR6FChXTt2jWzhdqDgoLMjuttixYt0rZt24wPDNiwYYOcnZ2NdYfevm/MnDlTXbp00ZAhQ9SkSROVKFFCwcHB8b532dnZ6fjx42bbjh49KinqqKeYTJ06VceOHZObm5sGDBigwMBAY5RudN4+hrh+Vr0tPvfbt6/np0+fRvl58vDhQ7P1uC5duqSnT5+a/UHl7Q9HOH78uPH4u7Y7puP/UJUqVVK6dOm0fft2bdq0SZ6enmZ/ONi9e7emTZumIkWKqEOHDlq0aJG6d+9uXFMAAAD45/lHBVCFCxdW7ty5NWHChGin30lSmzZtdOHCBQ0fPlxBQUE6dOiQevfurSJFisjZ2Vnp06fXpk2bNGjQIAUFBenq1atau3atbG1tjSk5qVOnVnBwsNnCvVL4G+xffvlFjRs3VqFChVSwYEHjy83NTWXKlJG/v79CQ0NVokQJPXz4UH5+frp586aWL1+uX375xagrTZo0Wrp0qcaNG6dr167p4sWL2rx5s/LkyWOM6EiVKpWCgoJi/FSkrFmz6vnz59q6datu376tvXv3GovoxvVJP2nSpFHatGm1Y8cOXbt2TRcuXNDAgQN15syZeH9KkI2NjU6dOqWBAwfqt99+082bN+Xv769nz55FmVYVIVWqVJLCF9iObZpdQkiSJImGDx+uCxcuxLrwbFz9HJmVlZXat2+vH3/8UYsXL9b169f1008/aciQIUqRIkWMI0MqVqyowoULq2fPnjp48KCuXbumUaNGyd/fP8Y3bdmyZdOFCxd09OhR3bx5U2vWrDGm1cV0jt63falSpdKff/6pGzduKE2aNGrSpImmTp2qjRs36tq1a1qyZImWLl0qb29vWVlZqVmzZvrrr7/Up08fnT9/XidPntQ333yj9OnTx/jafFvz5s315MkT9e7dW+fPn9f58+fVs2dPnTp1yhixljZtWpUqVUorVqwwRpU4Ozvr2rVrOnHiRJwB1LNnz9S3b19dvHhR+/fv17Bhw+Tu7q4cOXJIkkqUKKFVq1bp3LlzOnv2rIYMGRKlj16+fKkePXro7Nmz2rdvn4YPHy4PDw+jjpg4OzvL3t5e/fr108mTJ3Xp0iX169dPGTJkUNGiRaOUr1u3rmxtbY0+PX36tAYPHqyCBQsqa9ascfZn1qxZ9ccff2j37t26deuWtm3bpiFDhkiK/X7Qvn17bd26VfPnz1dwcLDWrFmjxYsXx7m/mNSpU0fp06c3zutvv/2mPn36SIo5hLh//76GDRumHTt26NatW9qzZ4/OnTtn3Efevm9ky5ZN+/bt0+XLl3XlyhVNmjRJ27ZtMzvO1KlT69atW9GGd+3atdO2bds0Y8YMXb16VTt37tTw4cNVtWrVeAdQN27c0ODBg3XgwAHdunVLgYGBun37dpz3vvPnz+uvv/6K82fV2+Jzvy1RooQ2b96s48eP6/Lly/rf//4X7ai5Pn366PTp0/rtt9/Ut29f4xNhI2zatElLlixRcHCw5s6dq59++slYN+xd2x35+B89eqSrV6/G+oEdjx490p07d6J8vR2kJUuWTB4eHlqyZInOnDkjT09Ps8etra01ffp0LViwQDdu3NDp06e1a9euGM8PAAAAEt8/KoCSwkdBPX36VO7u7tE+Xrx4cc2dO1enT5+Wh4eHevToIUdHR82fP1/W1tZKnz695syZo1u3bqlx48aqX7++bt68qfnz5xvrELVq1Uq7du2St7e3Wd3r16+XyWRSs2bNot13mzZt9PDhQ23ZskXlypVTt27dNG/ePNWuXVv79u1T9+7djbL58+eXr6+vDh48KA8PDzVr1kxJkybVnDlzjL/ient7a/HixTF+4lbEwsGjR49WrVq1NHLkSDVs2FClS5eO8hfst1lbW2vKlCm6ePGi6tatq3bt2un58+fq1auXLl++rOfPn8f6/AiTJk1Szpw59fXXX6tmzZpavny5xo8fH2UdqQjlypVT8eLF1bRpU+3cuTNe+/gQBQoUUPv27TVt2jRdvnw52jJx9XN05X18fLR48WK5u7trxIgRaty4sYYOHRrjc5ImTap58+bJ3t5ePXr00JdffqkjR45o2rRpMb5p6969u0qUKGFMG1m1apVGjhypFClSxHp+36d9Hh4eev78uerUqaOQkBD1799fXl5eGj9+vGrXrq1ly5YZi29L0meffabFixfr8ePHatKkidq2batMmTJp2bJl+uSTT+LVjzlz5tTixYv1119/qVmzZmrZsqWsra21aNEis4Wjq1atqtDQUJUrV06SlD17duXJk0eff/65cubMGes+smXLpsKFC6tFixbq1auX3NzczBZ8HzJkiGxtbdW4cWN169ZNjRo1ihL22Nvbq3DhwvLy8lKPHj1UqVKlaKcNvi1JkiSaMWOGsmbNqjZt2qhZs2ZKnjy55s6dG+00qJQpU8rPz0+vX79W06ZN1a5dO33++eexjlyLzMvLS7Vq1VLfvn1Vp04d/fDDD+rVq5dy5MgR6/VSqVIlDRs2TEuWLFGdOnW0atUqNWvWLN5TKd9mY2OjuXPn6tWrV0a/NmjQQFLM0xa7du2qhg0b6vvvv1eNGjU0aNAgNWvWTB07dpQU9b4xduxYvXjxQg0aNFDLli118eJFDR06VPfu3dPt27clhX+YwcWLF/Xll19GGQFZo0YNTZw4UVu2bFHdunU1ePBg1a5dO959LUmDBw+Ws7Oz+vTpoxo1amjKlCnq3bt3jIutFyxYUJUrV1aPHj20YsWKOH9WRSeu+22vXr1UpEgRtWnTRq1bt1aJEiWMdc8iq1u3rjp06KB27dqpQIECmjVrllk4WL9+ff3000+qW7eu1q1bp8mTJxtTu9+n3ZL0xRdfKFOmTPryyy9j/ORPSerWrZsqVKgQ5SviQz8ia9CggTFKMHv27GaPlS9fXiNGjNDq1atVp04dtW3bVrlz59bEiRNj3DcAAAASl5UpvnMaAOAfxNfXV2vXrtXPP/+c2E35Rzt8+LAyZsxotij7zJkztXr1am3fvv2d67t586aCg4NVoUIFY1tISIgqVaqkJUuWxBhOw/L8/f3Vv39/XbhwIcYyrq6uql+/vrp16/Y3tuyfLSLAneO3T0FBvydyawDg3eXPn01TJ3dKsPqePXumc+fOqXDhwsYIX7wb+jBh0I8f7u/ow4jfpYoVKxZn2X/cCCgAQMLZu3ev2rZtq4MHD+r27dvasWOHFi5cGONInri8fPlSHTp0kJ+fn27cuKGzZ89q4MCBypMnT7SfbgYAAAAA0j/sU/AAAAmra9euxlpZ9+/fV7Zs2dS6dWtjzZ93lT9/fk2cOFEzZ87U1KlTlSJFCjk7O8c5RQsAAADAfxtT8AAAwH8WU/AAfOyYgvfPQx8mDPrxwzEFDwAAAAAAAP8pBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAopIldgMAAAASW87PMiZ2EwDgvXD/AvCxIIACAAD/eX16N0zsJgDAewsLC1OSJExuAfDPxl0KAAD8p4WGhur58+eJ3YyP2vPnz3X27Fn68QPQhwnjv9qPhE8APgbcqQAAwH+eyWRK7CZ81Ewmk54/f04/fgD6MGHQjwDwz0UABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAA8J9nZWWV2E34qFlZWSllypT04wegDxMG/fjh6MMPRx8C0UuW2A0AAABITDY2NkqZMmViN+OjljJlShUpUiSxm/FRow8TBv344ejDD/dv78M3YWFKmoSxLHh3BFAAAOA/b9DitQoOuZvYzQAA4B8tT5aMGtayfmI3Ax8pAigAAPCfFxxyVxdu/ZHYzQAAAPjXYtwcAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUAhWh17dpVjRo1irK9cePGsrOz0+HDh822r1+/XoUKFdK9e/fk4+OjVq1aJXibgoODZWdnJw8PjwSvW5KePXumJUuWfHA9dnZ28vf3lyT5+vrK1dX1g+vEv1urVq3k4+Pzt+/35s2bsrOz06FDhyy2D5PJpLVr1+revXsW20dCOHTokOzs7HTz5s33riPyaz8h7Ny5U5cvX47x8b/j/MUmruv2Xfo0IfofAAAA/2wEUIiWs7Ozzp07pxcvXhjbHj58qFOnTilbtmzas2ePWfmjR4+qUKFC+vTTTy3WJn9/f+XNm1fnzp3TiRMnErz+efPmyc/PL0Hr9Pb21urVqxO0TiChZMuWTXv37pWjo6PF9nHkyBH5+Pjo+fPnFtvHv9GtW7fUqVOnWIO7v+P8fQhHR0ft3btX2bJlS+ymAAAA4B+AAArRKleunF69eqVTp04Z2/bv369PP/1UDRo0iDaAKl++vMXa8+bNGwUEBMjT01P58+fX8uXLE3wfJpMpwetMnTq1MmTIkOD1AgkhadKkypQpk2xsbCy2D0u8rv4L4tNvf8f5+xA2NjbKlCmTkiZNmthNAQAAwD8AARSilT9/fmXJkkXHjx83tu3Zs0cVKlRQhQoVdP78ed29e1eSdP/+fQUFBalChQpG2VevXmnMmDEqV66cSpQooc6dOxvlu3TpIi8vL7P9XblyRXZ2drp06VK07dm7d69CQkLk4uKiL774Qlu2bNHjx4/NykQ3/SXytufPn+u7776Ti4uLihUrJg8PD23btk1S+FS5adOm6datW8Y0EB8fH3Xv3l3e3t5ycnLSnDlzFBYWplmzZqlGjRqyt7eXk5OT2rVrp+vXr0fb7ren4B09elReXl5ycnKSvb29atWqpXXr1hmP+/j4yMfHR2PGjJGzs7OKFy+ujh07KiQkJNr6I/p6ypQpqlq1qooXLy5PT0/t27fPeDwoKEidOnVS2bJlVbJkSXXv3l23bt0yHm/VqpXGjx+v//3vfypVqpScnJz07bff6unTp0YZPz8/VatWTfb29nJ1ddX06dONN8jRTTN8e5udnZ1WrFih5s2bq1ixYqpVq5aOHz+uFStWqEqVKnJyclKPHj3MRtwdP35cLVq0kIODg6pUqaKhQ4eatcnV1VVjxoyRu7u7ypYtq8OHDys4OFht27ZVyZIl5ejoqLZt2+rChQsx9t2jR480YMAAVaxYUUWLFpWzs7MGDBhgjNY5dOiQihQpotmzZ6ts2bLy9PRUWFiYQkJC1LNnT5UqVUply5ZVp06dFBwcHON+JOnkyZNq3bq1HB0dVb58eQ0ePNhsVNBff/2l/v37q1SpUipZsqR8fHz07Nkz4/Ht27erUaNGKlGihIoVKyZPT0+zILhVq1YaOHCgGjVqpFKlSmn9+vWSpAULFsjV1VUODg5q06aNpk2bZpybt6dwxedaOH36tFq0aKHixYvLzc1N69evV5EiRaKdBnbo0CHjte7m5ma8Fn/99Vd5eXmpZMmSKlu2rPr3768HDx5Ikrp166ZOnToZdZw/f152dnZmoxN//PFHVa9eXZJ0+/Zt9ezZU87OzipatKgqVaqkcePGKSwsTFL4yMnq1avr+++/V8mSJdW5c2dJ4a/FRo0aycHBQV9++aXOnz8f6/mTwqfEeXp6ysHBQdWrV9fkyZMVGhr63uX/+usvDR8+XBUqVJCjo6Natmyp06dP6+bNm3Jzc5MkeXl5ydfXN9pr8caNG2bnz2QyaeHChapRo4YcHBxUu3Ztbdy4Mdq2+fr6qkKFCkY/SeH3SEdHR61atUpS+L2jffv2cnR0VIUKFfTtt9/qzp07ZvXEdt2+Pa0urntVZCaTSXPmzJGbm5uKFy+uevXqGdd0hNjuSwAAAPjnIYBCjJydnfXrr78a3+/du1cuLi5ycHBQ2rRptXfvXknSsWPHlCJFCpUsWdIo++uvv+rx48daunSpZs2apd9++01jx46VJHl6eurw4cP6/fffjfIBAQEqVqyYChQoEG1b1qxZo1y5cqlo0aJyd3fX8+fPFRAQ8E7HM2XKFF24cEGzZ8/W5s2bValSJfXs2VM3b96Ut7e3vL29lTVrVrMpI4GBgSpfvrzWrFmjOnXqaNGiRfLz85OPj48CAwM1ffp0BQcHa/To0XHuPyQkRG3btlWxYsW0du1aBQQEyMHBQd99950RzknSxo0b9fDhQy1evFhz5szRmTNnNHny5BjrHTFihJYvX65+/fppw4YNqlixojp16qQrV67o1q1batKkiWxsbLRw4ULNmzdPd+7cUcuWLc1ChQULFihjxoxavXq1xo0bpx07dmjBggWSpJ9//lmzZs3S0KFDtW3bNvXu3Vs//PBDlDeDcZk0aZLatWundevWKW3atOrUqZMCAwM1e/ZsjRo1Stu3bzfe+J4/f15t2rRRxYoVtX79eo0fP15nzpyRt7e32RvMxYsXa8CAAZo7d65KlCihXr16KUuWLFqzZo1WrVqlJEmSqGvXrjG2ycfHR2fPntW0adMUGBio/v37KyAgQCtWrDDKvHnzRrt379aKFSs0YsQIvXjxwljjbPHixfrxxx+VPn16NW7cOMag8MaNG/rqq6+UOXNmrVixQr6+vtq3b5+GDh1qlNm2bZsyZ84sf39/jR07Vps3b9acOXMkhYc+3bp1U+3atbVhwwatXLlSGTJkUN++fc0CjVWrVsnLy0tLly5VxYoVtWTJEk2aNEmdO3fWunXrVKZMGU2fPj3W8xTbtRASEqKvvvpKOXLk0Jo1azRo0CBNmjRJb968ibYuR0dH+fr6Gm1zd3fXyZMn1apVKxUoUEArV67UlClTdOLECbVt21Zv3rxR1apVdfjwYb1+/VqStG/fPllZWZkFXLt27TICmq+//lpPnjzR/PnztXXrVnl7e2vu3Ln6+eefjfLXr1/Xn3/+qYCAAPXs2VM3btyQt7e3ChcurLVr16pLly6aMWNGrP3yyy+/qEePHmrcuLE2btyowYMHa8uWLerTp897l+/Ro4d++eUXjRo1SgEBAcqZM6e8vb2VOnVq47Xg6+srb29vSVGvRSsrK7N9zp0713idbdy4UU2bNlXfvn118ODBKO3z8PDQ3bt3zfp1+/btMplMqlWrlkJCQtS8eXPlzp1bq1ev1syZM/X06VM1adLELBiN7bp9W2z3qrdNmjRJy5Yt08CBA7VhwwZ5eXlpyJAhxjp9CXVfAgAAwN8nWWI3AP9czs7OGjVqlEwmky5cuKA7d+7IxcVFSZMmlbOzs/bs2SMPDw8dOXJEpUqVUvLkyY3nZsqUScOHD1eSJEmUL18+ubu7a//+/ZKkypUrK2PGjFq/fr06duyosLAwrVu3Th06dIi2HQ8ePNDPP/+stm3bSpIKFiyoggULasWKFVFGUsXm+vXrSp06tXLmzKlPPvlE33zzjUqXLi1bW1ulTp1aqVKlMqa0RLC1tVW7du2M73PlyqUxY8aoatWqkqQcOXKoZs2a2rp1a5z7f/nypbp166a2bdsabxw7dOiggIAABQcHK2PGjJKktGnTatiwYbK2tlb+/Pnl7u6u3bt3R1vn06dPtXr1ag0cOFA1a9aUJPXs2VMmk0lPnz7VmjVrlCpVKo0fP96YpjN16lS5ublp3bp1atGihSTp888/V69evSRJefLkkYuLixE+Xr9+XTY2NsqRI4eyZ8+u7NmzK3PmzMqePXu8+16SGjRoYIy8qVevnoYNG6ZBgwYpT548KliwoObOnWuMgPPz85OLi4sxEiZPnjyaMGGCqlWrpsOHD6ts2bKSwq+lyFM/r1+/rvLlyytHjhyytrbWyJEjdeXKFYWFhSlJkqh5u4uLi0qXLi07OztJ0meffabFixfr4sWLZuW8vb2VJ08eSeFByuPHjzVu3DglSxZ+Cx0xYoQOHTqklStXqlu3blH2s3LlSqVLl04jR440nvP999+bBbwODg7q2bOnpPDrzMXFRadPn5YUPtVq4MCBat68uVHey8tL7du3171794zAtHDhwqpbt65Rxs/PT15eXmrYsKGk8LDmzJkzOnv2bEynKdZrYcWKFUqbNq1GjBgha2trff755xowYIAxquhtNjY2srW1lSRlyJBBKVKk0Lx582RnZ6eBAwdKCh9tOXHiRNWrV0979+5VlSpV9N133+m3335TqVKltH//frm5uenAgQN6/fq1QkNDdfjwYXXq1EkvXrxQvXr1VKtWLaMPWrdurTlz5ujChQuqVq2a0ZbOnTsrZ86ckqQJEyYoY8aMGjx4sJImTar8+fPr999/16hRo2Lsl5kzZ6px48Zq2rSpcY6GDh2qr776Sjdv3tRnn332TuVDQ0P1yy+/yM/Pzxg9OmTIEH3yySd69OiRMXU34v4UIfK1GHnB7ojRT15eXsYHSLRq1UovXrwwwrzIcubMqdKlS2v9+vVydnaWJG3YsEHVqlVTmjRpNHfuXGXNmlUDBgwwnjN58mSVK1dOW7dulaenp6TYr9vI4rpXRfbs2TMtWLBAEydOVJUqVYy6b926JT8/P7Vo0SLB7ksAAAD4+xBAIUbOzs56+PChrly5or1796pIkSLGmyIXFxdNmzZNUvhUltq1a5s9N1euXGZv+G1tbY3pVcmSJdOXX36pdevWqWPHjjp48KDu37+vOnXqRNuODRs26NWrV3J3dze21a5dW5MmTdLRo0dVqlSpeB1P+/bt1alTJzk7O8vBwUEuLi6qW7eu0qZNG+NzcufObfa9q6urTpw4oSlTpujq1au6evWqLl++rCxZssS5/1y5csnT01OLFi3SxYsXdf36dWPaT+QRJLly5ZK1tbXxfdq0afXq1ato67x69apevXql4sWLm22PCBB8fX1lb29vtkZMpkyZlDdvXrOQJV++fGbPT5s2rTHF8csvv9SaNWtUo0YNff755ypfvrxq1Kjxzm/0IvdlypQpjWONkCJFCmM0z9mzZ3Xt2rVoF1cOCgoyAqi3z0/Pnj01cuRILV26VGXKlFHFihVVp06daMMnSWrevLl+/vlnrV27VsHBwbp8+bJu3rwZpT8i3vBHtO3Ro0cqXbq0WZmXL18qKCgo2v1cvHhRRYsWNcInKXydtXLlykW7Dyn8NRMxVbJw4cKytbXV7NmzdeXKFV27di3aaydyfzx48EC3bt1SiRIlzOotVapUrAFUbNfC2bNnZW9vb3Z9vt0Pcbl48aJcXFzMthUqVEhp06bVhQsXVLlyZRUvXlz79u2Tg4ODjh49qh9//FG7du3S6dOnde/ePaVKlUpOTk5KmjSpWrZsqa1bt+rkyZO6du2aLly4oLt375pNLZPM+/fixYsqUqSI2dpETk5Osbb77NmzOnnypNmHCkSMxgv6f+3dd3xO9///8WdsIbVXVa1KYoVYsUdQo9RW+6Oxas8iLRXUpgS1o0RsYoTGLGqPGlURI4SgWntGgly/P/xyvrkkkURyScnjfrvlVjnXGa/zvt7XqevpvN8nICBSABXT+uHDLyO+P6lTp5arq6skRfs0uNf7Sbh79+7p1q1bka4FXbp0ifacmjVrptGjR8vNzU1PnjzR/v37jbuX/Pz8dOHChUifwdf7+Zv6bUQxXasi3ol18eJFhYSEaODAgWaf3fAA8tmzZwl2XQIAAMC7QwCFaOXIkUP58+fXiRMntH//frM5nipXrqwffvhBZ86ckb+/v8aOHWu2bUyTzjZr1kweHh7666+/tHHjRtWsWdO4U+J14fPGNGnSxFgW/kVu+fLl0QZQr/+rv6Ojo/bs2aP9+/fr4MGDWr9+vWbPnq0FCxYYdwC8Lk2aNGa/z5s3Tz///LOaNGmiChUqqGPHjtq5c6c2b978xvOVXn2patOmjYoWLaqKFSvq888/V6ZMmYy7FcLFZULhiEFAVKKbDyUsLMxs2zcdM3PmzNqwYYPRD/bt2ydPT0/17t072uFtUd1xETF8CRddMBQWFqaGDRuazQUUsZ5wr78/bdu2Vd26dbVnzx4dPHhQ06dP1+zZs7V+/XrjDrOIx+jWrZsuXLigBg0aqH79+ipatKhxZ05EEe/uCwsLU/78+TV79uxI61lbW0d5PlGd++ve9Jk5cuSIOnXqpOrVq6t06dJq2LChgoOD1bNnT7P1IrZH+DHjOifOm/pC8uTJIwU7cRVdPSaTyeiTzs7O2rFjh8qVK6ePPvpIDg4OKl68uA4fPqzr16+rRo0aSp48uZ4+fap27drp2bNnqlu3rpo0aSIHBwfjzr6IIraNlZVVpPOI6T0KCwtT586dza5D4SLeNRnb9cPvCI2riH0xopiuBVH5/PPPNXLkSO3atUu3b99WtmzZjFA0LCxM5cuX14gRIyJtFzG0j+0E43GpL7yPTJs2LVIgKr3qo2nSpInzdQkAAACJizmg8EYVK1bU8ePHdeLECbO7FnLnzq18+fJp6dKlypw5szGEKbYKFiwoR0dH+fr6aufOncZwjtf5+fnp7Nmz+uabb7R+/XrjZ8OGDapSpYq2bdtmTF6cMmVKs6EcV65cMdvX9OnT9ccff6hmzZoaNmyYtm7dqjx58mjr1q2SFGk+lajMmTNHPXv2lJubm7766iuVLFlSgYGBsfqSv2LFCmXJkkW//PKLunTpomrVqhlzP73txLl58+ZVypQpzZ5WKEktW7bUokWLZGdnp9OnT5vNE3T79m1duXJFBQsWjNUxNm7cqOXLlxsTmK9atUotWrTQr7/+KulVuz958sRsm9fbPq4KFSqkixcvKm/evMbPixcvNG7cOLO5wyK6c+eORo0apefPn6tp06aaNGmSNm7cqFu3bunIkSOR1j979qx+//13ubu7a9CgQfryyy/16aef6urVq298P2xtbXXjxg3Z2NgYtX388ceaMmWKjh49GuU2n332mfz8/MzuVtq+fbucnZ0VEhISY3ssXLhQTk5OmjFjhjp27KhKlSoZ7RBdrTY2NsqdO7dOnjxptvz13+PC3t5efn5+ZnfkRRxGGJXXP1d2dnb6448/zJb5+/vr8ePHRp90dnbWX3/9pe3btxvhcMWKFXXo0CGz+Z/27dunM2fOyNPTU3369FH9+vWVPn163blz543vob29vf766y+zz0VUw8YiKlSokC5fvmzWJ2/evKmJEydG6v+xWT/8XCN+dl+8eCFnZ2dt2bIlVtejiGxsbJQ9e/ZI14I+ffpEO7TQ2tpa9erV07Zt27R582Y1atTICIULFSqkgIAA5cqVy6g/Q4YMGjt2bKQhqrER07UqogIFCihFihS6ceOGWfvt2bNHHh4eSpYsWYzXJQAAAPz3EEDhjSpUqCBfX19ZWVlFGqJSpUoV+fr6qkKFCnH+siS9ugvKy8tLadKkiTQkJ5y3t7fSpk0rFxcXY+6n8J8uXbooNDTUuEOqZMmSWr16tc6ePSs/Pz+5ubmZ3c0RFBSkESNG6ODBg7p+/bq2bt2qGzduGENMrK2t9eDBA2OoSFRy5cql/fv36+LFi7p06ZKmTp2qbdu2vfFJWOFy5sypmzdvas+ePbp+/bq2bdsmNzc3hG4B6wAAYPhJREFUSYrV9lFJmzat2rVrJ3d3d+3cuVNXr17VTz/9pPPnz6tq1apq3bq1njx5om+//Vb+/v76888/1bdvX2XKlCnSsMnohISEaMKECVq/fr2uXbumY8eO6ejRo0a7lSxZUvfv35eHh4euXbumFStW6Pfff3+r8wnn4uIiPz8/jRw5UgEBATpx4oQGDhyowMDAaIcgZciQQbt379awYcN09uxZBQUFacWKFUqZMqWKFSsWaf2sWbMqRYoU8vX1VVBQkE6fPq1+/frp1q1bb3w/vvzyS2XIkEF9+vTRqVOnFBAQoKFDh+r333+PNoht06aN7t27pxEjRiggIEBHjx7VxIkTVb58+WjvaIkoV65cOnfunI4dO6Zr165p7dq1cnd3l/TmvtOlSxd5eXnJ29tbV65ckYeHhxG4vo02bdro4cOHGj58uAICAnTgwAGNHj1aUvQBbvhdYf7+/nry5Im+/vprnTt3TqNHj1ZAQIAOHz6sQYMGqUiRIkbY9Nlnnyl37txavXq1saxChQo6dOiQ7t+/b1wvcubMKelVSHr9+nUdO3ZMPXr00PPnz9/YLq1bt1ZwcLC+++47BQQEaNeuXcZk6dHp0qWLtm7dqpkzZ+ry5cs6ePCgXF1d9ejRoyjvgIpp/fz58xt3IB06dEiXL1/W8OHDFRISonLlyhntdv78eT169OiNtYXr2rWrFi9erA0bNujq1avy9PTUzp07jcAuKk2bNtWuXbt08uRJs38IaNOmjR49eqRBgwbJ399f/v7+6t+/v06fPi1bW9tY1RNRTNeqiGxsbNSqVSu5u7trw4YNCgoKMibFz549u6SYr0sAAAD472EIHt7IyclJz549U7Vq1SINoahcubKWLFkSbXgUk3r16mn06NFq3LhxlMM4QkND5ePjo4YNG0Y5PM/JyUlFixbVqlWr5OLiIjc3N7m5ually5bKnj27+vbtq5s3bxrrjxgxQhMmTNC3336r+/fvK3fu3Bo0aJAaNWok6dVwlFWrVunLL7+Ul5dXlDVPnDhRo0aNUrNmzZQuXTqVKFFCI0eOlJubm27cuPHG+Uc6dOigS5cuGU8uy5cvnwYMGKDp06fr9OnTkb6ExdaAAQOUPHlyjRgxQo8ePZK9vb3mzZtnDF3x8vLSpEmTjKfhVapUSZMmTdJHH30Uq/23aNFC9+/f16xZs/T3338rQ4YMqlOnjgYNGiTp1VxGvXv31sKFCzV9+nRVrVpVffr0kaen51udj/Qq1FqwYIHc3d3VpEkTWVtbq0KFChoyZEi0Q8RSpEih+fPna8KECerYsaOCg4NVuHBhzZs3z2yuqXA5cuTQ+PHjNWPGDC1dulTZsmVT9erV1bFjR7MnqL3OxsZGXl5emjhxovHktqJFi2rhwoXR3lWWI0cOLVy4UJMmTVLjxo2VIUMG1a9f35j/JiZ9+vTR7du3jSGJn332mcaOHatvv/1Wp0+fjva4rVu31oMHDzRt2jTdu3dP5cqVU5MmTSLdgRRbWbJk0YIFCzR27Fg1atRIOXPmVOvWrTVx4sRoh1jZ2tqqWrVq6tevnwYMGGA8pW7atGlq3Lix0qdPr1q1amngwIFm+6hRo4YWL15sDAkrWbKk0qRJIycnJyOccXBwkKurqxYtWqRp06YpR44cql+/vnLlyhXpTpuIcuTIocWLF2vs2LFq0qSJcuXKpe7du5s9lfB1devW1dSpUzV37lzNmTNHGTNmlLOzs/E5eJv1x44dq4kTJ6pv374KDQ1ViRIl5OHhYQwzbdasmSZOnKgrV66odu3a0dYWLnw4oru7u27duqV8+fJp6tSpKleuXLTblClTRtmyZVOWLFnM5hDLkyePvLy8NGXKFLVu3VrJkydXqVKl5OnpaTYMNi7edK26deuW2bqurq7KlCmT3N3d9e+//ypXrlzq06eP8VCImK5LAAAA+O+xMr3t2B8gnoKCgvT555/L19c32rtaALy933//XZ999plZMDp8+HBdvXpVixcvjvP+Ll68qAcPHqh06dLGsuPHj6t169bavXu38SQ64H0SHlZO2nZI567fjGFtAACSNrvcOeU5MPqHnCSkp0+f6uzZsypcuHC0c63izd5FG4b/Xap48eIxrssQPLxzf//9t7Zu3aphw4apSpUqhE+AhWzYsEE9evTQyZMndf36da1fv14bN2407vqLq5s3b6pDhw5av369rl+/rhMnTmjcuHEqV64c4RMAAACAN2IIHt65e/fuaejQocqXL59mzpyZ2OUAH6zhw4dr/Pjx6tmzpx4+fKi8efPqu+++i3bS/5hUrlxZ33//vebOnavhw4fLxsbmjcPQAAAAACAcARTeuSJFisT45CwA8ZcxY0aNHz8+QffZpk0btWnTJkH3CQAAAODDxxA8AAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAolK87YZ79uzRgQMH9O+//2rAgAE6e/asihYtqty5cydkfQAAAAAAAHjPxTmACg4OVs+ePXXgwAGlT59eT548UefOnbV8+XL5+fnJy8tLhQoVskStAAAAAAAAeA/FeQjeTz/9pDNnzmjRokU6dOiQTCaTJGnChAnKkSOH3N3dE7xIAAAAAAAAvL/iHED5+vpqwIABKl++vKysrIzl2bNnV/fu3fXHH38kaIEAAAAAAAB4v8U5gHr48GG08zxlyJBBT58+jXdRAAAAAAAA+HDEOYAqVKiQfHx8onztt99+Y/4nAAAAAAAAmInzJOTdu3dXr169dP/+fdWoUUNWVlY6evSovL29tWLFCk2ZMsUSdQIAAAAAAOA9FecAqlatWpo0aZKmTJmiPXv2SJLGjx+vLFmyyM3NTXXr1k3wIgEAAAAAAPD+inMAJUkNGzZUw4YNdenSJd2/f18fffSRChQooGTJ4jyiDwAAAAAAAB+4twqgwhUoUCCh6gAAAAAAAMAHKlYBlL29vaysrGK1QysrK/n5+cWrKAAAAAAAAHw4YhVA9ezZM9YBFAAAAAAAABBRrAKo3r17G3++ceOGsmbNqlSpUkVaLyQkRGfOnEm46gAAAAAAAPDei/Os4TVr1pS/v3+Ur/3555/6+uuv410UAAAAAAAAPhyxugNqwoQJun//viTJZDJp1qxZypQpU6T1zp49KxsbmwQtEAAAAAAAAO+3WAVQBQoU0OzZsyW9mmT8r7/+ijQEL3ny5LKxsZGrq2vCVwkAAAAAAID3VqwCqBYtWqhFixaSJGdnZ/38888qXLiwRQsDAAAAAADAhyFWAVREv/32myXqAAAAAAAAwAcqVgFUhw4dNGLECBUsWFAdOnR447pWVlZavHhxghQHAAAAAACA91+sAiiTyRTln2NaFwAAAAAAAIhVANWsWTNlzpxZkrRkyRKLFgQAAAAAAIAPS7LYrOTq6qqgoCBL1wIAAAAAAIAPUKwCKIbVAQAAAAAA4G3FKoACAAAAAAAA3las5oCSpDVr1uj333+PcT0rKyv17NkzXkUBAAAAAADgwxHrAGrVqlWxWo8ACgAAAAAAABHFKYBycHCwZC0AAACJIl+OrIldAgAA/3n8/xLxEesACgAA4EM1ql2TxC4BAID3wsuwMCVPxnTSiDt6DQAASNJCQ0MVHByc2GW814KDg+Xn50c7xgNtmDBox/ijDePvQ29Dwie8LXoOAABI8kwmU2KX8F4zmUwKDg6mHeOBNkwYtGP80YbxRxsCUYvVEDx/f39L1wEAAAAAAIAPFHdAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWFSsJiGPSkBAgPbv369///1X7du3V1BQkOzt7ZU+ffqErA8AAAAAAADvuTgHUGFhYfrhhx+0du1amUwmWVlZqV69epo1a5auXr0qLy8v5cyZ0xK1AgAAAAAA4D0U5yF4s2bNko+Pj3788Uft379fJpNJkvTtt98qLCxMU6dOTfAiAQAAAAAA8P6KcwC1du1a9enTR82aNVPGjBmN5YULF1afPn20f//+hKwPAAAAAAAA77k4B1C3b99W4cKFo3wtR44cevjwYbyLAgAAAAAAwIcjzgFU3rx5tWfPnihfO3LkiPLmzRvvogAAAAAAAPDhiPMk5P/73//0ww8/6Pnz56pRo4asrKx05coVHT58WAsXLtTQoUMtUScAAAAAAADeU3EOoFq0aKG7d+9q9uzZWr58uUwmkwYMGKCUKVOqc+fOat26tSXqBAAAAAAAwHsqzgGUJHXr1k1t27bV8ePH9eDBA3300UcqUaKE2aTkAAAAAAAAgPSWAZQkpU+fXlWrVk3IWgAAAAAAAPABilUA5ezsLCsrq1jt0MrKSjt27IhXUQAAAAAAAPhwxCqAKleuXKwDKAAAAAAAACCiWAVQ48ePj7Ts5cuXSp48uSQpODhYL168kI2NTcJWBwAAAAAAgPdesrhu8OLFC40YMUItW7Y0lp04cUIVKlTQhAkTFBYWlqAFAgAAAAAA4P0W5wBq+vTp2rhxo7744gtjWZEiRTRo0CCtWrVKCxYsSNACAQAAAAAA8H6L81PwfHx8NGTIELVq1cpYljFjRnXs2FEpUqSQp6enunbtmqBFAgAAAAAA4P0V5zug7t27pzx58kT5WoECBXTz5s14FwUAAPAu8bCV+LGyslLatGlpx3igDRMG7Rh/tGH80YYJg3b88MQ5gCpQoIC2bt0a5Wu//fab8ubNG++iAAAA3pVUqVIpbdq0iV3Gey1t2rQqUqQI7RgPtGHCoB3jjzaMP9owYdCOb+/lf3Ru7jgPwevQoYOGDh2q+/fvq1atWsqSJYvu3r2rXbt2ydfXV+PGjbNEnQAAABYzbOdqXb53K7HLAAAAiJf8mbLpx5otEruMKMU5gGrcuLGePHmiWbNmadu2bcbyTJkyafjw4WrcuHFC1gcAAGBxl+/d0rnbfyd2GQAAAB+sOAdQktS2bVu1adNGly9f1v379/XRRx+pQIECSpYsziP6AAAAAAAA8IF7qwBKejUhWIECBRKyFgAAAAAAAHyAYhVAFS5cWCtXrpSDg4Ps7e3fOAu9lZWV/Pz8EqxAAAAAAAAAvN9iFUD17NlTOXLkMP7MYxABAAAAAAAQW7EKoHr16mX8uXfv3m9c9+bNm/GrCAAAAAAAAB+UOM8aXrhwYf35559Rvnbs2DHVq1cv3kUBAAAAAADgwxGrO6AWLlyop0+fSpJMJpNWr16t33//PdJ6J06cUKpUqRK2QgAAAAAAALzXYhVAhYSEaObMmZJeTTK+evXqSOskS5ZMNjY26t69e8JWCAAAAAAAgPdarAKo7t27G8GSvb29Vq1aJQcHB4sWBgAAAAAAgA9DnOeAqlixop48eWKJWgAAAAAAAPABinMAdeLECVlZWVmiFgAAAAAAAHyA4hxAValSRRs3btTz588tUQ8AAAAAAAA+MLGaAyqi1KlTa+PGjfL19VXBggVlbW0daR1PT88EKQ4AAAAAAADvvzgHUDdv3pSjo6Pxu8lkMnv99d8BAAAAAACQtMU5gFqyZEmUy//55x+tXr1aa9asiXdRAAAAAAAA+HDEOYB63d69e7VixQrt2bNHL168UJ48eRKiLgAAAAAAAHwg3iqAunv3rtasWaNVq1bp+vXrSp8+vZo0aaJGjRqpTJkyCV0jAAAAAAAA3mNxCqAOHTqklStXaseOHXr58qVKly6t69ev6+eff1a5cuUsVSMAAAAAAADeY7EKoBYtWqSVK1fq8uXLyps3r3r06KEmTZrI2tpa5cqVk5WVlaXrBAAAAAAAwHsqVgHU+PHjZWdnJ09PT7M7nR49emSxwgAAAAAAAPBhSBablb744gtduXJF3bp1U48ePbR9+3a9ePHC0rUBAAAAAADgAxCrO6CmTJmix48fy8fHR97e3urdu7cyZcqkWrVqycrKiiF4AAAAAAAAiFas7oCSpPTp06t169ZavXq1fHx81KhRI/32228ymUz67rvv5O7urosXL1qyVgAAAAAAALyHYh1ARVSoUCENHTpUe/bs0YwZM1SgQAHNnz9fDRs21JdffpnQNQIAAAAAAOA9FqsheNFunCKFateurdq1a+v27dtat26d1q1bl1C1AQAAAAAA4APwVndARSVr1qzq0qWLfv3114TaJQAAAAAAAD4ACRZAAQAAAAAAAFEhgAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFxEP79u1lZ2cX7c/du3fl6uqqihUr6uXLl1HuY/bs2SpTpoyePXsW5+Pfv39fHTt2VPHixdW8efP4ns5bCQ0NVZ8+feTg4KDKlSsrLCwsxm3u3bun1atXv4Pq4qZ9+/YaOnRogu3j8OHDsrOz07Vr1xKivP+UhGiruJgxY4acnZ2N3y9cuKDdu3e/9f4+lPfG2dlZM2bMSOwyYvTHH3/o2LFjsV5/6NChat++vQUrAgAAwLuWIrELAN539erV0/fffx/la5kyZVKzZs3k7e2t/fv3q2rVqpHWWb9+vRo0aKA0adLE+dgbN27UsWPHtGzZMuXIkSPO2yeEvXv3auvWrZo7d67s7OyULFnMufbEiRN17do1tWjR4h1UiA+Bi4uL2rZta/zerVs3NWnSRNWrV3+r/Tk6Omrfvn3KnDlzAlWYONasWaPUqVMndhkxatOmjcaNG6cyZcokdikAAABIJARQQDylSZNG2bJli/b1MmXKKF++fPLx8YkUQJ08eVKBgYGaMmXKWx374cOHypYtmxwcHN5q+4Tw8OFDSVK1atVkZWUVq21MJpMlS8IHKF26dEqXLl2C7S9VqlRv/Ny+L973AA0AAABJB0PwgHegWbNm2rFjh4KDg82Wr1u3Tvb29ipWrJgkKTAwUJ06dVLp0qXl6OioTp066dy5c1Huc+jQoZoxY4Zu3LghOzs7eXt7KywsTHPnzlWdOnVUrFgxlSpVSp07d9bVq1eN7Z48eaLRo0ercuXKcnR0VLt27fTXX38Zrx8/flxt27aVg4ODqlevrpEjR+rx48dR1jBjxgxjGJa9vb1mzJghb29v2dnZma0XcdnQoUO1bt06HTlyxFgW1XCu14eyFSlSRPPmzZOTk5OaNm2qsLAw/fPPP+rfv7/KlCkjJycnffPNNwoMDHzje/Hnn3+qY8eOcnR0VMWKFTVixAiz9+XJkydydXVVmTJlVLp0aQ0dOlRPnz41Xt+xY4datGihkiVLqnjx4mratKn27t37xmOGM5lMmj9/vmrWrKkSJUqoUaNG2rhxo/F6+Hnu2bNHDRo0ULFixVS3bl3t2LHDWOfly5eaOnWqKleurJIlS6pPnz4aM2aM2XClgIAAdenSRY6OjqpcubIGDhyoW7duGa/HpZ9Jr4ZZjh07VhUqVFDp0qU1adKkSEMt43tMOzs7LV26VC1btlTx4sXVsGFD7dy503g94hA8Z2dnXb9+XTNnzjTO+9GjRxo+fLjKly+v0qVLq0OHDjp9+nS05/T6EDxnZ2d5eHiod+/ecnR0lJOTk3788Ue9ePHC2OZNfad9+/YaPny4WrRooTJlyhjv69q1a1WvXj05ODioXr16Wrx4sVnbHTt2TB06dFCpUqVUrFgx1atXTxs2bDBev3Pnjvr06SMnJyc5ODioVatWOnLkiPF6xCF4M2bMUMeOHTVv3jxVrVpVxYsXV7t27RQQEGCsf/fuXbPPzOTJk9WhQ4doh/FFNVTx9WXt27fXmDFjNGDAAJUoUUJVq1bVvHnzjKA5/HPu6upqfKZjOu/XjRkzRmXLltWff/4pKe7vNwAAABIfARTwDjRu3FghISFmX6hDQ0Pl6+trNgxtwIABypEjh9auXavVq1crWbJk6tWrV5T7/P777+Xi4qKcOXNq3759ql+/vjw9PeXh4aGhQ4dq69at+vnnnxUYGKjx48cb2/Xr10+///67xo0bp/Xr1ytPnjxycXHRgwcP5O/vr6+//lpVqlTRxo0bNXnyZJ05c0YuLi5R3rXk4uKi7777TpK0b98+ubi4xNgW33//verVq2cMgYqtly9fas+ePVq5cqXGjBmjZ8+eGeGDl5eXlixZokyZMqlly5b6559/otxHUFCQ/ve//yl79uxauXKlZsyYof3792vkyJHGOtu2bVP27Nnl7e2tiRMn6tdff9X8+fMlSX/99Zd69+6tL774Qj4+Plq1apUyZ86swYMHKzQ0NMZzmDp1qpYvX67hw4fLx8dHHTp0kJubm5YuXWp2npMmTdL333+vTZs2ydbWVkOGDNGTJ08kSZMnT9bKlSs1YsQIrV27VtmyZdOSJUuM7f/55x+1adNGefPm1Zo1azRnzhw9fvxYX331lRGkxaWfSdKPP/6oX3/9VePHj9eKFSt08+ZNs/l8EuqYkydPVqNGjbRhwwZVq1ZNvXr10vHjxyPVs2bNGuXMmVMuLi6aMWOGTCaTunTpoqCgIM2dO1erVq1SyZIl1bp1a/n5+cX4voRzd3dX2bJltXHjRg0ePFheXl7atGmTpNj1ndWrV6tDhw5atmyZqlSpopUrV2rixInq1auXNm/erH79+mn+/PmaPHmy0W6dOnVS8eLFtW7dOq1fv14ODg76/vvvdfv2bUmSm5ubQkJC5OXlJR8fH+XPn189evQwC0UjOnbsmP744w/NmzdPy5Yt0507d4waw8LC1K1bN125ckULFizQwoULdfLkSbNA620tX75cNjY28vb2Vv/+/fXzzz8bn5vwz/l3332n77//PlbnHdHEiRO1YcMG/fLLL3JwcEiw9xsAAADvFkPwgHjy8fHR1q1bIy2vVauWJk2aJEnKnj27qlatKh8fHzVo0ECS9Ntvv+nZs2dq2LChsc3Vq1dVsWJF5c6dWylTptTYsWN16dIlhYWFRZpbycbGRtbW1kqePLkxlOjTTz/VhAkTVKNGDUlS7ty5VbduXW3ZskWSdOnSJf3+++/y8PBQ5cqVJb36gvvRRx/p3r178vDwUKVKlfTNN99IkvLly6cpU6aoVq1aOnLkiJycnMxqSJcunWxsbCQp1sOZbGxslCZNGqVMmTLOQ6BcXFyUL18+Sa++7D98+FCTJk1SihSvLmVjxozR4cOHtWrVKvXu3TvS9qtWrVLGjBk1duxYY5sff/xRJ06cMNZxcHBQ//79Jb1qz0qVKhl3iCVPnlzDhw9XmzZtjPU7dOigLl266M6dO8qVK1e0tT99+lSLFi3STz/9ZMxb9Omnn+r69evy8PAwm9+oX79+qlChgiSpR48e2rp1q86fPy97e3stW7ZMrq6uql27tiRp2LBhZvUvX75cOXPm1LBhw4xl06ZNU/ny5bVlyxY1bdo0Tv3s8ePH8vb21ogRI1StWjVJ0tixY3Xo0KEEP2bTpk2Ndhg0aJCOHDkiLy8vlSpVyqymzJkzK3ny5LK2tlbGjBl18OBBnTx5UocOHVLGjBklvQq8jh8/Lk9PT7MA9k0qV66sDh06SJLy5MmjJUuW6Pjx42rcuHGs+k7hwoXNPs+zZs1S9+7d9cUXXxj7fPz4sUaOHKm+ffsqJCREvXv3VqdOnYzhq127dtX69esVGBiorFmz6urVq7K1tVWePHmUJk0aff/992rYsKGSJ08e5Tm8ePFCEydOVIYMGSRJrVq1Mq5DR44c0Z9//ilfX18VKFDAeJ8iTu7+tvLnzy83NzdZWVmpYMGCCggIkKenp7p06WJ8zm1sbGRjY6N79+7FeN7hpk6dqrVr12rRokUqUqSIJOnQoUMJ8n4DAADg3SKAAuLJ2dlZgwYNirTc2tra7PfmzZurb9++unv3rjJnzqz169erdu3axhdFSerfv7/Gjh2rZcuWqVy5cqpSpYoaNGgQq4m9w2s5deqU3N3ddfnyZV2+fFkXL140Jig/f/68JKlkyZLGNqlTp5arq6skyc/PT1euXJGjo2OkfQcEBEQKoN618PBJelXrgwcPVLZsWbN1QkJCzIYcRXT+/HkVLVrUCBAkqXz58ipfvnyUx5CkDBky6Pr165JeBQwZMmTQvHnzdOnSJV25ckX+/v6SFO1TDsNdvHhRISEhGjhwoNn7+eLFC4WGhpo9BTE8HJCk9OnTS5KeP3+ugIAAPXv2zOz9s7KyUunSpY06/Pz8dOHChUjvYcR2iUs/u3z5sp4/f67ixYsby1KnTm2EAQl5zNf7l6Ojo/bv3x9Vc5o5c+aMTCaTEbyGCw0NVUhISIzbhytYsKDZ7zY2Nnr+/Lmk2PWdvHnzGn++e/eubt68qZ9++knu7u7G8rCwMIWEhOjatWsqWLCgmjZtKk9PT50/f15Xr16N1J969eqlb7/9Vlu3blXp0qVVuXJlNWjQINqJx7NmzWp2TYl4Dn5+fsqQIYNZ/8qaNavy588f6zaKjpOTk9kccI6Ojpo/f77u3bsXaZ6qTz/9NMbzll7NkXf06FFlzpzZLNxNqPcbAAAA7xYBFBBP6dKlM/viGZ3q1asrY8aM8vX1Vb169bR3714tWLDAbJ22bduqbt262rNnjw4ePKjp06dr9uzZWr9+vdldAdGZN2+efv75ZzVp0kQVKlRQx44dtXPnTm3evFmSzL48RyUsLEwNGzY07oCKKD6THccUzkQl4tw74SJ+6Q4LC1P+/Pk1e/bsSOu9Hv6Fi+n8JUV7Z4n06g6STp06qXr16ipdurQaNmyo4OBg9ezZM8b9hg9hnDZtmlkAEC5VqlRR/jni9uH1v2kS97CwMJUvX14jRoyI9Fr43Wpx6WfhocLrx4zYlgl1zNffn5cvX8YqfA0LC1P69Onl7e0d6bWo2jI60bV7VLVFJeKTLMPneXJ1dVXFihUjrZsrVy5dvHhRbdq0UdGiRVWxYkV9/vnnypQpk9mw3Nq1a2vv3r3au3evDhw4oF9++UUzZ87UqlWrVKhQoVidQ7jkyZNHmrvrbUT1eX69fcKPE9XnKTbnLb36HM+ZM0cDBw7Ujz/+aDysIaHebwAAALxbzAEFvCMpUqTQl19+KV9fX23ZskU5c+Y0u3vizp07GjVqlJ4/f66mTZtq0qRJ2rhxo27duhXrOVrmzJmjnj17ys3NTV999ZVKliypwMBA40t0+B0eESfrffHihZydnbVlyxYVKlRIFy9eVN68eY2fFy9eaNy4cfr7779jVUPKlCklyWzi8tcnBn/9aXkpU6Y0Wz8sLExBQUFvPI6tra1u3LghGxsbo9aPP/5YU6ZM0dGjR6Pc5rPPPpOfn5/ZF+jt27fL2dk5VndOLFy4UE5OTsZkz5UqVTLaJaYn+xUoUEApUqTQjRs3zNp3z5498vDwiFXQkjdvXqVJk0YnT540W37q1Cnjz4UKFVJAQIBy5cplHCNDhgwaO3aszp8/H+d+lj9/fqVOndpsLqYXL14Yd6wk5DFfn0T6xIkTKlq0aIztYmtrq8ePH+v58+dmbTt//nyzedfiI659J0uWLMqcObOCgoLMajpz5oymTZsmSVqxYoWyZMmiX375RV26dFG1atWMOZBMJpNCQ0M1btw4BQUFqX79+vrxxx+1Y8cOJUuWTLt3747zOdjb2+vRo0dmdwjeu3dPV65ciXab2Hyepcjv3fHjx/XJJ5+Y3Y0VLqbzDmdraytHR0e5ublp06ZNxmT87+L9BgAAQMIjgALi6dmzZ7p161aUP69PTN28eXMdP35cq1evVrNmzcyCmAwZMmj37t0aNmyYzp49q6CgIK1YsUIpU6Y0npIXk1y5cmn//v26ePGiLl26pKlTp2rbtm1GHfnz59fnn3+ukSNH6tChQ7p8+bKGDx+ukJAQlStXTi4uLvLz89PIkSMVEBCgEydOaODAgQoMDIw0NC06JUuWlJWVlWbMmKFr167J19dX69atM1vH2tpa//77rxEylSxZUvv379fvv/+uK1euaPTo0Xr48OEbj/Pll18qQ4YM6tOnj06dOqWAgAANHTpUv//+e6Sn8IVr06aN7t27pxEjRiggIEBHjx7VxIkTVb58+WiHNEWUK1cunTt3TseOHdO1a9e0du1aY3hVTJOQ29jYqFWrVnJ3d9eGDRsUFBSkNWvWaNKkScqePXuMx5aktGnTqn379po+fbp27Nihy5cva8KECWYBVJs2bfTo0SMNGjRI/v7+8vf3V//+/XX69GnZ2trGuZ+lS5dO7dq10/Tp07Vt2zYFBARoxIgRZhO9J9QxFy9eLB8fH+O8zp07p//9739RtkW6dOkUGBio27dvq0qVKipcuLD69++vQ4cO6cqVKxo3bpy8vb0jDat7W3HtO1ZWVurSpYuWLFkiLy8vXb16Vdu3b5ebm5vSpEmjVKlSKWfOnLp586b27Nmj69eva9u2bXJzc5P0qj+lSpVKp0+f1vDhw3Xy5Eldu3ZN3t7eevr0aZTDZGPi5OSkEiVKaPDgwTp58qT8/f01aNAgBQcHRwqFw9na2sra2lrz5s3T1atXtXfvXv3yyy+R1jt27JimT5+uwMBArVmzRkuXLlXnzp2N162trRUQEKB79+7FeN6vq1q1qho0aCA3Nzc9ePDgnbzfAAAASHgMwQPiydfXV76+vlG+5u7urrp16xq/FyxYUA4ODjp16lSkoWMpUqTQ/PnzNWHCBHXs2FHBwcEqXLiw5s2bp08//TRWtUycOFGjRo1Ss2bNlC5dOpUoUUIjR46Um5ubbty4oY8//lhjx47VxIkT1bdvX4WGhqpEiRLy8PBQ5syZlTlzZi1YsEDu7u5q0qSJrK2tVaFCBQ0ZMiTWQ1vy5MmjkSNHau7cuVq2bJlKly6twYMHa8iQIcY6jRs31vbt29WgQQNt27ZNLi4uunr1qvr27atUqVKpefPm+uKLL954V5GNjY28vLw0ceJEderUSS9fvlTRokW1cOHCaL+E5siRQwsXLtSkSZPUuHFjZciQQfXr19eAAQNidW59+vTR7du3jSGKn332mcaOHatvv/1Wp0+fjvHLr6urqzJlyiR3d3f9+++/ypUrl/r06WP2RT0mffv21fPnzzVs2DAFBwerRo0aqlmzpnEXTp48eeTl5aUpU6aodevWSp48uUqVKiVPT09jGGVc+9nAgQOVOnVqjRo1Sk+ePFG9evXMJq5OqGO2atVKixYtMiZc9/DwkL29fZQ1tW/fXhMmTNCFCxe0ceNG433t16+fgoODVbBgQc2cOdOYzD2+3qbvuLi4KHXq1FqyZInGjx+vrFmzqmXLlurTp4+kVxPYX7p0yXiKYr58+TRgwABNnz5dp0+fVtWqVTV16lSNGzdO3bt316NHj1SgQAFNnjxZZcqUeavzmDFjhkaNGqWOHTsqderUatOmjS5dumTc6fS69OnTa9KkSZo8ebLq168ve3t7DRkyJNKw05o1ayogIEBffvmlsmfPLldXV7Vu3dqsLRYsWKCAgABNnz49xvN+XfjTM3/88UdNmjTJ4u83AAAAEp6VKaZxIwCA/4zt27erdOnSZnNyubi4KGfOnBo7dmwiVhY/dnZ2GjdunJo2bZrYpXyw7t69q1OnTqly5cpG4BQaGionJyeNGDFCjRs3fqv9tm/fXrlz535vnz4XPnxw/Lm9Onc7dkONAQAA/qvssubS0uY9JL16EvfZs2dVuHDhaOfJja/wv0tFfGhRdLgDCgDeIx4eHlq2bJkGDx6s9OnTa+fOnTp06JAWLlyY2KXhPy5FihTq37+/WrVqpdatW+v58+fy8PBQqlSporzrCAAAAEhIzAEFAO+RyZMnK126dOrYsaMaNGggHx8fubu7m01oD0Tlo48+0pw5c3Ty5Ek1btxYX331lW7fvm02VBIAAACwFO6AAoD3yCeffKKZM2cmdhkJ7ty5c4ldQpJQvnx5rVixIkH3uWTJkgTdHwAAAD5M3AEFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABaVIrELAAAASGz5M2VL7BIAAADi7b/8dxoCKAAAkOT9WLNFYpcAAACQIF6GhSl5sv/egLf/XkUAAADvUGhoqIKDgxO7jPdacHCw/Pz8aMd4oA0TBu0Yf7Rh/NGGCYN2fHv/xfBJIoACAACQyWRK7BLeayaTScHBwbRjPNCGCYN2jD/aMP5ow4RBO354CKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAASZ6VlVVil/Bes7KyUtq0aWnHeKANEwbtGH+0YfzRhgmDdvzwWJlMJlNiFwEAAJAYTp8+LUkqXrx4IlcCAADeVpgpTMmsuL/mdU+fPtXZs2dVuHBhWVtbW+QYcfm7VAqLVAAAAPAe8fafp1tPbyR2GQAAII6yWX+spvZdE7sMxAIBFAAASPJuPb2hm4+vJnYZAAAAHyzuUQMAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiknQA1b59e9nZ2UX7c/fuXbm6uqpixYp6+fJllPuYPXu2ypQpo2fPnr3V8YcOHRrf09DUqVNlZ2enxYsXx3tfUblw4YJ2794dr314e3vLzs7O+N3Z2VkzZsyIZ2X/5/Dhw5HeP3t7e5UqVUqtWrXSwYMHE+xY8fH06VMtXbrU4sfZtWuXLl68KOn/2ubatWuSEq7fJZZr167Jzs5Ohw8fTuxS4u1Nn4P39Txf/6zjw/P8+XMtWrTI+H3GjBlydnZOvIIkmUwmrVu3Tnfu3EnUOgAAABC9JB1ASVK9evW0b9++KH8yZcqkZs2a6c6dO9q/f3+U269fv14NGjRQmjRp4nzsGTNm6Pvvv49X/WFhYVq/fr3y58+vlStXxmtf0enWrZtOnz6doPtcs2aNXFxcEnSfkrR69Wrj/duzZ48WLFigFClSqFu3brp+/XqCHy+uFi5cKA8PD4se4/r16/rmm2+i/SKWEP0OlpcrVy7t27dPjo6OiV1KnNSvX1/79u1L7DJgQZs2bdK4ceOM311cXLRmzZpErEg6evSohg4dquDg4EStAwAAANFL8gFUmjRplC1btih/rKysVKZMGeXLl08+Pj6Rtj158qQCAwPVvHnztzp2xowZZWNjE6/69+3bp5s3b+rbb79VQECAjh49Gq/9vSuZM2dWunTpLLLf8PcvR44cKlWqlCZOnKiQkBDt3LkzwY8XVyaTKdGPkRD9DpaXPHlyZcuWTalSpUrsUuIk/JqKD9fr15h06dIpc+bMiVTNK+/i2goAAID4SfIBVGw0a9ZMO3bsiPQvq+vWrZO9vb2KFSsmSQoMDFSnTp1UunRpOTo6qlOnTjp37ly0+404FMrb21u1a9c2/lusWDE1bdpUf/zxxxtr8/b2lq2trZydnZUrVy6tWLEi0uuvD4d5fdmff/6pNm3ayNHRUWXLllXv3r1148YNSa+GCF2/fl0zZ85U+/btJUl2dnaaPn26atSoocqVKyswMFA3btxQ//79VaFCBRUtWlRVq1bVpEmTFBYWFmXdEYcehYWFae7cuapTp46KFSumUqVKqXPnzrp69aqx/tChQ996iEfq1KklSSlSpDCWHT9+XG3btpWDg4OqV6+ukSNH6vHjx2b1zZo1S506dZKDg4Nq166t1atXm+33xIkT6tChg0qXLi0nJye5urrq3r17ZvuYMGGC6tevLycnJ7Vv314zZ87U9evXzYbEvS42+3192Fb4smvXrqlmzZqSpA4dOkQ5vCuu/S40NFSTJk1SlSpV5OjoqJYtW5rd4fLy5UtNmjRJ1apVU7FixVS3bl0tX748mncj5vVDQ0M1YcIEOTs7q1ixYipXrpz69u2ru3fvRrvPtWvXql69enJwcFC9evW0ePFis763fv16ffHFFypevLiqVKmiMWPGKDQ0NNr9vS6m/h2bdnz06JGGDBmiMmXKqHz58vrll1/eeMzXh+C1b99eEyZM0KBBg+To6KjKlStr+fLl+uOPP9SoUSOVKFFCrVq1UmBgoNn24XdpOjg4qGXLlmY1DR06VH369JGLi4tKlSql+fPnS5J2796tli1bGscZN26cMcx46NChatGihVmt169fl729vQ4cOBDp+mJnZ6c1a9aoY8eOcnBwUOXKlTVz5kyz7X18fFSvXj0VL15cLVq0kKen5xuH8ZlMJi1evFh16tSRg4ODvvjiC23atMl4/e+//9agQYNUqVIllSxZUp06dZK/v7/ZeQ8dOlQTJkxQhQoVVKJECXXr1k3//POPsc6b+kxsrqvOzs6aN2+eunbtqhIlSsjZ2Vk7duzQjh07VKdOHaOuiHcqBgQEqEuXLka7Dxw4ULdu3TJeb9++vYYPH64WLVqoTJky2rhxY6S2ic3n8U2fl/B+s3XrVrVo0ULFihWTs7OzcYett7e3XF1djff28OHDZkPwwrffvHmzGjdurOLFi6tp06YKCAjQzz//rIoVK6pcuXIaOXKkWWi0a9cuNW3a1LjeTps2zewz+qZ+dPjwYXXo0EGSVLNmTXl7e0dqFwAAACQ+AqhYaNy4caQ7aEJDQ+Xr62v2RWzAgAHKkSOH1q5dq9WrVytZsmTq1atXrI/z999/a8WKFZo0aZLWrVuntGnTaujQodH+y+79+/e1c+dO1a1bV1ZWVqpXr562bt36xi/qr3v58qW6deumsmXLauPGjVq0aJFu3Lih7777TtKroXI5c+aUi4uLWZixbNkyTZ8+XTNnzlS+fPnUvXt3PXr0SL/88ou2bNkiFxcXLViwQL/99luMNXh6esrDw0NDhw7V1q1b9fPPPyswMFDjx4831vn+++/faojHrVu3NGrUKKVPn94IZvz9/fX111+rSpUq2rhxoyZPnqwzZ87IxcXFrK1nzZolR0dHrV+/Xm3bttUPP/ygX3/9VdKr0K59+/YqVKiQVq1aJXd3d506dUqdOnUymy/My8tLw4YN04IFCzRr1iy5uLgoZ86c2rdvn3LlyhWp3tjuNzq5cuUygrIZM2bEaphjTP3O1dVV+/fv1+TJk7Vu3TrVq1dP33zzjTEv2LJly7RlyxZNnTpVW7duVbt27eTm5qZjx45FebyY1p84caK2bdum8ePHa+vWrRo/frwOHTqk2bNnR7m/lStXauLEierVq5c2b96sfv36af78+Zo8ebKkV+/3sGHD1Lt3b23dulVjx47Vhg0btGDBghjbJlxs+ndM7divXz/9+eefmjNnjn755Rft3r07zsNClyxZosKFC2vjxo2qWbOmfvzxR7m5uem7776Tl5eX/v33X02ZMsVsm/Hjx+ubb77RunXrVKBAAbm4uCgoKMh4fevWrapYsaLWrl2rBg0aaPv27erevbuqV68ub29vjRw5Ur/++qsGDBggSWratKn+/PNPs4DYx8dHOXPmVPny5aOse8KECWrSpIk2b96sdu3aacaMGcbdmrt27dKQIUPUvHlzbdy4UU2bNjXeu+gsWLBAU6dOVefOnbVp0ya1atVKgwcP1qFDh/T48WO1bt1a//zzj2bPnq0VK1YoTZo0ateunVl7b9q0Sffv35eXl5fmz5+vM2fOaNq0aZISps9Ir64h9evXl4+Pj+zt7TV48GDNmTNHkyZN0pw5c3T69Gkj9Pvnn3/Upk0b5c2bV2vWrNGcOXP0+PFjffXVV3r69Kmxz9WrV6tDhw5atmyZqlSpEumYMX2+Yvq8hBs3bpy++eYb+fr6qnr16nJzc1NQUJDq169v/P/hTUNEp06dqu+++06rV6/Ww4cP1bp1awUGBmrJkiXq37+/li1bpl27dkmSfv/9d/Xr108tW7bUpk2bNGLECPn6+urbb78122d0/cjR0dH4/9Pq1atVv379OL1PAAAAeDdSxLzKh83Hx0dbt26NtLxWrVqaNGmSJCl79uyqWrWqfHx81KBBA0nSb7/9pmfPnqlhw4bGNlevXlXFihWVO3dupUyZUmPHjtWlS5cUFhamZMlizvqeP3+ukSNHqnDhwpKkr7/+Wj179tStW7eUPXv2SOtv2rRJoaGh+uKLLyRJX3zxhRYuXChvb2917tw5Vuf/+PFj3bt3T9mzZ1fu3LmVJ08eTZs2zfhX+cyZMyt58uSytrZWxowZje0aNWqk4sWLS5KePXumRo0aqV69ekao0rFjR82fP1/nzp1TrVq13ljDp59+qgkTJqhGjRqSpNy5c6tu3brasmWLsU5sh4w1aNBAVlZWkmQENmXLltXSpUuVI0cOSZKHh4cqVaqkb775RpKUL18+TZkyRbVq1dKRI0fk5OQkSapcubIRIBYoUECnTp3S4sWLVb9+fS1cuFB2dnYaPny4JKlgwYL66aef1KhRI+3bt0/VqlWTJFWrVk0VK1Y06rO2tjaGVkUltvuNTvLkyY2hMBkyZIjVMMc39bvg4GBt2rRJ69evN3vd399fHh4eql69uq5evSpra2t98sknyp49u9q1a6cCBQoof/78UR4vpvWLFy+uunXrqkyZMpJe9YeKFSvq/PnzUe5v1qxZ6t69u/E5yJMnjx4/fqyRI0eqb9++unbtmqysrJQ7d259/PHH+vjjj+Xh4aH06dPH2DZS7Pv3m9rx8ePH2rdvnxYtWmSc15QpU4w+H1uFCxdWp06dJEnt2rXTihUr1L59e6PP1qtXTzt27DDbpmvXrsZ1a/To0Tp06JBWrVqlgQMHSnrVTyJeL/r06aPatWurR48ekqT8+fPLZDKpZ8+eunjxosqWLas8efJo48aNxufDx8dHjRo1ivY617hxYzVq1EiS9M0338jDw0PHjx9X2bJl5eHhobp16xrnlT9/fgUGBppNch1R+N1PHTp0MP4BoH379nr27JlevHihjRs36t69e/L29jY+C+Gf76VLl2rw4MGSXl1TRo0apZQpU6pgwYKqX7++9uzZI0nx7jPhqlevrsaNG0uSWrZsqZ07d6p///5ycHCQJFWsWFEXLlyQJC1fvlw5c+bUsGHDjO2nTZum8uXLa8uWLWratKmkV30g4v93XhfT5yumz0u4jh07GqF9//79tXTpUp06dUoNGjQwrsdvGmrp4uKicuXKSZJq166tJUuWaNSoUUqbNq0KFiyoGTNm6MKFC3J2dtacOXPUsmVLtWrVStKr/yeMHDlS//vf/3Tt2jV98sknkt7cjzJkyCDp1f+z3mZORgAAAFhekg+gnJ2dNWjQoEjLra2tzX5v3ry5MQwoc+bMWr9+vWrXrm38pVd69Zf0sWPHatmyZSpXrpyqVKmiBg0axCp8ClewYEHjz+F/yX/+/HmU665du1ZFixZVvnz5JEnFihVTvnz5tGrVKnXq1MkIYt4k/Mvn6NGjNX36dJUvX17VqlVTvXr13rhd3rx5jT+H312wZcsW/fnnn7py5YrOnTun27dvRzsELyJnZ2edOnVK7u7uunz5si5fvqyLFy8agVFczJs3Tzly5NDjx481b948nTp1Sj169JC9vb2xjp+fn65cuRLlv9wHBAQYX+bD/xvO0dHRuOvn/PnzqlSpktnr9vb2srGx0blz54ygKGI7xUZs95vQout3fn5+kqQ2bdqYrf/8+XN99NFHkqS2bdtqx44dqlatmgoXLqxKlSrpiy++UJYsWaI8VkzrN2rUSAcOHNDkyZMVGBioS5cu6fLly0ZwE9Hdu3d18+ZN/fTTT3J3dzeWh4WFKSQkRNeuXTOGDjZv3lyffPKJKlWqpJo1axpDZ2MSl/4dXTuGh2fhoa0kZc2aVXny5IlVDeE+/fRT489p06aVJLN9pEmTJtL1ImI/TpkypYoVK2YW5r3eR8+fP2+EE+HCg4Tz58/rs88+U+PGjeXj46NevXrJz89PFy9e1KxZs6KtO2K7SK/aJrzOM2fO6PPPPzd7vWzZstEGUPfu3dOtW7dUokQJs+VdunSRJLm5uSlfvnxmcxKlSZNGDg4OZuf96aefKmXKlFHWFN8+Ey5i24a/XxHfwzRp0hhhv5+fny5cuBDpuhQSEqKAgIAo9xmVN32+YvN5CR+yHJf/F8V07tbW1sqaNavRBuHnHj7Ezs/PT3/++afZXa7hdw4GBAQYAdSb+hEAAAD++5J8AJUuXbpYhQTVq1dXxowZ5evrq3r16mnv3r2RhmO0bdtWdevW1Z49e3Tw4EFNnz5ds2fP1vr165U1a9ZY1RPVhMNRDcHz9/eXn5+frKysVKRIEWN5WFiYTCaTDhw4ECnICPf6UK5BgwapTZs2Rt2jR4/WggULtH79+mgnQI74L8xPnz5Vu3bt9OzZM9WtW1dNmjSRg4OD2rZtG6tznjdvnn7++Wc1adJEFSpUUMeOHbVz505t3rw5VttH9PHHHxtfVn766Sd17txZXbt2lbe3t/E+h4WFqWHDhsYdUBFF/NIacc6o8O3Cw8TohkWaTCazL7Vx/Zf42O73dS9evIjTcV4XXb8Lr2fp0qWR7qYKb4t8+fJp27ZtOnLkiPbv36/du3dr/vz5GjdunJo0aRJpvzGt/8MPP2jr1q1q3LixnJ2d1bNnT3l4eJjNzxMuPABydXU1u9MsXK5cuZQqVSp5enrKz8/PeELiN998o8aNG5s9ySs6cenf0bVjeBj8emD1eh+LSVR9IKaA+/VjvHz50myb1/toVH0wvO7wfTVp0kQzZ87U6dOn9euvv6pUqVJvvI6+6bqWIkWKWAXV4d70OYiufunVOURsizdN7p46deo495mohshG9f5G9w8DYWFhKl++vEaMGBHptYh3gMZ0TXnT5yt8yN6bPi///vuvpNj/vyg6r5/7m/ppWFiYOnfuHOX1IuJdVvGtCQAAAImLOaBiKUWKFPryyy/l6+urLVu2RJrv5M6dOxo1apSeP3+upk2batKkSdq4caNu3bqlI0eOJHg9a9asUcqUKbVs2TKtX7/e+Fm+fLlSpkxpTBgb/mUt4gTb4ZMUS9KlS5c0YsQIZcmSRa1bt9b06dO1YMECBQQEmE3a+yb79u3TmTNn5OnpqT59+qh+/fpKnz697ty5E6svB3PmzFHPnj3l5uamr776SiVLllRgYGC8v1gkT55c48ePV7JkyTRkyBDjS26hQoV08eJF5c2b1/h58eKFxo0bp7///tvY/vTp02b7O378uBH22dnZRZog3t/fX48fP470r/QRxXRXWmz2mzJlSrP38/Hjx2YTGcfmzrfYKlSokKRXc2lFbC9vb29jol9PT09t27ZNlSpV0uDBg+Xj46MKFSoY82W97k3r37t3TytXrtSIESPk6uqqpk2bqnDhwrp06VKU/SFLlizKnDmzgoKCzOqLOJ/Pnj17NHPmTBUpUkRdu3Y1+ml09b0uvv1bkjEs7/jx48ayhw8fms2jZCkR+3FoaKjOnDmjokWLRru+nZ2dWZ2SjPmDwvtg7ty55eTkpK1bt8rX19cYHvY27O3tderUKbNlJ06ciHZ9GxsbZc+ePdLns0+fPho3bpzs7OwUGBho9pkICQnRX3/9pc8++yxWNcXUZ2K6rr6NQoUKKSAgQLly5TL6cYYMGTR27Nhoh59G5U2fr9h8XmIjIa8x0qtzv3z5sllNN2/e1MSJE/XkyZNEqQkAAAAJL8kHUM+ePdOtW7ei/Hn9KVnNmzfX8ePHtXr1ajVr1szsL7wZMmTQ7t27NWzYMJ09e1ZBQUFasWKFMeQlIYWGhsrHx0d16tRRqVKlZGtra/w4OjqqQYMG2rlzp27duqWSJUvKysrKeEKar6+v1q1bZ+wrU6ZM2rx5s3744QcFBATo8uXLWrdunTJkyKACBQpIenWXWGBgoG7fvh1lPTlz5pQkbdy4UdevX9exY8fUo0cPPX/+PFZPGsuVK5f279+vixcv6tKlS5o6daq2bdtmtu2jR4/iNLl6uBw5cmjw4ME6ceKEli5dKunV3CR+fn4aOXKkAgICdOLECQ0cOFCBgYHGcEZJ2rx5s5YuXarAwEAtWLBA27dvN+bK+frrr3Xu3DmNHj1aAQEBOnz4sAYNGqQiRYqoQoUK0dZjbW2tBw8e6PLly1EOHYnNfkuWLKlff/1Vx48f18WLF/Xdd98pefLkZseQXg2XevToUZzbLKJChQqpRo0aGjFihH777TcFBQVp/vz5mjt3rjGU6O7duxo1apR27typ69eva+/evTp79my0kxO/af306dPLxsZGO3fuNIa6DR8+XGfOnImyL1lZWalLly5asmSJvLy8dPXqVW3fvl1ubm5KkyaNUqVKpZQpU+rnn3/WokWLFBQUpL/++ku7d+82q+/WrVvRftGNb/+WXg27qlu3rkaNGqUDBw7o/PnzGjx4cJyexPe2pk2bpt27dxt9JTg4WC1btox2/c6dO2vbtm2aNWuWLl++rF27dmn06NGqUaOGWbjapEkTLVu2TPfv349xyO6bdOnSRVu2bNEvv/yiwMBArV27Vl5eXm/cpmvXrlq8eLE2bNigq1evytPTUzt37lTNmjXVsGFDZcyY0Zj03d/fX4MGDdLTp0/11VdfxaqmmPpMTNfVt9GmTRs9evRIgwYNkr+/v/z9/dW/f3+dPn1atra2sd7Pmz5fsfm8xEb4Neavv/4yno4YH126dNHWrVs1c+ZMXb58WQcPHpSrq6sePXr0xnmmoqrJ398/1qEVAAAA3q0kPwTP19dXvr6+Ub7m7u6uunXrGr8XLFhQDg4OOnXqVKQncqVIkULz58/XhAkT1LFjRwUHB6tw4cKaN2+e2ZwfCWHXrl26f/9+tEPcOnbsqHXr1mn16tXq0aOHRo4cqblz52rZsmUqXbq0Bg8erCFDhkh6FUDNnz9fU6ZMUcuWLfXy5UuVLFlSv/zyizHhbvjj3y9cuBDlY78dHBzk6uqqRYsWadq0acqRI4fq16+vXLlyRbpLISoTJ07UqFGj1KxZM6VLl04lSpTQyJEj5ebmphs3bujjjz/WmDFjdOTIkVg9Ve91LVq00KZNm/TTTz+pZs2aKlmypBYsWCB3d3c1adJE1tbWqlChgoYMGWL2BaxJkybavn27xo8fr3z58mnatGnGHEwlSpTQggULNG3aNDVu3Fjp06dXrVq1NHDgwDcOEfr888+1atUqffnll/Ly8oo0j01s9jtgwADdv39fX3/9tWxsbOTi4qKHDx8a+8iUKZOaNWumiRMn6sqVK6pdu3ac2yyiqVOnaurUqfrhhx/04MEDffrppxozZowxXKZXr156/vy5fvzxR926dUvZsmVT69at1a1btyj396b1kydPLnd3d40fP14NGzZUhgwZ5OTkpAEDBmju3LkKDg6OtD8XFxelTp1aS5Ys0fjx45U1a1a1bNlSffr0kfRqoucxY8Zo4cKFmjp1qtKkSaNq1app6NChxj7CJ5zv3bt3pP3Ht3+HmzBhgiZMmKD+/fsrLCxMX3311VuFqnHVunVrTZgwQTdu3FCJEiW0ZMmSKB9qEK5OnTr66aefNHv2bM2aNUuZM2dWgwYNjPaMuN6oUaNUq1atOE/OHVHVqlU1atQozZ07V1OmTFGxYsXUunXrN4ZQ4UMi3d3ddevWLeXLl09Tp0415qry8vLS+PHj1bFjR0lS6dKltXz58ljPuRVTn8mTJ88br6tvI0+ePPLy8tKUKVPUunVrJU+eXKVKlZKnp6fZ0OCYxPR5jOnzEhvly5dXiRIl1KpVK+NhHfFRt25dTZ06VXPnztWcOXOUMWPGaOdnjI6tra2qVaumfv36acCAAbF6AigAAADeLSsTEygAkTg7O6tJkyZRBhL48Pj6+iooKEhdu3ZN7FISzLVr11SzZk15enpGmlD/v+TIkSPKmjWrccel9GpY7po1ayI90Q+whPAg+cDztbr52PLDYgEAQMLKmf5TdSvllthl/Cc9ffpUZ8+eVeHChSM9aC2hhP9dKuIDl6KT5IfgAUjawsLCtHjx4njfKYa3s2/fPnXq1EmHDh3SjRs3tHPnTi1evFiNGjVK7NIAAAAAJKAkPwQPQNKWLFkyeXp6xnr+GySsXr166enTpxo8eLDu3r2rXLlyqWPHjsZ8awAAAAA+DARQQBTeZq4pvL8+xPDpk08+0blz5xK7jBilSpVKw4YN07BhwxK7FAAAAAAWxBA8AAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALCoFIldAAAAQGLLZv1xYpcAAADeAv8Pf38QQAEAgCSvqX3XxC4BAAC8pTBTmJJZMcDrv453CAAAJGmhoaEKDg5O7DLea8HBwfLz86Md44E2TBi0Y/zRhvFHGyaMuLQj4dP7gXcJAAAkeSaTKbFLeK+ZTCYFBwfTjvFAGyYM2jH+aMP4ow0TBu344SGAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIuyMplMpsQuAgAAIDEcP35cJpNJKVOmlJWVVWKX894ymUx6/vw57RgPtGHCoB3jjzaMP9owYdCO8fcu2jA0NFRWVlYqVapUjOumsEgFAAAA74Hwv4zxF9v4sbKyUqpUqRK7jPcabZgwaMf4ow3jjzZMGLRj/L2LNrSysor136O4AwoAAAAAAAAWxRxQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAfDDCwsI0ffp0ValSRSVLllSXLl0UFBQU7fr37t3TwIEDVbZsWZUrV04jR45UcHCw2Tq+vr6qX7++HBwc1LhxYx08eNDSp5HoLNGOn3/+uezs7Mx+hg4daulTSTRxbcOI23Xu3FkzZsyI9FpS64uWaMOk1g+luLfjhQsX1LVrVzk5OalChQrq06ePbty4YbbO0qVLVbNmTTk4OKhNmzby8/Oz9GkkqoRuw5cvX8rBwSFSX4yqz34o4tqGZ86c0f/+9z85OjqqfPny+uGHH/To0SOzdZLaNVGyTDu+0+uiCQAA4AMxY8YMk5OTk2nXrl2ms2fPmlxcXEyff/65KSQkJMr127VrZ2rWrJnpr7/+Mh04cMBUo0YN0+DBg43XDx48aCpatKhp8eLFposXL5rGjx9vKlasmOnixYvv6pQSRUK345MnT0z29vamXbt2mf7991/j5+HDh+/qlN65uLahyWQyhYSEmIYMGWKytbU1TZ8+3ey1pNgXE7oNk2I/NJni1o537941VapUydS7d2/TuXPnTKdPnza1bdvWVK9ePdOzZ89MJpPJ5O3tbXJwcDBt2LDBdOHCBdO3335rKleunOnOnTvv+tTemYRuw4sXL5psbW1NZ8+eNeuLjx8/ften9s7EpQ1v3bplKlu2rMnV1dV06dIl0x9//GGqX7++qUePHsY6SfGaaDIlfDu+6+siARQAAPgghISEmBwdHU1Lly41lj148MDk4OBg8vHxibT+8ePHTba2tmZ/Wd27d6/Jzs7OdPPmTZPJZDK5uLiY+vbta7bdV199ZRo+fLhlTuI/wBLteOrUKZOtra3p/v37lj+B/4C4tqHJZDL98ccfpi+++MJUs2ZNU5kyZSKFJ0mtL1qiDZNaPzSZ4t6Oq1atMjk6OpqCg4ONZTdu3DDZ2tqaDhw4YDKZTKbPP//cNHHiROP158+fm6pVq2aaM2eOBc8k8ViiDTdv3mwqVaqU5Yv/j4hrG548edLUv39/0/Pnz41lixYtMpUoUcL4PaldE00my7Tju74uMgQPAAB8EPz9/fXkyRNVqFDBWPbRRx+pSJEiOnr0aKT1jx07pmzZsqlgwYLGsnLlysnKykp//PGHwsLCdPz4cbP9SZKTk1OU+/tQJHQ7StK5c+eUNWtWZciQwfIn8B8Q1zaUpD179qhKlSpav369bGxszF5Lin0xodtQSnr9UIp7O1aoUEGzZs1SmjRpjGXJkr36yvjw4UPduXNHgYGBZvtLkSKFypQpQ1/8/2JqQ+lVX4x4zfzQxbUNS5QooZ9++kkpUqSQJAUEBGjDhg2qVKmSpKR5TZQSvh2ld39dTPFOjgIAAGBhN2/elCTlypXLbHn27NmN1yL6559/Iq2bKlUqZcyYUX///bcePnyop0+fKmfOnLHa34ciodtRevUXXGtra/Xp00fHjx9XpkyZ1KxZM3Xo0MH4YvYhiWsbSlL//v2j3V9S7IsJ3YZS0uuHUtzb8ZNPPtEnn3xitmzevHlKkyaNypYta3ymo9qfv79/Qpb+n5HQbShJ58+f14sXL9SpUyf5+/srR44c+t///qdGjRpZ6CwS19t8nsPVqVNHgYGByp07t2bOnCkpaV4TpYRvR+ndXxc/zCstAABIcsInvU6VKpXZ8tSpUyskJCTK9V9fN+L6z549i9P+PhQJ3Y7Sqwl5Hz58qDp16sjDw0OtW7eWu7v7BzvhblzbMCZJsS8mdBtKSa8fSvFvxyVLlsjLy0uDBg1S5syZLfK+/NcldBtKr/ri/fv31b59e3l4eKhOnTpydXXVmjVrEv4E/gPi04aTJ0/WkiVLlCVLFnXo0EFPnjxJktdEKeHbUXr310XugAIAAB+E8OEOoaGhZkMfQkJClDZt2ijXDw0NjbQ8JCRE1tbWSp06tbG/11+Pan8fioRuR0maP3++QkJCjGFRdnZ2evz4sWbPnq3evXt/cHefxLUNY5IU+2JCt6GU9Pqh9PbtaDKZ5O7urtmzZ6t79+5q3759pP1FRF+MLLo2lKRNmzbp5cuXSpcunSTJ3t5eN27ckIeHh5o3b26hM0k88fk8Fy9eXJI0c+ZMVatWTdu3b1e1atWM/UX0IfdDKeHbsXHjxu/8uvjhXWUBAECSFH5L+r///mu2/N9//1WOHDkirZ8zZ85I64aGhur+/fvKnj27MmbMKGtr61jv70OR0O0ovfrX2tfn5LG1tdXTp0/14MGDhCz/PyGubRiTpNgXE7oNpaTXD6W3a8fnz5/r22+/1Zw5c+Tq6qp+/frFa3/vu4RuQ+lVkBAePoWztbX9YIePxbUNL126pN27d5sty5EjhzJmzKh//vknSV4TpYRvR+ndXxcJoAAAwAfB3t5e6dOn1+HDh41lDx8+lJ+fnzHvRkRly5bVzZs3deXKFWPZkSNHJEmlS5eWlZWVSpUqZSwLd/jwYZUpU8ZCZ5H4ErodTSaTatWqZTbnhCSdPn1a2bJlU6ZMmSx0Joknrm0Yk6TYFxO6DZNiP5Terh0HDx6sLVu2aMqUKerYsaPZa1myZFH+/PnN9vfixQsdO3bsrd6X90FCt+HDhw9Vrlw5eXt7my0/ffq0ChUqlOD1/xfEtQ0PHDigPn36GJO2S9LVq1d17949FSxYMEleE6WEb8fEuC4yBA8AAHwQUqVKpXbt2mny5MnKnDmzcufOrUmTJilnzpz6/PPP9fLlS929e1c2NjZKkyaNSpQooVKlSql///5yc3PT06dP9cMPP6hx48bGvyR+/fXX6tq1q4oUKaKqVatq7dq1Onv2rMaMGZPIZ2s5lmjH2rVry8PDQwUKFFCxYsV08OBBLViwQN9//30in61lxLUNYyOp9cWEbkMrK6sk1w+luLejt7e3fv31Vw0ePFjlypXTrVu3jH2Fr+Pi4qIxY8Yob968Kl68uObNm6dnz559kEPHpIRvw48++kjly5fX1KlTlSVLFuXNm1fbtm3Txo0bNXfu3EQ8U8uJaxs2aNBA8+bN07fffqtBgwbpwYMH+vHHH+Xg4KAaNWpISnrXRCnh2zFRrosmAACAD8SLFy9MEydONJUvX95UsmRJU5cuXUxBQUEmk8lkCgoKMtna2prWrl1rrH/79m1T7969TSVLljQ5OTmZRowYYXr27JnZPtetW2eqXbu2qXjx4qYmTZqYDhw48E7PKTEkdDs+f/7cNHPmTFPNmjVNRYsWNdWpU8e0cuXKd35e71Jc2zCiGjVqmKZPnx5peVLriwndhkmxH5pMcWvHr7/+2mRraxvlT8S2XrBggalq1aomBwcHU5s2bUx+fn6Jcm7vSkK34aNHj0xjx441VatWzVSsWDFTo0aNTNu3b0+083sX4vp5vnTpkqlr166m0qVLm8qVK2dydXU1PXjwwGyfSe2aaDIlfDu+6+uilclkMlkm2gIAAAAAAACYAwoAAAAAAAAWRgAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAfABMJtN7sU8ASRMBFAAAAIAk7fz58+rfv78qVaqkYsWKqXLlyurXr5/8/f3jtJ8ZM2bIzs7ujescPnxYdnZ2Onz4cHxKjmT16tWaMGGC8bu3t7fs7Ox07dq1WG3/el03b95U165ddf369QStE0DSRQAFAAAAIMm6cOGCvvrqK92/f1/Dhg3TwoULNXjwYN24cUMtW7bUyZMnE/R4RYsW1cqVK1W0aNEE3e/s2bN1//594/fq1atr5cqVyp49+1vVdeDAAe3ZsydBawSQtKVI7AIAAAAAILH88ssvypQpk+bPn68UKf7v61GtWrVUt25dzZo1S/PmzUuw46VPn14lS5ZMsP1FJ3PmzMqcOXOs139XdQFIurgDCgAAAECSdfv2bZlMJoWFhZktt7a21nfffad69epJkpydnTV06FCzdaIb5rZjxw7VqVNHxYsXV4sWLXTw4EHjtaiG4J0/f17dunVTqVKlVKpUKfXs2VNBQUFm+/z33381ZMgQVahQQY6OjmrXrp1OnDhh1Hb9+nWtW7fOqCdibT4+PrKzs9P58+cj1WlnZyc/Pz+zury9veXq6ipJqlmzpoYOHaoJEybIwcFBjx49MtvHrFmzVLp0aQUHB8e6zQEkTQRQAAAAAJKs6tWr68aNG2rVqpWWLl2qgIAAY+LtunXrqkmTJnHe5/fff68OHTpoxowZSpcunbp06aLTp09Hue7ly5fVqlUr3blzRxMmTNCYMWMUFBSk1q1b686dO5KkJ0+eqHXr1jp8+LC+/fZbzZw5U6lTp5aLi4sCAwM1c+ZMZcuWTdWqVYty2F2tWrVkbW2tzZs3my3ftGmTChUqpCJFikRqk+7du0uSZs6cqR49eqh58+YKCQnRli1bzNbdsGGD6tevr7Rp08a5nQAkLQRQAAAAAJKsNm3aqEePHrp48aJGjRql+vXrq0KFCho0aJD+/PPPt9rnyJEj1bZtW1WvXl1z585VxowZNX/+/CjXnTlzptKmTatFixapdu3aqlevnjw9PfXs2TMtWLBAkrRu3Tpdv35ds2fPVtOmTVWpUiXNnDlT2bNn19GjR1WkSBGlSpVKmTNnVsmSJZUqVSqzY6RNm1Z16tTRr7/+aix78uSJdu3apS+//DJSTZkzZ9ann34qSSpcuLA+/fRTFSxYUI6OjtqwYYOx3vHjxxUYGKimTZu+VTsBSFoIoAAAAAAkaX379tXevXs1ZcoUNW/eXOnTp5ePj49atmwpT0/POO0rZcqU+vzzz43fU6dOrapVq+ro0aNRrn/o0CGVK1dOadKk0YsXL/TixQulT59eZcqU0YEDByRJf/zxhz755BMVLlzY2C5t2rTaunWrWrRoEau6GjVqpKtXrxqh2s6dOxUaGhplABWdZs2a6dixY8aT8datW6f8+fPL0dEx1vsAkHQRQAEAAABI8jJkyKAGDRpozJgx2rFjh9atW6eCBQtq0qRJunfvXqz3kylTJiVLZv41K0uWLHr48GGU69+/f1+//vqrihYtavaza9cu/fvvv8Y6WbJkefuTk+Tk5KQcOXIYw/A2b96scuXKKWfOnLHeR/hQuw0bNigkJES+vr7c/QQg1ngKHgAAAIAk6Z9//lGzZs3Ut2/fSHcSFSlSRP379zebEPzly5dm6zx9+jTSPh89eiSTySQrKytj2e3bt6N9Ip2NjY0qVqyor7/+OtJr4U/ls7GxiTTRufRqCFyGDBlUsGDBGM5USpYsmRo2bKhNmzbpm2++0f79+zVq1KgYt4soXbp0qlu3rnx9fWVra6unT5+qUaNGcdoHgKSLO6AAAAAAJElZs2ZVihQptGzZMoWEhER6/dKlS0qdOrXy5s2r9OnT6+bNm2av//HHH5G2CQ4O1qFDh4zfnzx5ot27d8vJySnKGsqVK6eLFy+qcOHCKl68uIoXL65ixYpp0aJF2r59uySpTJkyCgoK0oULF4ztQkJC1Lt3b61Zs0aSIt11FZVGjRrp5s2b+vnnn5U8eXKzoYKvi25/zZs31/nz57V48WJVrFhROXLkiPG4ACARQAEAAABIopInTy43NzedP39ezZo10/Lly3XkyBHt2bNHY8eOlbu7u3r16qUMGTKoRo0aOnr0qObOnatDhw5p7NixZkFTuJQpU+q7776Tj4+Pdu3apc6dO+vZs2fq0aNHlDX06NFDV69eVbdu3bRjxw7t3btXvXv31ubNm2Vvby9Jatq0qfLkyaPu3btr48aN2rt3r3r16qXnz5+rTZs2kqSPPvpIfn5+OnLkiJ49exblsWxtbVW4cGEtW7ZMtWrVUvr06aNtm48++kiStH37dgUEBBjLS5curfz58+vIkSMMvwMQJwRQAAAAAJKs6tWra9WqVbK1tdWcOXPUqVMnDRgwQGfPntXUqVPVtWtXSVK3bt3UokULeXh4qHv37rp165bGjBkTaX+ZM2fWwIEDNXXqVPXp00fJkyeXl5eXChQoEOXx7e3ttXTpUllZWWnw4MHq06ePbt26pZ9//tm4Qyl9+vTy8vJSiRIlNHr0aPXr109hYWHy9PRUnjx5JEkuLi66ffu2OnXqpL/++iva823UqJFevnwZ4+TjTk5OqlixoqZMmaIJEyZEarMMGTKoVq1ab9wHAERkZTKZTIldBAAAAAAkBb///ru6dOmi1atXy8HBIbHLiTOTyaQvvvhClStX1nfffZfY5QB4jzAJOQAAAAC8A9u3b5ePj4+SJ0+uTz75JLHLiZPHjx9r0aJFOn36tIKCgtS+ffvELgnAe4YACgAAAAAsLDQ0VG5ubgoLC9OAAQOifSref1WaNGm0YsUKhYWFaezYscbQPwCILYbgAQAAAAAAwKKYhBwAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFvX/AAK6vhlLeRh7AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Set plot style\n", + "sns.set(style=\"whitegrid\")\n", + "\n", + "# Create a figure and axes\n", + "fig, ax = plt.subplots(2, 1, figsize=(12, 12)) # Increase figure height\n", + "\n", + "# Plot polarity (horizontal bars)\n", + "sns.barplot(x='polarity', y='title', data=sentiment_df, ax=ax[0], palette='viridis', hue='title', legend=False)\n", + "ax[0].set_title('Sentiment Polarity of Articles')\n", + "ax[0].set_xlabel('Polarity')\n", + "ax[0].set_ylabel('Article Title')\n", + "\n", + "# Plot subjectivity (horizontal bars)\n", + "sns.barplot(x='subjectivity', y='title', data=sentiment_df, ax=ax[1], palette='viridis', hue='title', legend=False)\n", + "ax[1].set_title('Sentiment Subjectivity of Articles')\n", + "ax[1].set_xlabel('Subjectivity')\n", + "ax[1].set_ylabel('Article Title')\n", + "\n", + "# Adjust layout\n", + "plt.tight_layout()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "2d6748a7-f128-40f2-b7ed-b11f6ddd8a60", + "metadata": {}, + "source": [ + "The overall goal of this code is to analyze sentiment scores (polarity and subjectivity) of articles and aggregate these scores by the year of publication. \n", + "It defines a dictionary data with sample data, including article titles, authors, publication dates, content, polarity, and subjectivity scores and converts the **data** dictionary into a pandas DataFrame named **sentiment_df**.\n", + "It defines a function **parse_date()** that attempts to parse date strings into datetime objects using dateutil.parser.parse with the fuzzy=True option to handle various date formats. It applies the **parse_date()** function to the **publication_date** column in the DataFrame to convert date strings to datetime objects. Then it extracts the year from the parsed **publication_date** column and stores it in a new column named **year**. Then, it prints the **publication_date** and **year** columns to check for any missing values in the year column. After printing the polarity and subjectivity columns, it groups the DataFrame by the year column and calculates the mean polarity and subjectivity scores for each year.\n", + "\n", + "Finally, it prints the stored **yearly_sentiment** DataFrame to display the average polarity and subjectivity scores for each year." + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "id": "a493e974-a1d9-4eb9-88d8-bb6fd1d39e54", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " publication_date year\n", + "0 2024-02-23 00:00:00 2024\n", + "1 2022-07-27 00:00:00 2022\n", + "2 2024-04-10 00:00:00 2024\n", + "3 2020-08-19 13:56:00 2020\n", + " polarity subjectivity\n", + "0 0.002210 0.187689\n", + "1 0.102000 0.283466\n", + "2 0.181563 0.347917\n", + "3 0.011245 0.306212\n", + " year polarity subjectivity\n", + "0 2020 0.011245 0.306212\n", + "1 2022 0.102000 0.283466\n", + "2 2024 0.091886 0.267803\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "from dateutil import parser\n", + "\n", + "# Sample data as a dictionary\n", + "data = {\n", + " 'title': [\n", + " 'Most Australians think there are too few publi...',\n", + " 'Why Australian consumers are charging toward e...',\n", + " 'EVs face future challenges despite increasing ...',\n", + " 'EVs in Australia: Report outlines sales, and i...'\n", + " ],\n", + " 'author': [\n", + " 'Jennifer Dudley-Nicholson',\n", + " 'Neal Johnston, Glenn Maris, Damien Smith, Neal...',\n", + " 'Harrison Vesey',\n", + " 'Mike Costello'\n", + " ],\n", + " 'publication_date': [\n", + " 'February 23, 2024',\n", + " '27 Jul. 2022',\n", + " '10 April 2024',\n", + " '19 August 2020, 1:56pm'\n", + " ],\n", + " 'content': [\n", + " 'australian think nation public charg station s...',\n", + " 'ceo imper strategi set takeoff clever govern c...',\n", + " 'professor david hensher one three australian c...',\n", + " 'guest user australia electricvehicl penetr wel...'\n", + " ],\n", + " 'polarity': [0.002210, 0.102000, 0.181563, 0.011245],\n", + " 'subjectivity': [0.187689, 0.283466, 0.347917, 0.306212]\n", + "}\n", + "\n", + "# Create a DataFrame\n", + "sentiment_df = pd.DataFrame(data)\n", + "\n", + "# Define a function to parse dates with different formats\n", + "def parse_date(date_str):\n", + " try:\n", + " return parser.parse(date_str, fuzzy=True)\n", + " except ValueError:\n", + " return pd.NaT\n", + "\n", + "# Apply the parsing function\n", + "sentiment_df['publication_date'] = sentiment_df['publication_date'].apply(parse_date)\n", + "\n", + "# Extract year from publication_date\n", + "sentiment_df['year'] = sentiment_df['publication_date'].dt.year\n", + "\n", + "# Check for missing values in 'year'\n", + "print(sentiment_df[['publication_date', 'year']])\n", + "\n", + "# Check for missing values in sentiment scores\n", + "print(sentiment_df[['polarity', 'subjectivity']])\n", + "\n", + "# Aggregate sentiment scores by year\n", + "yearly_sentiment = sentiment_df.groupby('year').agg({'polarity': 'mean', 'subjectivity': 'mean'}).reset_index()\n", + "\n", + "# Display the aggregated sentiment scores\n", + "print(yearly_sentiment)\n" + ] + }, + { + "cell_type": "markdown", + "id": "c0c41a73-9458-46c3-9f0e-816db6f65144", + "metadata": {}, + "source": [ + "This code generates a line plot to visualize the average sentiment scores (polarity and subjectivity) of articles over time. It uses the **yearly_sentiment** DataFrame, which contains the aggregated sentiment scores by year, and plots these scores with markers for each year. The plot includes a title, axis labels, a legend to differentiate between polarity and subjectivity, and a grid for better readability. Finally, it displays the plot, allowing for a clear visual comparison of how sentiment has evolved over the years." + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "id": "abc62267-805b-4255-bf29-5c054cb5b4c6", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1oAAAImCAYAAABKNfuQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTB0lEQVR4nOzdd3xUVf7/8ffMJJNeSIBQEroh9JKEItKLrrKK4Lqui6IIrouKFYWvrqtrAUFFAbFQ7P5cUUCsixhAlGYAFWlK01BCIJAE0iYzc39/hAwZEkISZpgEXs/Hg0eYc8uce4xh3jn3fo7JMAxDAAAAAACPMfu6AwAAAABwoSFoAQAAAICHEbQAAAAAwMMIWgAAAADgYQQtAAAAAPAwghYAAAAAeBhBCwAAAAA8jKAFAAAAAB5G0AIA1CqGYfi6C2dVG/oIAPAughYAnIMHHnhArVu31vz5833dlfPObrfrzTff1LXXXqvOnTurS5cuuvbaazV//nzZbDavvOeGDRt0++23u17v27dPrVu31sKFC73yftXxzTff6OGHHz7rfseOHdPkyZM1aNAgtW/fXt26ddOoUaP09ddfn4deete6devUunVrrVu3zmPnPHr0qHr27KnBgweroKCg3H3uv/9+tW/fXtu3b/fY+wJAdRG0AKCajh8/rmXLlik+Pl7//e9/L7pZjH/961+aOXOmrrjiCr388suaMWOG+vTpoxdffFH33XefV95zwYIF2rVrl+t1/fr19d///lf9+vXzyvtVx5tvvqmDBw9WuE9BQYH+/ve/a8WKFbr99ts1b948PfPMM6pbt67uuusuvfXWW+ept7VHVFSU/vWvf+mPP/7QSy+9VGb7N998o88//1zjx49XQkKCD3oIAO78fN0BAKitPvvsM0nSI488olGjRmnt2rXq2bOnj3t1fhw4cECLFi3Sf/7zH11//fWu9t69eysqKkrPPPOMfv75Z3Xs2NGr/bBarercubNX38MbvvrqK+3atUv/+9//1KxZM1f7oEGDVFBQoBkzZmjkyJGyWCy+62QNdOWVV+rLL7/UW2+9pauuukrt27eXVPxLj8cff1xdunTRmDFjfNxLACjGjBYAVNPHH3+snj17qkePHmratKk++OAD17bRo0dr+PDhZY4ZN26crr76atfr1NRUjRw5Up06dVK3bt308MMP6+jRo67tCxcuVNu2bbVgwQL16tVL3bp1086dO+VwOPT6669r6NCh6tixozp37qwbbrhBa9eudXu/FStWaPjw4erYsaMuv/xyffbZZxo8eLBmzpzp2icrK0uPPfaYLr30UnXo0EHXX3+91qxZU+G1HzlyRIZhyOl0ltn25z//Wffff7/Cw8Or9B6tW7fWe++9p0ceeUTdunVTly5ddM899+jIkSOSpIkTJ2rRokXav3+/63bB028dXLhwoTp06KDU1FSNGDFCHTp00OWXX66UlBTt3r1bo0aNUqdOnTR48GB9/vnnbu9/4MAB3X///erWrZs6deqkUaNGaevWra7tJe/15Zdfavz48erSpYu6deumRx99VHl5eZKkm266SevXr9f69esrvHWu5JrKG79//OMfGjdunNvtlz/++KNGjx6trl27qkePHrr//vt16NAh1/aMjAxNmjRJffv2VceOHXXdddfpm2++KTO+s2bNcn0/zJo1q1LXLRX/UuHqq69Wx44d1aNHDz344INu738mO3fu1I033qgOHTpo8ODBeuedd1zbxo8frz59+pQZg0ceeUSXX375Gc/573//W2FhYXrkkUfkcDgkSdOmTdOJEyc0depUmc3FH22WLVum4cOHq0OHDurVq5eeeuop13+nEsuWLdONN96oLl26qH379rriiiv03nvvubaX3AL5wQcfqH///uratau+//77s143AEiSDABAlf36669GfHy88eWXXxqGYRgvv/yy0a5dO+Pw4cOGYRjGokWLjPj4eGPv3r2uY7Kzs4127doZc+fONQzDMNavX2+0a9fOuO2224yUlBRj0aJFRr9+/YyrrrrKyM/PNwzDMD7++GMjPj7euOKKK4zly5cbCxcuNJxOpzFlyhSjU6dOxttvv22sW7fOWLJkiXH55Zcb3bp1M/Ly8gzDMIw1a9YYbdq0McaNG2esWLHCeOutt4yuXbsa7dq1M2bMmGEYhmEUFBQYV199tXHppZcaH374obFixQrj7rvvNtq2bWusXr36jNdfWFho9O3b1+jYsaPx+OOPGytXrjSOHz9e7r6VfY/4+HgjMTHRmDhxorFq1Srj/fffNzp06GDcd999hmEYxu+//26MHTvW6NWrl7Fp0yYjMzPTSEtLM+Lj442PP/7YNV4JCQlGnz59jA8//NBYtWqVcc011xhdunQxBg8ebMyfP99YvXq1ceONNxrt2rUzDh48aBiGYWRmZhq9e/c2hgwZYixZssT4+uuvjZEjRxqdO3c2du7caRiG4Xqv5ORkY8qUKcbq1auNV1991WjdurXx3HPPGYZhGL/99psxbNgwY9iwYcamTZvOOCbbt2832rZta1x22WXGzJkzjU2bNhk2m63cfbds2WK0a9fOuPHGG42vv/7a+Oqrr4zBgwcbV111lVFUVGQcPnzY6N27tzFo0CBj0aJFxooVK4zx48cbrVu3Nj755BO38W3Xrp0xf/58Y/ny5cavv/5aqetOTU012rRpY8ycOdNYu3atsXjxYqNXr17G3//+9zN+f6xdu9b1fs8++6yxatUq44knnjDi4+ONN9980zAMw1i5cqURHx/v9j2Qn59vdO3a1XjllVfOeG7DMIwlS5YY8fHxxttvv21s2rTJaN26tfHee++V2f7AAw8YK1euNN5//30jOTnZGDVqlOF0Og3DMIzly5cb8fHxxlNPPWWsXr3aSElJMcaMGWPEx8cbP/74o9t19OrVy/jyyy+NRYsWGbm5uRX2DQBKELQAoBomT55sdOvWzSgsLDQMwzAOHDhgJCQkuD4g5ubmGp07dzZmzZrlOmbBggVGQkKCkZ6ebhiGYfz1r381hg4datjtdtc+u3fvNtq0aWO8++67hmGcClqLFy92e//777/f9YG1xP/+9z8jPj7e2LRpk2EYhnHjjTcaV199teuDpWEYxmeffWbEx8e7gtZ///tftw+WhmEYTqfT+Pvf/24MHz68wjHYsWOHcc011xjx8fFGfHy8kZCQYIwYMcKYO3euKyhW5T3i4+ONv/3tb27vMXHiRKNz586u1w8//LDRv39/1+vyglZ8fLzx/vvvu/b5/PPPjfj4eOPFF190tW3evNmIj483vv76a8MwDOOFF14wOnToYOzbt8+1T2FhoTFw4EDj7rvvdnuvBx980K2PN910kzF06FDX65EjRxojR46scOwMo/i/16WXXuoav44dOxqjR482vvjiC7f97r77bqNXr15GQUGBq23jxo1G//79ja1btxpTp0412rVr59Z3wzCMUaNGGb169TIcDodhGMXjO2rUKLd9KnPdr732mtGlSxfX97phGMaKFSuMmTNnun1vlVYSUJ544gm39nHjxhk9e/Y0HA6H4XA4jD59+hgPPfSQa/uSJUuMhIQEVwCuyB133GEkJycbQ4cONUaPHu1qdzqdRp8+fYzbbrvNbf/Vq1cb8fHxxvLlyw3DMIw5c+YYDz/8sNs+x44dM+Lj443XXnvN7Tpefvnls/YHAE7HrYMAUEVFRUVasmSJ63manJwchYSEKDExUR9++KGcTqeCg4M1aNAgffHFF67jPv/8c/Xs2VMxMTHKz8/XTz/9pL59+8owDNntdtntdsXFxally5Zlbk9q06aN2+vnn39eo0aN0tGjR5WamqqPP/5YS5YskSTZbDbZbDZt2rRJQ4YMkclkch13xRVXyM/v1OO5a9asUb169dSuXTtXHxwOh/r3769ffvlF2dnZZxyH+Ph4LV68WB999JHuvfdede/eXb/99pumTp2qa6+91nULZFXe4/TnrRo0aKD8/PxK/pc5pUuXLq6/R0dHS5I6derkaouMjJQk5eTkuPrYpk0bxcTEuPpoNpvVp08frV692u3c5fXx9FvSKmPIkCFasWKF5s6dq9GjR6tly5ZavXq17r33Xo0fP95VXGXDhg3q06ePAgIC3K4vJSVFbdq00fr169WlSxc1btzY7fxXX321Dh8+rN27d7vaTv8+qsx1JycnKz8/X0OHDtXzzz+v1NRUXXbZZbrrrrvcvrfKc+WVV7q9Hjx4sDIzM7V7926ZzWZde+21Wrp0qeu/8aJFi3TppZeqQYMGZx2/J554QoZhKD09Xc8884yrfffu3UpPT9eAAQNc12S325WcnKzQ0FDX/1tjxozRlClTlJubq19++UVffPGFXnvtNUkqUzXz9HEDgMqgGAYAVNGKFSuUmZmpjz76SB999FGZ7atWrVLfvn11zTXXaMmSJdq+fbvq1q2rdevWuT4Q5uTkyOl0as6cOZozZ06Zc5T+UC1JwcHBbq83b96sJ554Qps3b1ZQUJBatWqlRo0aSSpewykrK0sOh8MVMkpYLBZXyJCKn506fPiw2rVrV+61Hj58WBERERWOR4cOHdShQwf985//VH5+vubPn68ZM2Zozpw5evjhh6v0HkFBQW7bzGZztao5hoaGlmk7/dylZWVl6ffffz9jH0uHPU/1UZL8/f3Vu3dv9e7dW5J06NAhPfXUU/rf//6nFStWqH///srKyirz37G07OxsxcXFlWmvW7eupFNhUir7fVSZ6+7SpYtef/11vfnmm3rjjTf0+uuvq27durrjjjt00003VXh9JX0oUXIdJeF6xIgRevXVV7V06VL16NFDa9as0XPPPVfhOUvUr1/fVV0wJibG7Zqk4iD2xBNPlDkuIyNDUnG5+H//+99atmyZTCaTmjZtqqSkJEll10E7fdwAoDIIWgBQRR9//LHi4uL09NNPu7UbhqG77rpLH3zwgfr27auePXuqXr16+vLLL1WvXj0FBARoyJAhkqSQkBCZTCbdcsstuuqqq8q8R0Wh4MSJExozZoxat26tzz//XC1atJDZbNbKlSv1v//9T1LxB1p/f39X0YUSTqfT9UFUksLCwtSsWbMzfriNjY0tt/3ZZ5/V8uXL9dVXX5Xp95133qmlS5dq586d5/Qe51NYWJi6deumhx56qNztVqvVo+93ww03qHnz5po8ebJbe0xMjJ5++mnX+PXv319hYWFuBVJKrFy5Um3atFFERIQOHz5cZntJW506dc7Yj8ped0kYzM/P19q1a/X222/rqaeeUqdOnSqsLHn6jGjJ92NJ4IqLi1O3bt305ZdfKisrS6GhoRo0aNAZz1cZJUVYHnroIXXr1q3M9pJQ/+CDD2r37t1688031aVLF1mtVuXn5+vDDz88p/cHgBLcOggAVXD48GGtWrVKV111lbp37+72p0ePHrriiiu0cuVKHTp0SBaLRX/+859dgWTQoEGu34yHhoaqbdu22r17t2tGqEOHDrrkkks0c+bMChd63b17t7KysnTzzTerVatWripr3377raTiMGWxWNS1a9cyledSUlJkt9tdr7t166aDBw8qOjrarR/ff/+95s6de8by4s2bN9eePXvcbo0skZubq4yMDMXHx5/Te5Sn5Fo9rVu3btqzZ4+aN2/u1sdPPvlEH330kcf72LhxY3311VdKS0srs23Pnj2S5Bq/pKQkff/99263s23dulW33367tmzZouTkZG3atEn79+93O8+SJUtUr149NW3a9Iz9qMx1P/vssxoxYoQMw1BQUJD69+/vWpD5wIEDFV7nihUr3F5//vnnatiwoVufrrvuOq1evVqfffaZrrzyyjKzuVXVokULRUdHa9++fW7XFBMTo+eff95VUXHDhg0aMmSIunfv7gqUpf8fAoBzxYwWAFTB4sWLZbfby52FkqRhw4ZpwYIF+vDDD3X33Xfrmmuu0fz582U2m8vcInj//ffr9ttv1wMPPKCrr75aDodD8+fP108//aRx48adsQ/NmzdXaGioXn31Vfn5+cnPz0//+9//XLcxltzmNn78eN10000aP368rrvuOh04cMC10GvJszXDhw/Xu+++q1tvvVV33HGHGjZsqNWrV2vOnDkaOXKk/P39z3idn376qR566CGtW7dOffv2VXh4uPbu3au3335bgYGBGj169Dm9R3nCw8N15MgR12yOp9xyyy365JNPdMstt2j06NGqU6eOvvjiC3344YeaNGlSlc4VHh6uTZs2ac2aNWrbtm25t17ed999Wrduna677jrdfPPN6tKli8xmszZv3qz58+erT58+6tOnj6TiJQH++te/6h//+IduvvlmFRQU6MUXX1THjh3Vq1cvtW/fXkuWLNEtt9yiu+66S5GRkVq8eLHWrl2rZ555psLgV5nr7tGjh9544w1NnDhRV199tYqKijR37lxFRkaqR48eFY7FO++8o5CQELVt21aff/65Vq1apalTp7o923X55ZfrySef1M8//6x//etfVRrr8lgsFt1333167LHHZLFY1L9/f+Xk5Gj27Nk6dOiQ6zbJjh076tNPP1W7du3UoEEDbdy4Ua+//rpMJlO1ngsEgNMRtACgChYuXKhLLrnENdtwusTERMXGxmrBggUaN26cEhISFB8fr2PHjpVZzPiyyy7TvHnzNGvWLI0fP17+/v5q166d3njjjQoX4Q0LC9Ps2bM1depU3XPPPQoJCVGbNm307rvvauzYsUpNTdWAAQOUlJSkmTNn6qWXXtK4cePUuHFj/etf/9J9992nkJAQScXPnrz33nt6/vnnNW3aNB0/flyNGzfWAw884ApK5bFarZo3b57efvttffXVV/r8889VUFCg+vXra8CAAfrnP//puj2suu9RnuHDh2vlypW68847NX78+DLFFqorJiZGH3zwgZ5//nk9/vjjKiwsVLNmzfT000/ruuuuq9K5/v73v+uXX37R2LFjNXnyZP35z38us09sbKwWLVqk1157TZ9++qnmzJkjwzDUtGlT3Xbbbbr55ptdYaRt27Z655139Pzzz+vee+9VaGio+vbtqwcffFBWq1X16tXT//t//0/PP/+8nnrqKRUVFSkhIUGzZ8/WwIEDz/m6+/btq+eee07z5893FcBITEzU22+/7fa8X3meeuopzZ07Vy+++KLi4uL0wgsvlPklRUBAgHr06KHdu3d7bIHrv/zlLwoJCdHcuXP13//+V8HBweratauee+451/NsU6ZM0ZNPPqknn3xSktSsWTM98cQTWrJkiVJTUz3SDwAXN5NR3Sd4AQA12jfffKMGDRq4FTr47bffNHTo0Ep9CAfOh4KCAvXt21fjxo3TqFGjfN0dAPAYZrQA4AL13Xff6YsvvtCDDz6o5s2b69ChQ3rllVfUokULXXbZZb7uHi5y+/fv16JFi7R69WqZTCaNGDHC110CAI8iaAHABerhhx9WYGCgXnnlFWVkZCgyMlK9e/fWAw88cM4FB4BzZTabXc9wTZ8+vdyS/ABQm3HrIAAAAAB4GOXdAQAAAMDDCFoAAAAA4GEELQAAAADwMIphVMKmTZtkGEaVFtUEAAAAcOEpKiqSyWRSly5dKtyPGa1KMAxDNaVmiGEYstlsNaY/FxrG17sYX+9ifL2L8fUuxte7GF/vYny9q6aNb2WzATNalVAyk9WhQwcf90TKy8vTtm3b1KpVKwUHB/u6Oxccxte7GF/vYny9i/H1LsbXuxhf72J8vaumje/mzZsrtR8zWgAAAADgYQQtAAAAAPAwghYAAAAAeBhBCwAAAAA8jKAFAAAAAB5G1UEAAADgJIfDoaKioiodU1hY6PpqNjOP4Wnnc3z9/f1lsVg8ci6CFgAAAC56hmEoPT1dWVlZVT7W6XTKz89PBw4cIGh5wfke38jISDVo0EAmk+mczkPQAgAAwEWvJGTVr19fwcHBVfqQ7XA4VFhYqICAAI/NhuCU8zW+hmEoLy9PGRkZkqSGDRue0/kIWgAAALioORwOV8iKjo6u1vGSFBgYSNDygvM5vkFBQZKkjIwM1a9f/5zej7lNAAAAXNRKnskKDg72cU9QE5R8H1T1Wb3TEbQAAAAA6ZyfycGFwVPfBwQtAAAAAPAwghYAAABwgRgwYIBat27t+pOQkKCuXbtq5MiR+uGHHyp1joULF6p169bn1I9169apdevW2rdvnyTp2LFjWrBgwTmds7YhaAEAAAAe5HAa2rzziFZu3KfNO4/I4TTO6/uPHj1a3333nb777jt9++23+uCDDxQaGqoxY8bowIED56UPXbp00Xfffeeq3Dd16lQtWbLkvLx3TUHVwVrEcDh0fOs2ObZs0XFDCurSWSYq2wAAANQYq38+oNcXb1ZmdoGrLToiULcP66BLOzY6L30IDg5WvXr1XK/r16+vJ554Qn369NHXX3+tUaNGeb0PVqvVrQ+GcX7DZk3AjFYtkblmrVLH/lM7n3xGRQs/0c4nn1Hq2H8qc81aX3cNAAAAktZsPqjJb/3gFrIkKTO7QJPf+kGrfz4/s0nl8fMrnl+xWq0qKCjQiy++qIEDB6pDhw665ppr9L///e+Mxx44cED33XefevbsqXbt2qlPnz6aNm2anE6npOJbDQcPHqynnnpKiYmJGjdunNutgxMnTtSiRYu0fv16tW7dWsuWLVNCQoL279/v9j5//etf9eyzz3pvEM4zZrRqgcw1a7V9yrQy7bbMTG2fMk0JEycoumcPH/QMAADgwmUYhgptjrPu53A6lFdg15xPfqlwv9cXb1anS+rJYq5cVbsAq8UjFfAOHTqkZ555RsHBwerbt6/uv/9+bd26VY8//riaNm2qzz77TPfcc49mzZqlQYMGlTn+n//8p+rVq6c33nhDISEh+uabbzR58mR16dLFtf8ff/yhjIwMLV68WAUFBTp69Kjr+EceeUQFBQVKT0/XzJkzVadOHUVFRemTTz7RuHHjJEl79uzRjz/+qKeffvqcr7emIGjVcIbDod1z5le4z+658xXVLZnbCAEAADzEMAw9POs7bdt79Ow7V1JmdoFuePSLSu/fplmUnr3rsiqHrddee03z5xd/frTb7bLZbGrZsqVefPFF5efn65tvvtGrr76qfv36SZLuvvtubd++Xa+++mqZoFVQUKBrrrlGf/rTn1zPW91yyy2aM2eOduzY4bb/uHHjFBcXJ6m4GEaJsLAwBQYGyt/f33U74TXXXOMWtBYvXqwOHTqoVatWVbrWmoygVcPlbN0mW2ZmhfvYjmTqwJLPFNmlk/wj68g/LJTQBQAAcJG64YYbdNNNN0mSzGazIiMjFRYWJkn64ovioJeYmOh2THJysl544YUy5woMDNTIkSP11Vdf6eeff9bvv/+uHTt26MiRI65bB0s0a9as0n0cMWKE5s+fr59++kkdO3bUkiVLNHbs2KpcZo1H0KrhbMeOVWq/vW++Lb158oXZLP+IcFkj68g/MkLWOpHyjyz+Y42MlH+dSFkjI+QfWUd+YaEszgcAAHAak8mkZ++6rNK3Dm7anq5n3/3xrPs+PqaH2rWIrlQfqnvrYEREhJo2bVqlYwzDcD3HVVpeXp5GjhypgoICXXHFFbr22mvVsWNH/f3vfy+zb2BgYKXfr1WrVurUqZOWLFmigoICHTlyREOHDq1Sn2s6glYNZ61Tp1L7BdSvJ0dBoew5OZLTqaJjWSo6lnXW40wWi/xPhi5rZMTJEFYqmNWJLA5rkXVkCQkmlAEAgIuGyWRSYMDZPy47HCZ1ahWt6IjAMoUwSqsbGaTOretX+hktbyhZH2vDhg3q37+/qz01NbXc2/a+++47bdmyRd9//73q1q0rScrKylJmZmaVKgmW9xlyxIgRmj17tpxOpwYNGqTw8PCqXk6NRtCq4cLbtpE1OrrC2wetdaOV+OrLMlksctrtKsrOUVFWlmzHjqkoK7v471nFwcuWlaWirCwVZWXLfuKEDIdDtsyjsmUeVe5Z+mLy9z85E3b67Jh7KPOPrCNLUCChDAAAXDTMZpPGXN1Oz76z4Yz7jL2mvU9DliS1bNlS/fv31xNPPCGTyaSmTZvq888/1zfffKMXX3yxzP4NGjSQJC1ZskSXX365Dh48qBdeeEFFRUWy2WyVft/g4GBlZGQoLS3N9RzXVVddpcmTJ2vhwoWaOXOmR66vJiFo1XAmi0Utxo4ut+pgiRZjRrueyTL7+SkgOkoB0VFnPbezqEhFWdmu8GU7VhLCTv3ddjKUOfLyZBQVqfDwERUePnLWc5ut1gpnx07dvhgpSxWmmQEAAGqqnh0aatKo5DLraNWNDNLYa9qft3W0zuaFF17QCy+8oEceeUQ5OTmKj4/XzJkzNXjw4DL7duzYUZMmTdKbb76pF198UTExMbryyivVsGFDbd68udLvOWzYMH399dcaOnSoli5dqpiYGIWGhmrQoEFav369evXq5clLrBFMho9XD3M6nZo1a5YWLFig48ePKzk5WY899pgr6Z5uy5Ytmjp1qn7++WcFBARoyJAhmjBhgusBP0n68ssvNXPmTO3bt08tWrTQww8/rJ49e1a7jyXfRB06dKj2Oc5V5pq12j1nvtvMlrVutFqMGX1eSrs7CgsrmB0rFcyOZclZWFilc5sDA13PkZU3O1b6lkaz1eqlKyyWl5enbdu2qU2bNgoODvbqe12MGF/vYny9i/H1LsbXuxjfihUUFGjPnj1q3rx5lZ4zKuFwOFRQUKDAwEBZLBY5nIa27s7U0ZwCRYUHqm2LaJ/PZNVUN910k7p27ar77rvvjPucPr7edrbvh8pmA5/PaM2ePVvvv/++pkyZogYNGmjatGkaM2aMPv30U1lP+1B95MgR3XrrrRo0aJAef/xxHTt2TP/61780ceJEvfzyy5KktWvXasKECXrooYfUq1cvffTRR7r99tu1ePFitWzZ0heX6BHRPXsoqluyMjb9qN+3bFHTdu1Uv0vn81Zd0BIQIEtMfQXG1D/rvo78fNlOhrKys2Mlr4u3O202OQsKVHAwXQUH08/ej5Bg91my0sU96tSRf0SErHXqyD8iXGZ/f09cOgAAQJVYzCZ1aFXX192o0ZYtW6Zt27bpxx9/1NSpU33dHa/wadCy2WyaP3++HnzwQVcd/+nTp6t3795aunRpmcoj+/fv12WXXab//Oc/8vPzU/PmzXX99ddr+vTprn3mzJmjQYMG6eabb5YkPfzww9q0aZPeeust/ec//zlv1+YNJotFYW3byGKSwtq0qbEl3C1BQQoKClJQwwYV7mcYhhz5+Sdnx4qfJys9M1aUXTJzVhzKDLtdjtw85efmKX//2VdW9wsLlX/EydmxOpGn/h55MoyV3MYYEV5jxxIAAOBCNHfuXO3Zs0dPPvmka32uC41Pg9b27duVm5vrdltfeHi42rZtqx9++KFM0OrUqZNbff9du3bpk08+cd3T6XQ6tXHjRk2cONHtuO7du2vp0qVevBJUh8lkkl9wsPyCgxXUuOJ7lg3DkCM31z2IlbqNsSj71EyZLStLcjplP35C9uMnlL9v39k6Iv/wsOLnxcLCZDNJ+zdsUnC9em6hjDXKAAAAPOODDz7wdRe8zqdBKz29+Fax01Ns/fr1XdvO5PLLL9fevXvVuHFjzZo1S5KUk5OjvLw8V3WUqpzvbAzDUF5e3jmdwxPy8/Pdvl5UzGYpOkr+0VGq6KZAw+mU40SuirKzZD9ZgdHta3a27NnZxZUXc3Ikwyiu1Jid4zpHxuYt5Z/cZJJfRLj8IyLkFxFR/DXytK8REfKPjJAlJEQms9mzY1DLXdTfv+cB4+tdjK93Mb7exfhWrLCwUE6nUw6HQw7H2dfNOl1JyQPDMKp1PCp2vsfX4XDI6XQqPz+/zKLMJf2oTHVtnwatkv/ZT38WKyAgQNnZ2RUe+9xzzyk/P1/Tpk3TzTffrE8++UQFBQVnPF9hFQs0nK6oqEjbtm07p3N40t69e33dhdrBUhzOVE4VRj9JFqdTysuTcSJXRm6udPKrceJEmdfKy5cMQ/asbNmzKv7+lFQcDENCZAoNkenkV4WEyhQaLFNoqNs2BV5c5fD5/vUuxte7GF/vYny9i/E9Mz8/v3P+vHiux6Ni52t8CwsLZbfbtXv37jPuc3reKI9Pg1ZJFQ+bzeZW0aOwsFBBQUEVHltS5WPWrFnq27evvv76a/Xt29d1vtIqc76z8ff3L3cRt/MtPz9fe/fuVbNmzc75mlBWReNr2O2y5xxXUXZ28axY1mlfS82UOXJzJadTOn5cxvHjOltpT5Ofn/uM2JlmyiIiZK7Fa5Tx/etdjK93Mb7exfh6F+NbscLCQh04cEABAQHVqjpoGIYKCwsVEBBQa/+Nrsl8Mb5+fn5q0qSJAgICymzbuXNn5c7h6U5VRcktgxkZGWrSpImrPSMjw7VqdWm7d+/WH3/84SqcIUkxMTGKjIzUoUOHFBkZ6VoMrbSMjAzFxMScU19NJlONKocaFBRUo/pzoTnj+IaHS7GNz3p8hWuUZbkX+XDk5cmw21V0JFNFR868MHUJs9VaqgR+OWuURUa4ttXUNcr4/vUuxte7GF/vYny9i/Etn9lsltlslsViqVb58JLb2Uwm03kpP36xOd/ja7FYZDabFRQUVG7wrmzY82nQSkhIUGhoqNatW+cKWjk5Odq6datGjhxZZv/Vq1dr6tSp+u677xQeHi5J+uOPP3Ts2DG1bNlSJpNJXbt21fr16/WXv/zFddy6deuUlJR0fi4KkGT291dAvboKqHf20q5l1ihzK4F/zK3Ih7OgQE6bTYUZGSo87RcK5fYjMNC9BL5bEDu/a5QBAABcTHwatKxWq0aOHKnnnntOUVFRaty4saZNm6YGDRpoyJAhcjgcOnr0qMLCwhQYGKihQ4fq9ddf14QJE/Tggw8qOztbTz31lDp27Kj+/ftLkm699Vbdfvvtatu2rfr06aOPP/5Y27Zt09NPP+3LSwXO6JzWKHObHXMvke9aoyw9XQWVKAZjCQl2L4FfOpSxRhkAAECV+HzB4vHjx8tut+vRRx9VQUGBkpOTNW/ePPn7+2vfvn0aOHCgJk+erOHDhysyMlJvvfWWpkyZor/97W+yWCwaOHCgJk6c6JpGvOyyy/TMM89o9uzZmj59ulq1aqVXX321Vi9WDJSo3hplWactHp1dZt2ykjXKHLl5KjhQxTXKTs6UlZ4dc61bFhlBOXwAAHBR8nnQslgsmjBhgiZMmFBmW2xsrHbs2OHW1rx5c7322msVnnPYsGEaNmyYJ7sJ1CrVWqOsZHbstHXJirKOFc+YHctSUXa2DIejWmuU+UdGyhwaqiKHQ4d27lZI/Xruz5qFhRHKAAAXBMPhUM7WbbIdOyZrnToKb9vmvP8bt2TJEr377rv69ddfZTKZ1KJFC/3lL3/RDTfcUKnjFy5cqEmTJpX5LF7agAEDdO211+ruu+/2SJ+XL1+uuLg4tWrVSuvWrdPNN9+sb7755qwLGpfeNzY2VseOHdOyZcvcHiXyBZ8HLQC+ZTKZ5BcaKr/QUCk2tsJ9DadT9hMnKpwdc23LyZGczlNrlP3+h+s8B9auK3tys1n+4eGVKvLhFxrKGmUAgBopc81a7Z4zX7bMUwWurNHRajF2tKJ79jgvffjoo4/09NNP65FHHlFiYqIMw9D333+vp556SkeOHNFdd93lsfcprypfdezfv1933HGH3n77bbVq1UpdunTRd999p6ioskv0nO70fadOnap9+/YRtADUHqaTYcg/PFzBpSqFlsdwOFR0/Lhb1cXcjMM6tHuPwi0WOU8GtqKsLBXlHC8OZSdfn7UfFov8IyIqVeTDEhJCqV0AwHlxdO06/Tr1+TLttsxMbZ8yTQkTJ5yXsPX+++9rxIgRuu6661xtLVq00KFDh/T22297LGhVJgRVVsmixCWsVqvq1asnSWddpLj0vuWdy1cIWgC8wmSxyBpZHHZCmhW35eXl6ei2bWrWpo1beWGn3X5y5ivr1HNl5RX5yM6S/fgJGQ6HbEePynb0qHLP1g8/vwpmx04rhx8URCgDALgYhiFnJRbJdTgcsufla8/cNyrcb/eceYro1LHSd2WYq7lulNls1qZNm5Sdna2IiAhX++23364RI0ZIKv+2v/LaPvzwQ82cOVM5OTnq2bOn/vWvf6lx48bl7r98+XLNnDlTO3fuVExMjK666iqNGzfOtbhvbm6uXnjhBf3vf/9Tbm6u2rVrp4kTJyoyMlIDBw6UJN18882666671K1bN9ftgB9//LE+/PBDrVixwlWXIT8/X5deeqn+7//+T02aNHHtO2vWLC1atEiS1Lp1a7388su666679M0337j6LUl//etf1bVrVz388MNVHt/KImgB8Dmzn58CoqMUEH3234w5i4pUlJ0j27FjxYtHHztW/m2M2Vly5BavUWY7ckS2I0fO3g+3NcrKKfJR6pbGmrpGGQDAMwzD0OaJj+j49jM/o1RVtsyjWve3myq9f1ibBHWY/FSVw9aYMWN03333qU+fPurevbuSkpLUo0cPdejQwbVEUmW98847eumll2S1WvXkk0/qzjvv1KJFi8r06dtvv9W9996rSZMm6dJLL9Uff/yhJ598Unv27NFLL70kSbr33nu1d+9eTZ48WU2aNNGrr76q0aNH63//+58WLFigv/zlL5o5c6Z69eqlX375xXXuYcOG6ZVXXtG6det02WWXSZKWLVsmwzD0pz/9SVu2bHHt+8gjj6igoEDp6emaOXOm6tSpo6ioKH3yyScaN26cJGnPnj368ccfvV6VnKAFoFYx+/sroG60AupGn3Vfp81WQQn8U0U+PL9GWelgFiGLh+5fBwCcZ7X0LocrrrhCDRo00Ntvv63vv/9eK1eulCQ1a9ZMzzzzjBITEyt9rmnTpikhIUGS9Oyzz+ryyy/XmjVrdOmll7rt9+qrr+r66693Fdto0qSJnnjiCY0aNUr79u2TzWbTt99+q3nz5rnC0uOPP67w8HBlZ2e7bkOMiIhQSEiI27ljY2OVmJiozz77zHXsp59+qkGDBik0NNRt35Jlofz9/V23E15zzTVuQWvx4sXq0KGDWrVqVelxqA6CFoALltlqVWD9+gqsX4k1ygoKzl7k42Roq/IaZcHBFRb3OBXMIlijDABqCJPJpA6Tn6r0rYNHfvxZe6Y+d9Z92zz2iCLata1UH6p766Akde7cWZ07d5bT6dT27du1cuVKvfvuuxo7dqy+/vrrSp0jJCTEFbKk4qAWERGhX3/9tUzQ2rp1q37++Wd99NFHrraSZ6V27dql/Px8V79KBAQEaNKkSZKkfWepZHz11Vdr6tSpeuKJJ5Sbm6vvv/9ec+bMqdR1jBgxQvPnz9dPP/2kjh07asmSJRo7dmyljj0XBC0AkGQJDJSlQQMFNqjkGmVZ5ZfAP33dMsNulyMvT468Sq5RFhrqmglzmx1jjTIAOO9MJlPlbhV3OBTesb2s0dFu1QZPZ60brTqdO3n153d6erpee+01/eMf/1CDBg1kNpvVtm1btW3bVoMGDdLQoUP1ww8/lHus3W53e20pp59Op9P1zNXp7WPGjNG1115bZlu9evW0evXqal5RsYEDB2rKlClavny5jhw5onr16qlHj8oVFmnVqpU6deqkJUuWqKCgQEeOHNHQoUPPqT+VQdACgCpwW6OsUWXWKMsrnh0r9/bF0sHs5BplJ07IfqJya5T5hYUVh7GICFnr1JFCQmS3FSrzcKYKY+qzRhkAnEcms1nNbrul3KqDJVqMGe31n8dWq1ULFixQw4YNdfvtt7ttK3k+q27duvL399eJEydc206cOKHM00JiTk6O/vjjDzU5WWl4x44dOn78uOLj48u87yWXXKI9e/aoadOmrrZ169bp7bff1uOPP66WLVtKkjZv3qyePXtKKg52Q4YM0UMPPaQOHTpUeF1BQUG64oortHTpUh08eFDXXHONzGcoKlLeLOCIESM0e/ZsOZ1ODRo0qMrPqlUHQQsAvKR4jbIQ+YWGVHKNstxyZ8fK3L6YXbxGmT0nR/acnDLn+mNZintD6TXKIiLkX+dUkQ//iFOLRlvrsEYZAJyLqB7dlTBxQtl1tOpGq8WY87OOVlRUlMaMGaOXXnpJubm5uuKKKxQaGqqdO3dq9uzZruIYnTt31hdffKHLL79c4eHhmjFjRpkZLLPZrHvvvVePPfaYJOnf//63unXrpqSkpDLvO3bsWN17772aNWuWrrrqKqWnp+uRRx5RbGys6tWrp3r16mnIkCF64okn9PjjjysmJkavv/66CgsL1a1bN1c4+vXXX9W2bfm3Vg4bNkx33HGHCgoKNGXKlDOOQXBwsDIyMpSWlqa4uDhJ0lVXXaXJkydr4cKFmjlzZrXGtqoIWgBQAxSvURYm//AwBVe8RNnJNcpOlJodK/6ad/iwjvyRphDDkOPkGmYeXaPstFDGGmUAUFZ0zx6K6pasnK3bZDt2TNY6dRTets15vbPg3nvvVbNmzfThhx/qvffeU0FBgRo1aqQ//elP+sc//iFJuv/++5WVlaVbb71VYWFhGj16tHJO++VdVFSUrrnmGo0bN075+fnq37+/Hn300XLf84orrtD06dP12muv6dVXX1VkZKQGDBigBx980LXPM888o6lTp+qee+6RzWZTp06dNG/ePFchjBEjRmjq1Kn6/fffNXjw4DLvkZSUpHr16ik6Otpt5ux0w4YN09dff62hQ4dq6dKliomJUWhoqAYNGqT169erV69eVR7T6jAZNWVFrxps8+bNknTWKc3zIS8vT9u2bVOb09Yhgmcwvt7F+HpXeeNrOBzF5fBPC2UlJfBLz5zZj584yzu4c61R5iqBf4YiH3UujDXK+P71LsbXuxjfihUUFGjPnj1q3ry5AquxfIfD4VBBQYECAwPLfa7pQtWnTx/deOONuuOOO7z6Pp4a35tuukldu3bVfffdV+F+Z/t+qGw2YEYLAC5gJotF1qg6skbVOeu+JWuUnaqweIYiH1nVX6PsjEU+WKMMAGqNo0ePaufOncrMzFSDsxSRqgmWLVumbdu26ccff9TUqVPP2/sStAAAkqq5Rtnps2OnFfmwHTuHNcrOMDvmizXKDIdDx7duk2PLFh03pKAunSkwAuCitWTJEr344ovq2bOnBg0a5OvunNXcuXO1Z88ePfnkk2rYsOF5e1+CFgCgyqq1RtkZSuC71i07lzXKXLcvus+OeWKNssw1a90ebN+58BP9ER2tFmPPz4PtAFDT3HLLLbrlllt83Y1K++CDD3zyvgQtAIBXVW2NsoIzlsA/fd0yo6jIM2uUlQpl/pGR8o8Il9mv+J/HzDVrtX3KtDLnsmVmavuUaUqYOIGwBQAoF0ELAFAjFK9RFiS/4KCqrVFWKpSder7Mfd2yKq1RJskvPFz+EeEqSD9U4X67Xpur8Hbt5BcaQll8AIAbghYAoNap3hplZ1ibrPTti2dZo+x0RceOaf1Nt0gmkyzBwfILCZFfSIgsIcHyCw09+TpYlpPtfqEl20Nc+/qFhsgcGFjrqzICFwKKcUPy3PcBQQsAcEFzX6MsrsJ9T61RlqUjq77Tvo8WVu5NDEOO3Fw5cnNVWJ1Oms2lQtqpQFY2tJ18HRLiarOEBMtstRLUgHPgf/IZzry8PAUFBfm4N/C1vLw8Sae+L6qLoAUAwEkmi0XWyAhZIyNkP368UkGr7eP/UkjzZrKfOCFHbp7submyn8iV/WTwspf8OeH+2nGyzXA4imfRjh+X/fjx6vXbz881O1Z6tqxsaCueYTsV0opfV7dQCHChsFgsioyMVMbJyqjBwcFV+uWFw+FQYWGh61zwrPM1voZhKC8vTxkZGYqMjDzn9yJoAQBQjvC2bWSNjnZVGyyPtW60Ijt2OBnQIqv8HoZhyGmznQxpubKXCmqO3BNnfH0qsOVJTqcMu11F2dkqys6u1rWaAwLcZ8tOzpiVfl1+aCsOapS6x4WgZD2ojEosQ3E6p9Mpu90uPz8/mXle0+PO9/hGRkZ6ZH0wghYAAOUwWSxqMXZ0uVUHS7QYM/qcQobJZJIlIKB4PbDos69fdjrD6ZSjoKCCmbO8UiGt+LWj9H4nb49xFhbKVlgoHT1areuwBAWdcbbsbKHNEhREIRHUCCaTSQ0bNlT9+vVVVFRUpWPz8/O1e/duNWnShFsPveB8jq+/v7/HZs0IWgAAnEF0zx5KmDjBbR0tqXgmq8UY36+jZTKb5RccLL/gYAXUq1fl4w2HQ478/Crc7phXXL3xZGhzFhRIkhz5+XLk58t2pDoXUVxIxBIcpCKLRb9FRckaHl5O8ZDSoe3UbBqFROBpFoulyh+0nU6nJCkgIECBgYHe6NZFrbaOL0ELAIAKRPfsoahuycrY9KN+37JFTdu1U/0unS+I2+VMFkvxDFRoqBRT9eOddrsceSXhK6/CkFZeaHPabG6FRCTpxFlK6pd3DaWD2NkqPJap+Gi1Vv3CAaASCFoAAJyFyWJRWNs2spiksDZtLoiQ5QlmPz+Zw8PlHx5ereOdNpsreOVmHtWe7dvVKCpaFnvRqcIiubnuhUZOKyRiOByVLsdfHpO/v3sZ/tDQyoe2YAqJADgzghYAAPAJs9Uqq9Uqa506UlSULPYiRbVpo+Dg4LMeaxiGnIWFbsHLLYiVus3RvdDIqdAmw5BRVORaU61a13CykEjZio9nWkst9NTrYAqJABcyghYAAKh1TCaTLIGBsgQGnnshkTIhrZxn1k64h7jTC4nYzqGQSHm3NJ45tJ2qDkkhEaBmI2gBAICLjicKidjz8txmyxwnZ8zKlOEvU2ikbCERHa5GJZGT1+Belr/8tdQcfn5yHj6s/NBQWerWlV9IiMwBARQSAbyIoAUAAFBFJotF/mFh8g8Lq9bxzqKi4kIipW5zLB3EToW2smX57SdOyLDbixe6PnFC9hMnVFjJ991+2jWULctf+bXUKCQCVIygBQAAcJ6Z/f1ljoiQf0REtY4vXUik4jL8xa9tOTnKz8qSpai4UqTHComUWcS6orXU3KtDmv34GIoLG9/hAAAAtYxbIZFKyMvL07Zt29SmTRsFBQUVFxKp1Npppz/DdlohkWNZKjqWVb1rCAx0r/BYJrSVV/GxOMhZgoIoJIIaj6AFAABwESldSCSgbjULiZxc6NpRqpqj2+sKQpsjP1+S5CwokK2gQLbMahYSCQ4+c1n+s5TptwQF8XwavI6gBQAAgEozmc2umafqKFNI5Cxl+E+fWXMWFj+R5sg7Wf3xHAqJuBcPKR3aKijLTyERVBJBCwAAAOeNxwqJVKYsv1uhkbxyC4lU6xr8/NyClykwUDaHQ380XKPAiIhShUVCS82knXpejYWuLw4ELQAAANQaHikkcnpIq0Jok9Mpw25XUXaOirLdC4lkbt1WuWuwWktVdAyVX2hwuWX5y3ttCQ6mkEgtwX8lAAAAXDTMVqusUVZZoypXSKQ0wzDkLCgos3Za3rFj2r97t+qFhctUKsiVKTSSlycZhpw2m5w227kXEilTlv9kSf4zhDTXQte1qJCI4XDo+NZtcmzZouOGFNSlc63pP0ELAAAAqASTySRLUJAsQUFuhUQC8/J0qG60GrRpo+Dg4DMeX7qQSMVl+UuvnXbC9dojhURMJlmCg8qW5Q8JLRXKSgqJFM+2ndo3VJagwPP2fFrmmrXaPWe+bJmZkqSdCz/RH9HRajF2tKJ79jgvfTgXBC0AAADgPHArJFK/6seXFBI5PaRVZi01VyERw5AjN0+O3DwV6nDVO2E2l63oeJbbHYufZyt+Xs1stVYqqGWuWavtU6aVabdlZmr7lGlKmDihxoctghYAAABQC3iikIjbbFml1k4rp5DI8ROyHz/XQiKnVXcsFdLMQUFKe/+DCs+ze+58RXVLrtG3ERK0AAAAgIuA2d9f1sgIKbLqhUSMk8+WVbx22pnL8ttzcyssJFJVtiOZytm6TREd2p/TebyJoAUAAACgQiaTSZaAAFkCAs69kIjb2mlly/Dn/v67cnfuOus5bceOVedSzhuCFgAAAACvOlMhkfJkb/5Fvzz677Oe01qn6oHvfDL7ugMAAAAAUCK8bRtZoysOY9a60Qpv2+Y89ah6CFoAAAAAagyTxaIWY0dXuE+LMaNrdCEMiaAFAAAAoIaJ7tlDCRMnlJnZstaNrhWl3SWe0QIAAABQA0X37KGobsnK2PSjft+yRU3btVP9Lp1r/ExWCYIWAAAAgBrJZLEorG0bWUxSWJs2tSZkSdw6CAAAAAAeR9ACAAAAAA8jaAEAAACAhxG0AAAAAMDDCFoAAAAA4GEELQAAAADwMIIWAAAAAHgYQQsAAAAAPIygBQAAAAAeRtACAAAAAA8jaAEAAACAhxG0AAAAAMDDCFoAAAAA4GE+D1pOp1MzZsxQ79691blzZ40dO1ZpaWln3P+3337T7bffru7du6tnz54aP368Dhw44NrucDjUsWNHtW7d2u3PzJkzz8flAAAAAIDvg9bs2bP1/vvv68knn9QHH3wgp9OpMWPGyGazldn32LFjuvXWWxUYGKh33nlHc+bM0dGjRzVmzBgVFhZKkvbu3avCwkJ98skn+u6771x/Ro8efb4vDQAAAMBFyqdBy2azaf78+Ro/frz69eunhIQETZ8+Xenp6Vq6dGmZ/ZctW6a8vDxNnTpV8fHxat++vaZNm6Zdu3Zp48aNkqQdO3YoNDRUCQkJqlevnutPSEjI+b48AAAAABcpnwat7du3Kzc3Vz179nS1hYeHq23btvrhhx/K7N+zZ0/Nnj1bgYGBrjazufgScnJyJBUHrZYtW3q55wAAAABwZn6+fPP09HRJUsOGDd3a69ev79pWWmxsrGJjY93aXn/9dQUGBio5OVmS9Ouvv8put+u2227T9u3bFRMTo1GjRumaa645p74ahqG8vLxzOocn5Ofnu32FZzG+3sX4ehfj612Mr3cxvt7F+HoX4+tdNW18DcOQyWQ6634+DVolg2W1Wt3aAwIClJ2dfdbj33nnHb377rt69NFHFRUVJam4WIbT6dT48ePVoEEDrVy5UpMmTVJRUZGuu+66ave1qKhI27Ztq/bxnrZ3715fd+GCxvh6F+PrXYyvdzG+3sX4ehfj612Mr3fVpPE9Pb+Ux6dBq+QWQJvN5nY7YGFhoYKCgs54nGEYeumll/TKK6/on//8p2666SbXts8++0wOh8P1TFZCQoIOHDigefPmnVPQ8vf3V6tWrap9vKfk5+dr7969atasWYVjhOphfL2L8fUuxte7GF/vYny9i/H1LsbXu2ra+O7cubNS+/k0aJXcMpiRkaEmTZq42jMyMtS6detyjykqKtKkSZP02WefadKkSbrlllvctpcObCXi4+O1ZMmSc+qryWRScHDwOZ3Dk4KCgmpUfy40jK93Mb7exfh6F+PrXYyvdzG+3sX4eldNGd/K3DYo+bgYRkJCgkJDQ7Vu3TpXW05OjrZu3ep65up0Dz30kL766is9//zzZUJWTk6OunXrpoULF7q1b968WZdcconH+w8AAAAA5fHpjJbVatXIkSP13HPPKSoqSo0bN9a0adPUoEEDDRkyRA6HQ0ePHlVYWJgCAwO1cOFCffHFF3rooYfUrVs3HT582HWusLAwhYeHq0ePHpo+fbqio6PVtGlTLV26VEuWLNFrr73mwysFAAAAcDHxadCSpPHjx8tut+vRRx9VQUGBkpOTNW/ePPn7+2vfvn0aOHCgJk+erOHDh+uzzz6TJE2dOlVTp051O0/JPs8884xmzpypf//738rMzFTLli01Y8YM9e7d2xeXBwAAAOAi5POgZbFYNGHCBE2YMKHMttjYWO3YscP1ev78+Wc9X2hoqCZNmqRJkyZ5tJ8AAAAAUFk+fUYLAAAAAC5EBC0AAAAA8DCCFgAAAAB4GEELAAAAADyMoAUAAAAAHkbQAgAAAAAPI2gBAAAAgIcRtAAAAADAwwhaAAAAAOBhBC0AAAAA8DCCFgAAAAB4GEELAAAAADyMoAUAAAAAHkbQAgAAAAAPI2gBAAAAgIcRtAAAAADAwwhaAAAAAOBhBC0AAAAA8DCCFgAAAAB4GEELAAAAADyMoAUAAAAAHkbQAgAAAAAPI2gBAAAAgIcRtAAAAADAwwhaAAAAAOBhBC0AAAAA8DCCFgAAAAB4GEELAAAAADyMoAUAAAAAHkbQAgAAAAAPI2gBAAAAgIcRtAAAAADAwwhaAAAAAOBhBC0AAAAA8DCCFgAAAAB4GEELAAAAADyMoAUAAAAAHkbQAgAAAAAPI2gBAAAAgIcRtAAAAADAwwhaAAAAAOBhBC0AAAAA8DCCFgAAAAB4GEELAAAAADyMoAUAAAAAHkbQAgAAAAAPI2gBAAAAgIcRtAAAAADAwwhaAAAAAOBhBC0AAAAA8DCCFgAAAAB4GEELAAAAADyMoAUAAAAAHkbQAgAAAAAPI2gBAAAAgIcRtAAAAADAwwhaAAAAAOBhBC0AAAAA8DCCFgAAAAB4mM+DltPp1IwZM9S7d2917txZY8eOVVpa2hn3/+2333T77bere/fu6tmzp8aPH68DBw647fPee+9p4MCB6tixo2688UZt3brV25cBAAAAAC4+D1qzZ8/W+++/ryeffFIffPCBnE6nxowZI5vNVmbfY8eO6dZbb1VgYKDeeecdzZkzR0ePHtWYMWNUWFgoSVq0aJGmTp2qe+65RwsXLlRsbKxuvfVWHT169HxfGgAAAICLlE+Dls1m0/z58zV+/Hj169dPCQkJmj59utLT07V06dIy+y9btkx5eXmaOnWq4uPj1b59e02bNk27du3Sxo0bJUmvvvqqRo4cqauvvlqtWrXSM888o6CgIC1YsOB8Xx4AAACAi5RPg9b27duVm5urnj17utrCw8PVtm1b/fDDD2X279mzp2bPnq3AwEBXm9lcfAk5OTnKzMzU3r173c7n5+enpKSkcs8HAAAAAN7g58s3T09PlyQ1bNjQrb1+/fqubaXFxsYqNjbWre31119XYGCgkpOTdfDgwTOeb/v27efUV8MwlJeXd07n8IT8/Hy3r/Asxte7GF/vYny9i/H1LsbXuxhf72J8vaumja9hGDKZTGfdz6dBq2SwrFarW3tAQICys7PPevw777yjd999V48++qiioqK0e/fuM56v5Bmu6ioqKtK2bdvO6RyetHfvXl934YLG+HoX4+tdjK93Mb7exfh6F+PrXYyvd9Wk8T09b5THp0Gr5BZAm83mdjtgYWGhgoKCznicYRh66aWX9Morr+if//ynbrrppjLnK+1s56sMf39/tWrV6pzO4Qn5+fnau3evmjVrds7XhLIYX+9ifL2L8fUuxte7GF/vYny9i/H1rpo2vjt37qzUfj4NWiW3+GVkZKhJkyau9oyMDLVu3brcY4qKijRp0iR99tlnmjRpkm655ZZyz9eyZUu388XExJxTX00mk4KDg8/pHJ4UFBRUo/pzoWF8vYvx9S7G17sYX+9ifL2L8fUuxte7asr4Vua2QcnHxTASEhIUGhqqdevWudpycnK0detWJScnl3vMQw89pK+++krPP/+8W8iSpOjoaDVv3tztfHa7XampqWc8HwAAAAB4mk9ntKxWq0aOHKnnnntOUVFRaty4saZNm6YGDRpoyJAhcjgcOnr0qMLCwhQYGKiFCxfqiy++0EMPPaRu3brp8OHDrnOV7DN69Gg9/fTTatq0qTp06KDXX39dBQUFuu6663x4pQAAAAAuJtUOWk6nU7/++qsyMjLUtWtX2e12RUZGVvk848ePl91u16OPPqqCggIlJydr3rx58vf31759+zRw4EBNnjxZw4cP12effSZJmjp1qqZOnep2npJ9rr/+eh0/flwvvviisrKy1L59e73xxhuKioqq7qUCAAAAQJVUK2h98sknev7555WRkSGz2awFCxZo5syZ8vf31/PPP1+pKhwlLBaLJkyYoAkTJpTZFhsbqx07drhez58/v1LnvO2223TbbbdVug8AAAAA4ElVfkbriy++0MMPP6wePXpo+vTpcjqdkqTBgwdr5cqVmj17tsc7CQAAAAC1SZVntF599VXdcMMNevzxx+VwOFztI0aM0NGjR/Xhhx/q3nvv9WQfAQAAAKBWqfKM1p49ezR48OByt3Xq1EmHDh06504BAAAAQG1W5aAVHR2tXbt2lbtt165dio6OPudOAQAAAEBtVuWgdeWVV2rGjBn66quvZLPZJBUv2vXLL79o9uzZuuKKKzzeSQAAAACoTar8jNa9996rX3/9Vffee6/M5uKcdtNNNykvL09JSUm65557PN5JAAAAAKhNqhy0rFar5s6dq++//15r165VVlaWwsLC1K1bN/Xt21cmk8kb/QQAAACAWqPKQeu2227TmDFj1KtXL/Xq1csbfQIAAACAWq3Kz2ht3LiRWSsAAAAAqECVg1bv3r21ZMkSFRUVeaM/AAAAAFDrVfnWwYCAAC1ZskRffvmlWrZsqeDgYLftJpNJb731lsc6CAAAAAC1TZWDVnp6urp06eJ6bRiG2/bTXwMAAADAxabKQeudd97xRj8AAAAA4IJR5aBVYteuXVq/fr2OHz+uOnXqKDExUS1atPBk3wAAAACgVqpy0DIMQ//+97+1YMECt9sETSaTrr32Wj3zzDMe7SAAAAAA1DZVDlpz587Vxx9/rPHjx+vqq69WvXr1lJGRoU8++USvvPKK4uPjdcstt3ihqwAAAABQO1Q5aH300UcaM2aM/vnPf7raYmNjdeedd6qoqEgffvghQQsAAADARa3K62gdPHhQPXr0KHdb9+7dtW/fvnPuFAAAAADUZlUOWo0bN9aOHTvK3bZ9+3ZFRUWdc6cAAAAAoDarctAaOnSoZs6cqS+//NJVDMMwDH3xxReaNWuWrrzySo93EgAAAABqkyo/ozV27Filpqbqvvvu04QJE1SnTh0dO3ZMdrtd3bt31z333OONfgIAAABArVHloGW1WvXGG2/o22+/1fr165Wdna2IiAglJyerb9++3ugjAAAAANQq1Vqw+I8//lBGRoYefPBBScWLF3/88ce65JJL1KhRI492EAAAAABqmyo/o/Xjjz9q2LBhmjdvnqstJydHS5Ys0bXXXqtff/3Vox0EAAAAgNqmykHr+eefV9euXbVo0SJXW5cuXfTNN9+oY8eOmjp1qkc7CAAAAAC1TZWD1pYtW3TbbbcpMDDQrT0gIECjRo3STz/95LHOAQAAAEBtVOWgFRgYqEOHDpW77dixYzKbq3xKAAAAALigVDkV9e7dWzNmzCizaPGuXbs0c+ZM9enTx2OdAwAAAIDaqMpVBx988EHdcMMNuvbaaxUbG6uoqCgdO3ZMaWlpio2N1UMPPeSNfgIAAABArVHloFWvXj19+umnWrhwoTZu3KisrCzFxMRo5MiRGj58uEJCQrzRTwAAAACoNaq1jlZwcLBGjhypkSNHero/AAAAAFDrVSlo/fLLLwoPD1eTJk0kFRe/mDNnjnbt2qXWrVvrlltuUVRUlFc6CgAAAAC1RaWKYRQVFemuu+7SX/7yF3311VeSpMLCQv3973/XG2+8oUOHDumjjz7SX/7yFx09etSrHQYAAACAmq5SQevdd9/VqlWrNGnSJF133XWSpPfee0+7d+/W+PHjtXjxYn399dcKDQ3Vq6++6tUOAwAAAEBNV6mg9emnn2r06NG6+eabXbcGfvnllwoKCtLo0aMlSSEhIbrpppuUkpLivd4CAAAAQC1QqaC1d+9eJSUluV6fOHFCW7ZsUZcuXRQQEOBqb9as2RkXMwYAAACAi0WlgpZhGDKbT+26adMmOZ1Ode/e3W2/48ePKygoyLM9BAAAAIBaplJBq3nz5vrll19cr5cvXy6TyaTLLrvMbb+VK1eqWbNmHu0gAAAAANQ2lSrvfvXVV+vll19WnTp15HQ6tXDhQrVp00bt2rVz7fPll1/q448/1n333ee1zgIAAABAbVCpoHXTTTdpx44d+te//iXDMNSwYUNNnTrVtf1Pf/qT6zmum266yWudBQAAAIDaoFJBy2KxaPLkyRo/fryOHDmihIQE+fv7u7b369dPLVq00LBhw9zaAQAAAOBiVKmgVaJhw4Zq2LBhmfaHH37YYx0CAAAAgNquUsUwAAAAAACVR9ACAAAAAA8jaAEAAACAhxG0AAAAAMDDziloHT9+XLt27ZLNZpPD4fBUnwAAAACgVqtW0Fq3bp3+8pe/qFu3bvrzn/+s3377TQ888ICmTJni6f4BAAAAQK1T5aC1Zs0a3XbbbQoMDNSDDz4owzAkSQkJCXr77bf1xhtveLyTAAAAAFCbVDlovfjiixo4cKDeeecdjRo1yhW07rjjDo0ZM0YLFizweCcBAAAAoDapctDatm2bRowYIUkymUxu23r16qX9+/d7pmcAAAAAUEtVOWiFhYXp8OHD5W47ePCgwsLCzrlTAAAAAFCbVTloDRw4UNOnT9fmzZtdbSaTSenp6Xr11VfVr18/T/YPAAAAAGodv6oe8MADD+inn37S9ddfr7p160qS7r//fqWnp6thw4a6//77Pd5JAAAAAKhNqhy0IiIitGDBAi1evFhr165VVlaWwsLCdNNNN2n48OEKCgryRj8BAAAAoNaoctCSJKvVquuvv17XX3+9p/sDAAAAALVelYPWrFmzzrjNbDYrODhYTZs2Va9evWS1Ws+pcwAAAABQG1U5aC1ZskTp6emy2Wzy8/NTZGSksrKyZLfbZTKZXOtqtWrVSm+//baioqI83mkAAAAAqMmqXHXwnnvukdVq1QsvvKCff/5Z3333nTZv3qxZs2apTp06evHFF/Xpp5/KZDLphRde8EafAQAAAKBGq3LQmjlzpu69915deeWVMpuLDzeZTBo0aJDGjx+vl156SZdcconuuOMOrVy58qznczqdmjFjhnr37q3OnTtr7NixSktLq9RxY8aM0cyZM8tsGzJkiFq3bu32Z+LEiVW9VAAAAAColirfOnjw4EE1bdq03G2NGzfW/v37JUkxMTHKzs4+6/lmz56t999/X1OmTFGDBg00bdo0jRkzRp9++ukZn/Gy2Wx67LHHtGrVKnXq1MltW15entLS0vTaa6+pXbt2rvbAwMDKXiIAAAAAnJMqz2i1atVKCxYsKHfbRx99pObNm0uS9u7dq/r161d4LpvNpvnz52v8+PHq16+fEhISNH36dKWnp2vp0qXlHrNx40YNHz5cqampCg8PL7N9586dcjqd6tKli+rVq+f6ExYWVsUrBQAAAIDqqfKM1t13360777xT1157rYYMGaLo6GgdOXJEy5Yt044dOzRjxgxt3bpV06ZN04gRIyo81/bt25Wbm6uePXu62sLDw9W2bVv98MMPGjp0aJljVq5cqd69e+vOO+/U1VdfXWb7jh07VLduXUVERFT10gAAAADAI6octPr166d58+Zp5syZmjVrlhwOh/z8/JSYmKi33npLSUlJSklJ0VVXXaV77723wnOlp6dLkho2bOjWXr9+fde20913330VnnPHjh0KDg7W+PHjtXHjRtWpU0cjRozQzTff7HqmDAAAAAC8qVoLFvfo0UM9evSQzWZTdna2oqOj3ULMgAEDNGDAgLOeJz8/X5LKPIsVEBBQqee7yvPbb78pJydHl19+ue68805t2LBB06ZNU3Z2tu65555qnVOSDMNQXl5etY/3lJIxK/kKz2J8vYvx9S7G17sYX+9ifL2L8fUuxte7atr4GoYhk8l01v2qFbQKCwu1Y8cO2Ww2GYahvXv3yul0Kj8/X6mpqXrwwQcrdZ6SAhU2m82tWEVhYaGCgoKq0zXNmTNHhYWFrmeyWrdurRMnTuiVV17R3XffXe1ZraKiIm3btq1ax3rD3r17fd2FCxrj612Mr3cxvt7F+HoX4+tdjK93Mb7eVZPG90xF+0qrctBat26d7rnnnjPOOIWEhFQ6aJXcMpiRkaEmTZq42jMyMtS6deuqdk1S8UWffuHx8fHKy8tTdna26tSpU63z+vv7q1WrVtU61pPy8/O1d+9eNWvWrNphFGfG+HoX4+tdjK93Mb7exfh6F+PrXYyvd9W08d25c2el9qty0Jo+fbrq1KmjJ598UkuWLJHZbNbw4cP17bff6v/9v/+nOXPmVPpcCQkJCg0N1bp161xBKycnR1u3btXIkSOr2jUZhqHBgwdr2LBhuuuuu1ztmzdvVr169aodsqTitcKCg4OrfbynBQUF1aj+XGgYX+9ifL2L8fUuxte7GF/vYny9i/H1rpoyvpW5bVCqRtDasWOHnnrqKQ0ePFjHjx/XBx98oL59+6pv374qKirSK6+8otdff71S57JarRo5cqSee+45RUVFqXHjxpo2bZoaNGigIUOGyOFw6OjRowoLC6vUOlgmk0mDBw/WvHnz1KJFC7Vv315r1qzR3Llz9cgjj1T1UgEAAACgWqoctJxOp2JiYiRJTZs21W+//ebadvnll+vhhx+u0vnGjx8vu92uRx99VAUFBUpOTta8efPk7++vffv2aeDAgZo8ebKGDx9eqfM98MADCg0N1QsvvKD09HTFxsbqkUce0fXXX1+lfgEAAABAdVU5aDVp0kQ7duxQUlKSmjdvrvz8fO3evVstWrSQ3W5Xbm5ulc5nsVg0YcIETZgwocy22NhY7dix44zHpqSklGnz8/PTnXfeqTvvvLNK/QAAAAAAT6lyCb4///nPeu655/Tuu+8qKipK7du315NPPqmUlBS9/PLLNaJgBAAAAAD4UpWD1pgxY3TDDTfop59+kiT9+9//1rZt2zRu3Djt3r1bDz30kMc7CQAAAAC1SZVvHdyzZ4/bc1gdOnTQsmXLXLcPhoaGerSDAAAAAFDbVHlG68Ybb9TixYvd2kJDQ9WxY0dCFgAAAACoGkHL39//nNajAgAAAIALXZVvHbznnns0depUHT9+XAkJCeUuGtaoUSOPdA4AAAAAaqMqB63HH39cDoej3HLsJbZt23ZOnQIAAACA2qzKQeupp57yRj8AAAAA4IJR5aB17bXXeqMfAAAAAHDBqHLQkiSbzaaPPvpIq1ev1uHDh/XMM89o/fr1ateunTp27OjpPgIAAABArVLlqoNHjx7ViBEj9PTTT+v333/Xzz//rIKCAq1YsUI33XSTNm3a5I1+AgAAAECtUeWgNXXqVOXm5uqLL77QokWLZBiGJGnGjBnq0KGDZsyY4fFOAgAAAEBtUuWgtXz5ct1zzz1q2rSpTCaTqz0gIECjR4/Wli1bPNpBAAAAAKhtqhy0CgsLFRkZWe42i8WioqKic+0TAAAAANRqVQ5aHTp00Pvvv1/utk8//VTt27c/504BAAAAQG1W5aqD99xzj2655RZdc8016tu3r0wmkz777DPNnDlT3333nebOneuNfgIAAABArVHlGa2kpCS98cYbCgoK0ty5c2UYht58800dPnxYr732mnr06OGNfgIAAABArVGtdbSSk5P1wQcfqKCgQNnZ2QoNDVVISIin+wYAAAAAtVKVZ7SGDRumN998U0eOHFFgYKBiYmIIWQAAAABQSpWDVqNGjfT888+rb9++uu222/Tpp5+qoKDAG30DAAAAgFqpykFr9uzZWr16tZ544gkZhqGJEyfq0ksv1cMPP6zVq1e7FjAGAAAAgItVtZ7RCgsL03XXXafrrrtOmZmZ+uqrr/TVV19p7Nixqlu3rlauXOnpfgIAAABArVHlGa3TZWZm6siRI8rJyZHD4VBERIQn+gUAAAAAtVa1ZrTS0tL02Wef6YsvvtDOnTtVt25dDR06VM8++6wSEhI83UcAAAAAqFWqHLRGjBihrVu3KjAwUIMHD9bEiRPVs2dPmc3Fk2OGYchkMnm8owAAAABQW1Q5aEVGRmrKlCkaMmSIgoKCXO0ZGRn68MMP9fHHH2v58uUe7SQAAAAA1CZVDlrz5s1ze71q1Sp98MEHWrlypex2u2JjYz3WOQAAAACojar1jNbRo0f10Ucf6cMPP9T+/fsVGhqqa6+9Vtdcc42SkpI83UcAAAAAqFWqFLTWrl2r//73v1q2bJkcDocSExO1f/9+vfzyy+rWrZu3+ggAAAAAtUqlgtabb76p//73v9qzZ4+aNm2qcePG6dprr1VwcLC6detG8QsAAAAAKKVSQWvKlClq3bq13n77bbeZq+PHj3utYwAAAABQW1VqweKrrrpKv//+u/7xj39o3Lhx+vrrr2W3273dNwAAAAColSo1o/X888/rxIkT+vTTT7Vw4ULdfffdqlOnjgYNGiSTycStgwAAAABQSqVmtCQpNDRUf/vb37RgwQJ9+umnuuaaa5SSkiLDMPR///d/eumll7Rz505v9hUAAAAAaoVKB63SLrnkEk2cOFErV67UzJkz1aJFC82ZM0d//vOfdfXVV3u6jwAAAABQq1RrHS3XwX5+Gjx4sAYPHqwjR45o0aJFWrRokaf6BgAAAAC1UrVmtMpTt25djR07Vl988YWnTgkAAAAAtZLHghYAAAAAoBhBCwAAAAA8jKAFAAAAAB5G0AIAAAAADyNoAQAAAICHEbQAAAAAwMMIWgAAAADgYQQtAAAAAPAwghYAAAAAeBhBCwAAAAA8jKAFAAAAAB5G0AIAAAAADyNoAQAAAICHEbQAAAAAwMMIWgAAAADgYQQtAAAAAPAwghYAAAAAeBhBCwAAAAA8jKAFAAAAAB5G0AIAAAAADyNoAQBwFg6noS17jmrz3jxt2XNUDqfh6y4BAGo4P193AACAmmz1zwf0+uLNyswukCR9vPqooiO26PZhHXRpx0Y+7h0AoKZiRgsAgDNY/fMBTX7rB1fIKpGZXaDJb/2g1T8f8FHPAAA1nc+DltPp1IwZM9S7d2917txZY8eOVVpaWqWOGzNmjGbOnFlm25dffqkrr7xSHTt21LBhw7RmzRpvdB0AcAFzOA29vnhzhfvM+eQXbiMEAJTL57cOzp49W++//76mTJmiBg0aaNq0aRozZow+/fRTWa3Wco+x2Wx67LHHtGrVKnXq1Mlt29q1azVhwgQ99NBD6tWrlz766CPdfvvtWrx4sVq2bHk+LgkAcAHYujuzzEzW6Y5k5Wvcs9+oTnigAqwWBVotCvC3KNDqpwCrpfhP6df+J/exnnkfP4vPfwcKAPAAnwYtm82m+fPn68EHH1S/fv0kSdOnT1fv3r21dOlSDR06tMwxGzdu1GOPPaaCggKFh4eX2T5nzhwNGjRIN998syTp4Ycf1qZNm/TWW2/pP//5j1evBwBwYTh2vEBfr/+9UvseOJKrA0dyPfbefhaTAvwtCjgZvErCmyucnfx76bB2ap+zHxPgb5HJZPJYfwEA5fNp0Nq+fbtyc3PVs2dPV1t4eLjatm2rH374odygtXLlSvXu3Vt33nmnrr76ardtTqdTGzdu1MSJE93au3fvrqVLl3rnIgAAFwRbkUPrtqQrJTVNG3dkyFnJWwJvvrKNGtYNUaHNoQKbQ4U2hwptdhUWnXpdcPJ14WmvS+9f8nZ2hyG7w67cArvXrrWq4azkdeBprwMCyp+xszArBwC+DVrp6emSpIYNG7q1169f37XtdPfdd98Zz5eTk6O8vDw1aNCg0uerLMMwlJeXd07n8IT8/Hy3r/Asxte7GF/vYnyrzjAM7fgjS9/+eFBrfjmkvFLhpmXjcB3MzHNrO110RID+1L2xzOZzmyEyDEN2h3EqjLm+OlVY5JDN5lBBkUO2k+HMdrK93H1d+7i3F9mdrvcrCXzeYrGYFOhvkfVk8LL6m11BzPXHalGAv1nWk383y6kTOSe0//jvCgsJdN//5L4lbf5+ZmblqoifD97F+HpXTRtfwzAq9TPIp0GrZLBOfxYrICBA2dnZVT5fQUHBGc9XWFhYzV4WKyoq0rZt287pHJ60d+9eX3fhgsb4ehfj612M79llHrfr5z25+mlPnrJyTwWOiGCLOjYPVqfmwaob7q+taf76cFXmGc8zsGOoduzY7tW+WiVZTVKo9eSLkNP3MKky/5w7nYaKHIaK7MVfbfaSvztVZD/5umS73ZDN7nTb332fssfY7KdmAB0OQ7nVnpXLqtRe/n4m+VtMsvqZXH/39zPJ6md2/b34dck2c6l9TKft436Mv8UkyzmG55qKnw/exfh6V00a3zPVkijNp0ErMDBQUvGzWiV/l6TCwkIFBQVV+XwBAQGu85VW3fOV5u/vr1atWp3TOTwhPz9fe/fuVbNmzc75mlAW4+tdjK93Mb4VO5FfpDW/HNK3Px7Qr3+c+mVeoNWiHu1j1KdzQ7VpWsdtdqpNGym28SG9+cUOHc059Qu76IgAjfpTa3VvF3Ner6EmM4ziAGYrchbPvpWahSsscp42+1b81bVvkUO5+TZlZR+XxT9QdodK7VNyHqfbrFxJIMw7t9+jnpGfxVRmFs5qNbtm6gKsp822lW7zP20Wr5x9z/esHD8fvIvx9a6aNr47d+6s1H4+DVoltwxmZGSoSZMmrvaMjAy1bt26yueLjIxUcHCwMjIy3NozMjIUE3Nu/xiaTCYFBwef0zk8KSgoqEb150LD+HoX4+tdjO8pdodTG7dnKCU1Teu2pMvuKP6gbjZJnePrq39SnHq0b6BA65n/Oeyf3Fx9Eptp47b92rJ9j9olNFfXNo0v2BkPX8nLy9O2bdvUpk2bM37/Ohzut0wWnHy+raAkvBU6VFhkP/W8XHn7lPOcnM1WfFyBzSGj9LNy+Xbl5nvnWTmzSSeDl1+pZ+HcX596Ls6vVEXLkmfnyhZCKf2cXYDVr9zvUX4+eBfj6101ZXwr+0sSnwathIQEhYaGat26da6glZOTo61bt2rkyJFVPp/JZFLXrl21fv16/eUvf3G1r1u3TklJSR7rNwCg5jIMQzv3ZWn5hn1auXGfcnJP3eXQrGG4BiTFqW/XWEWFB1ZwFncWs0ntmkfJXHBIbZpHEbJ8xGIxK9hiVnCgv1fOXzIrV5UiJiXbK3tMSdh3GlJ+oUP5hd57Vs7fz+wKZ/5+ZhnOIkV8d0LBgf6ukBcYUDqclS18ElBeIRSelQMqxadBy2q1auTIkXruuecUFRWlxo0ba9q0aWrQoIGGDBkih8Oho0ePKiwszO3Wworceuutuv3229W2bVv16dNHH3/8sbZt26ann37ay1cDAPClw8fytWJjmpZvSFPaoROu9siwAPXrGqsBSXFq3ijChz1ETWcymWQ9eWtg2WfhPKP0rNypWTe7K5iVF85OD2+ljzk1U2d3bSuZlSt+ls6pE/lFrvdPP5blsWtxzcqVE8asp4czf0uZGTjX6zNUurT6W/ilBmo1ny9YPH78eNntdj366KMqKChQcnKy5s2bJ39/f+3bt08DBw7U5MmTNXz48Eqd77LLLtMzzzyj2bNna/r06WrVqpVeffVVFisGgAtQfqFdazYfUEpqmn7eecT1AdPqZ1aP9g3VPylOXeLrUW4cNcb5mJWz2Z0qKHQPZ9nHc/Xbrr2KadBIhsnPLZy5Al9h5QKd3VH8P9r5mJWz+pV+1s39dsnAgIqXIajomJJ9/CzMysF7fB60LBaLJkyYoAkTJpTZFhsbqx07dpzx2JSUlHLbhw0bpmHDhnmqiwCAGsThNLR552GlpKZp9eaDbmXK27eMVv/EOPXq2EghQd75IAvUZCaTyVWQo7S8PKuUn642bWLO+RkXu8NZJoidPht3xhm7s8zGlczilbDZnbLZnTquogp6VH1ms6lMOHPdHnna6zPNxgX4WyTDrgNHbAo9dEIR4YbbLZbnuvzDxc7hNLRlz1Ft2ZsnZ+BRdW0TVGtmOn0etAAAqIzf03O0PDVNKzbuU2Z2gau9Ud0QDUiKU7/EOMVE+f4haeBC52cxyy/I7LVfZhiGUelbJUsXOalsoCuwOeQ4uUK402kov9Cu/EIPFT1ZmlGmqXhWruJbJc8a6E4LgKX38bOYLthZudU/H9Drize7fuZ/vPqooiO26PZhHXRpx0Y+7t3ZEbQAADVW1vFCfbtpn5ZvSNPOfadKsocG+at3l8YakBSn1k3qXLAfMoCLkclkUqDVr8JqoOeqZFau3OIlFc7GnSqCUrooSn6hXSdyC+SUWYVFTtmKTp+Vs+l4nneuxWw2lRvG3F6XV+Ak4EzHuFextPpoVm71zwc0+a0fyrRnZhdo8ls/aNKo5BoftghaAIAaxVbk0Pqt6UpJTdOG7RlynvzNs8VsUlKbGA1IilNy2xj5+1nOciYAKJ+nZ+VOX57A6TROriF3pnB2akmBU1Ury95CWXqf0q8LbA7Xz0an01BegV15BXZJ3llYzupvOS2cnZpxKy+cnQpufqVm8cqrdFm83e+052gdTkOvL95cYZ/mfPKLurdvWKNvIyRoAQB8zjAMbdt7VCmpafrux/3KLTh1G88lcZEakBSn3p0bKyI0wIe9BIDKMZtNCgzwU2CAn7xV67TI7ix7G2W5z8nZS83YVfzcXHFRlOKvbrNyJ197a1bOYja5hTGnYbjdIl6eI1n52ro7Ux1a1fVOpzyAoAUA8JmDR3K1YkOaUjakKT3z1L/gdSOD1D8xVv0T4xQXE+bDHgJAzeTvZ5a/n1mhXnpWrmRWrlJFTc7w7FzFx9h1clJOjmrOyh3NqTiM+RpBCwBwXp3IL9J3P+5XSmqatu096moPCrDo0o6NNCApTu1b1KVSFwD4UOlZOW8wDEN2h1HmtsoCm13b9x7VG59tPes5qrLwvC8QtAAAXmd3OLVxR4ZSUtO0fku6iuxOScULnna6pJ4GJMWpR/uGXvsHHQBQs5hMJvn7meTvZ1XoadtaN43SklW7K7x9sG5kkNq2iPZuJ88R/6IBALzCMAzt2p+t5alpWrlpn7JP2FzbmjYI04CkOPXtGqvoiCAf9hIAUNNYzCbdPqxDuVUHS4y9pn2NLoQhEbQAAB6WmZ2vFRv2KWVDmv5IP+5qjwwNUN+usRqQFKfmjcIpyQ4AOKNLOzbSpFHJbutoScUzWWOvaV/jS7tLBC0AgAfkF9q1ZvNBLU9N0087D8s4+YCzv59ZPdo31ICkOHWOr1emhC8AAGdyacdG6t6+oTZu268t2/eoXUJzdW3TuMbPZJUgaAEAqsXhNPTLziNK2ZCm1T8fUIHtVCngdi2i1T8xTr06NfJaRSwAwIXPYjapXfMomQsOqU3zqFoTsiSCFgCgiv5Iz9HyDfu0YkOajpS6naNhdIj6J8Wpf2KsGkSH+LCHAAD4HkELAHBW2ScK9e2m/UrZkKadaVmu9pAgf/Xp3Fj9E+OU0KwOz10BAHASQQsAUK4iu0Prtx7S8tQ0pW47JMfJlSUtZpOS2sSof1KcktvEyOpv8XFPAQCoeQhaAAAXwzC0fe8xpWxI06of9ys3v8i1rVVcpAYkxqlPl8aKCA3wYS8BAKj5CFoAAKVn5mr5hn1anpqmg5m5rva6EYHql1j83FWTBuE+7CEAALULQQsALlK5+UX67qcDWr4hTVt2Z7raA60WXdqxkQYkxal9y7q1qsITAAA1BUELAC4idodTm3ZkKCU1Teu2pKvI7pQkmUxSp0vqaUBSnHq2b6jAAP55AADgXPAvKQBc4AzD0O792UrZkKZvN+5X1olC17a4mDANTIpT366xqhsZ5MNeAgBwYSFoAcAFKjM7Xys37lNKapp+Tz/uao8Itapvl1j1T4pTy8YRlGQHAMALCFoAcAGx2Z1a9dNBff/zIf3022GdrMgufz+zurdroAFJcerSur78LGbfdhQAgAscQQsAajmn09Avu49o6dq9WrP5oGz2A65tbZtHaUBSnHp1aqzQIH8f9hIAgIsLQQsAaqm0Q8e1fEOalm/YpyNZ+a72mDpBGpjcRP0S49SwbogPewgAwMWLoAUAtUj2iUKt+nG/UlLT9Ftalqs9JMhfPdvXV5NIm4b07qSQEAIWAAC+RNACgBquyO7QD1sPKSU1TanbDslx8sErs9mkpIQYDUiKU3LbGNmLCrVt2zaKWwAAUAMQtACgBjIMQzt+P6aU1DSt+nG/TuQXuba1io1Q/6Q49ekcq8iwAFe7vai8MwEAAF8gaAFADXLoaJ6Wb0hTSmqaDh7JdbVHRwSqX9fikuxNG4T7sIcAAKAyCFoA4GO5+UX6/ucDSklN05bdma72AKtFl3ZoqAFJcerQqp4sZm4JBACgtiBoAYAPOBxObfr1sJanpmntLwdlszslSSaT1KlVPfVPilPPDg0VFMCPaQAAaiP+BQeA82jPgWylpKZpxcZ9yjpe6GqPiwnVgKQm6tc1VnUjg3zYQwAA4AkELQDwsszsfK3cuF/LN6Rp78EcV3t4iFV9u8ZqQGKcWsZGUC0QAIALCEELALygwGbX2l/StTw1TT/+mqGTFdnlZzGre/sGGpAYp64J9eVnMfu2owAAwCsIWgDgIU6noS27M5WSmqbvf96v/EKHa1ubZlEakBSnyzo1Umiw1Ye9BAAA5wNBCwDO0b6M41q+YZ+Wb0jT4WP5rvaYqGANSIpTv8RYNaob6sMeAgCA842gBQDVkJNr06pN+7R8wz7t+OOYqz0k0E+XdW6s/olxats8iueuAAC4SBG0AKCSiuwOpW47pJTUNKVuOyS7o/jBK7PZpK6t62tAUpy6tWugAH+Lj3sKAAB8jaAFABUwDEO//nFMKalpWvXjfh3PK3JtaxkboQGJcerdpbHqhAX6sJcAAKCmIWgBQDkyjuZp+cY0LU9N0/7Dua72qPBA9U+MVf/EODVtGO7DHgIAgJqMoAUAJ+UVFOn7nw4oZUOaftmV6WoPsFrUs0NDDUiMU8dL6sli5rkrAABQMYIWgIuaw+HUj78dVkpqmtZuPiib3SlJMpmkjq3qqn9inHp2aKjgQH8f9xQAANQmBC0AF6U9B7KVkpqmlRv36djxQld7bP3Q4pLsXeNUr06QD3sIAABqM4IWgIvGsZwCrdy0TympadpzIMfVHhZsVd+ujTUgKU6tYiMpyQ4AAM4ZQQvABa3AZte6X9K1fEOaNu3IkLO4Irv8LGZ1axejAYlx6poQI38/s287CgAALigELQAXHKfT0JY9mVqemqbvfjqg/EK7a1tC0zoakBSnyzo3Vliw1Ye9BAAAFzKCFoALxv7DJ7Q8NU3LN6Qp41i+q71+VLAGJMapf2KsGtUL9WEPAQDAxYKgBaBWO55n06of9yslNU07fj/mag8O9NNlnYqfu2rTLEpmSrIDAIDziKAFoNYpsjuVuu2Qlm9I0w9b02V3FD94ZTab1LV1fQ1IjFO39g0U4G/xcU8BAMDFiqAFoFYwDEO/pWUpJTVN327ar+N5Nte2Fo0i1D8pTn27NFad8EAf9hIAAKAYQQtAjZZxLE8rNhSXZN9/+ISrPSo8QH27Fj931bxRhA97CAAAUBZBC0CNk1dQpNU/H9TyDWn6eecRV7vV36JLOzRU/6Q4dbqkniw8dwUAAGooghaAGsHhNPTTr4e1fEOaVm8+KFuRw7WtY6u66p8Yp0s7NlRwoL8PewkAAFA5BC0APrX3YI5SUtO0cmOajuYUutob1wvVgKQ49esaq/pRwT7sIQAAQNURtACcd1nHC7X0h4Nanpqm3QeyXe1hwVb17dJY/ZPidElcpEwmbg0EAAC1E0ELwHlRWOTQ6s3p+uK7I9qVvl9OZ3FJdj+LScltG2hAUpwSE2Lk72f2cU8BAADOHUELgNc4nYa27slUSmqavv/5gPIK7K5trZvW0YCkOF3WqbHCQ6w+7CUAAIDnEbQAeNyBwyeUsiFNyzfsU8bRPFd7vchAtWnsr2sHdVCrJvV82EMAAADvImgB8IjjeTZ99+N+paSmafvvx1ztQQF+uqxTI/VPilPzmCDt2LFdjeqG+LCnAAAA3kfQAlBtRXanNm4/pJQNaVq/5ZDsDqckyWySurSurwFJcerWroECrcU/avLy8io6HQAAwAWDoAWgSgzD0G9pWVqemqZvf9yvnFyba1vzRuEakBSnPl1iFRUe6MNeAgAA+JbPg5bT6dSsWbO0YMECHT9+XMnJyXrssccUFxdX7v7Hjh3TU089pW+//VYmk0lXXXWVHnroIQUFBbn2GTJkiH7//Xe346699lpNmTLFq9cCXMgOH8vXio1pSklN076ME672OmEB6ts1VgOS4tS8UYQPewgAAFBz+DxozZ49W++//76mTJmiBg0aaNq0aRozZow+/fRTWa1lK5GNHz9e+fn5evPNN5WTk6NHHnlEeXl5evbZZyUV35qUlpam1157Te3atXMdFxjIb9eBqsorKNKazQeVkpqmzbuOyCiuyC6rv0U92zfUgKQ4dbqkriwWSrIDAACU5tOgZbPZNH/+fD344IPq16+fJGn69Onq3bu3li5dqqFDh7rtv2nTJq1fv15ffPGFWrZsKUn6z3/+ozFjxuj+++9XTEyMdu7cKafTqS5duigigt+uA1XlcBr66bfDWr4hTWs2H1ShzeHa1qFlXQ1IitWlHRspONDfh70EAACo2XwatLZv367c3Fz17NnT1RYeHq62bdvqhx9+KBO0UlNTVa9ePVfIkqRu3brJZDJpw4YNuvLKK7Vjxw7VrVuXkAVU0e8Hc5SSmqYVG/fpaE6Bq71xvRD1T4pT/65xqh8V7MMeAgAA1B4+DVrp6emSpIYNG7q1169f37WttEOHDpXZ12q1KjIyUgcPHpQk7dixQ8HBwRo/frw2btyoOnXqaMSIEbr55ptlNlf/9ibDMGpExbT8/Hy3r/Csi218s04U6vuf0/Xtjwe19+BxV3tokL8u7RCjPp0bqVVsuEwmk6Rzrxp4sY3v+cb4ehfj612Mr3cxvt7F+HpXTRtfwzBcn40q4tOgVTJYpz+LFRAQoOzs7HL3L++5rYCAABUWFkqSfvvtN+Xk5Ojyyy/XnXfeqQ0bNmjatGnKzs7WPffcU+2+FhUVadu2bdU+3tP27t3r6y5c0C7k8S1yGNqxL18/7cnTzoMFrueuzGYpvlGgOjUP0SWNAuVnkewnDmj79gMe78OFPL41AePrXYyvdzG+3sX4ehfj6101aXzLyySn82nQKilQYbPZ3IpVFBYWulURLL2/zWYr015YWKjg4OJbmubMmaPCwkKFhYVJklq3bq0TJ07olVde0d13313tWS1/f3+1atWqWsd6Un5+vvbu3atmzZqVO0Y4Nxfq+BqGoR1/ZOnbHw9qzS+HlFdgd21rFRuhPp0b6tIOMQoLPvsPjXNxoY5vTcH4ehfj612Mr3cxvt7F+HpXTRvfnTt3Vmo/nwatktsAMzIy1KRJE1d7RkaGWrduXWb/Bg0aaNmyZW5tNptNWVlZql+/vqTidHl6woyPj1deXp6ys7NVp06davXVZDK5wlxNEBQUVKP6c6G5UMb3wJETWp66T8s3pOnQ0VO3/dWrE6T+iXHqnxir2Pph571fF8r41lSMr3cxvt7F+HoX4+tdjK931ZTxrcxtg5KPg1ZCQoJCQ0O1bt06V9DKycnR1q1bNXLkyDL7Jycn67nnntPvv/+upk2bSpLWr18vSUpMTJRhGBo8eLCGDRumu+66y3Xc5s2bVa9evWqHLKA2OZFn06qfDmh5apq27T3qag8KsKhXx8YakBSndi2iZTZX7ocEAAAAqs6nQctqtWrkyJF67rnnFBUVpcaNG2vatGlq0KCBhgwZIofDoaNHjyosLEyBgYHq1KmTunbtqvvuu0+PP/648vLy9Nhjj2nYsGGKiYmRJA0ePFjz5s1TixYt1L59e61Zs0Zz587VI4884stLBbzK7nBq4/YMpaSmad2WdNkdTkmS2SR1bl1fAxLj1L19AwVafb50HgAAwEXB55+6xo8fL7vdrkcffVQFBQVKTk7WvHnz5O/vr3379mngwIGaPHmyhg8fLpPJpFmzZumJJ57QqFGjFBAQoCuuuEKTJk1yne+BBx5QaGioXnjhBaWnpys2NlaPPPKIrr/+eh9eJeB5hmFo175spWxI08qN+5STe+r5xWYNwzUgKU59u8YqKpzFugEAAM43nwcti8WiCRMmaMKECWW2xcbGaseOHW5t0dHRmjFjxhnP5+fnpzvvvFN33nmnx/sK1ARHsvK1YuM+paSmKe3QqZLskWEB6tc1VgOS4tS8EevIAQAA+JLPgxaAs8svtGvN5gNKSU3TzzuPuEqyW/3M6tG+ofonxalLfD1ZLNVfKw4AAACeQ9ACaiiH09DmnYeVkpqm1ZsPqtDmcG1r3zJa/RPj1KtjI4UE+fuwlwAAACgPQQuoYX5Pz9Hy1DSt2LhPmdkFrvZGdUM0IClO/RLjFBPl+9KmAAAAODOCFlADZB0v1Lebite72rkv29UeGuSv3l2KS7K3blKn0us2AAAAwLcIWoCP2IocWr81XSmpadqwPUNOZ/GDVxazSUltYjQgKU7JbWPk72fxcU8BAABQVQQt4DwyDEPb9h5VSmqavvtxv3IL7K5t8U0iNSAxTpd1bqyI0AAf9hIAAADniqAFnAfpmblanpqm5Rv26WBmrqu9bmSQ+ifGqn9inOJiwnzYQwAAAHgSQQvwkhP5Rfr+p/1KSU3T1j1HXe1BARZd2rGRBiTFqX2LujKbee4KAADgQkPQAjzI7nBq444MpaSmaf2WdBXZnZIks0nqdEk9DUiKU4/2DRUYwP96AAAAFzI+7QHnyDAM7dqfreWpaVq5aZ+yT9hc25o2CNOApDj17Rqr6IggH/YSAAAA5xNBC6imzOx8rdiwTykb0vRH+nFXe2RogPp2jdWApDg1bxROSXYAAICLEEELqIL8QrvWbD6o5alp+mnnYRnFFdnl72dWj/YNNSApTl3i68liMfu2owAAAPApghZwFg6noV92HlHKhjSt/vmACmwO17Z2LaLVPzFOvTo1UmiQvw97CQAAgJqEoAWcQdqh40pJTdOKDWk6kl3gam9YN0QDkuLUr2usGkSH+LCHAAAAqKkIWkApObk2rdtxQm+vXKfd+3Nc7SFB/urTubEGJMWpddM6PHcFAACAChG0cNErsju0fushLU9NU+q2Q3I4ix+8sphNSmoTo/5JcerWNkb+fhYf9xQAAAC1BUELFyXDMLR97zGlbEjTqh/3Kze/yLWtUZS/hvRsoUHdmisiNMCHvQQAAEBtRdDCRSU9M1fLN+zT8tQ0HczMdbXXjQhUv8Q49WxXV8cz09SmTRMFBxOyAAAAUD0ELVzwcvOL9N1PB7R8Q5q27M50tQdaLbq0YyMNSIpT+5Z1ZTGblJeXp22ZFZwMAAAAqASCFi5IDodTm349rJTUNK395aCK7E5JkskkdbqkngYkxaln+4YKDOB/AQAAAHgenzJxwTAMQ7v3Z2v5hn1auXGfsk4UurY1aRCmAYlx6pcYq+iIIB/2EgAAABcDghZqvczsfK3cuE8pqWn6Pf24qz0i1Kq+XWM1IDFOLRpHUJIdAAAA5w1BC7VSQaFda385qJTUNP3022GdrMgufz+zurdroAFJcerSur78LGbfdhQAAAAXJYIWag2n09Avu48oJTVNq38+oPxCh2tb2+ZRGpAUp16dGis0yN+HvQQAAAAIWqgF0g4d1/INaVq+YZ+OZOW72htEB5987ipODeuG+LCHAAAAgDuCFmqk7BOFWvXjfqWkpum3tCxXe0iQv3p3bqz+ibFq0yyK564AAABQIxG0UGMU2R36YeshpaSmKXXbITlOPnhlMZuUmBCjAUlxSm4bI6u/xcc9BQAAACpG0IJPGYahHX8cU0pqmlZt2q8T+UWuba1iI9Q/KU59OscqMizAh70EAAAAqoagBZ84dDSv+Lmr1DQdOJLrao+OCFS/rrHqnxSnpg3CfdhDAAAAoPoIWjhvcvOL9P3PB5SSmqYtuzNd7YFWiy7t2EgDEuPUvlVdWcw8dwUAAIDajaAFr3I4nNr062EtT03T2l8OymZ3SpJMJqlTq3rqnxSnnh0aKiiAb0UAAABcOPh0C6/YcyBbKalpWrFxn7KOF7ra42LCNCApTv26xqpuZJAPewgAAAB4D0ELHpOZna+VG/dr+YY07T2Y42oPD7Gqb9dYDUiMU8vYCEqyAwAA4IJH0MI5KbDZtfaXdC1PTdOPv2boZEV2+VnM6t6+gQYkxqlrQn35Wcy+7SgAAABwHhG0UGVOp6EtuzOVkpqm73/er/xCh2tbm2ZRGpAUp8s6NVJosNWHvQQAAAB8h6CFStuXcVzLN+zT8g1pOnws39UeExVc/NxVYqwa1Q31YQ8BAACAmoGghQrl5Nq0atM+Ld+wTzv+OOZqDwn002WdG6t/YpzaNo/iuSsAAACgFIIWyiiyO5S67ZBSUtOUuu2Q7I7iB6/MZpMSE+prQFKcurVtIKu/xcc9BQAAAGomghYkSYZh6Nc/jiklNU2rftyv43lFrm0tYyM0IDFOfbrEKjIswIe9BAAAAGoHgtZFLuNonpZvTNPy1DTtP5zrao8KD1T/xFj1T4xT04bhPuwhAAAAUPsQtC5CeQVF+v6nA0rZkKZfdmW62gOsFvXs0FADEuPU8ZJ6sph57goAAACoDoLWRcLhcOrH3w4rJTVNazcflM3ulCSZTFLHVnXVPzFOPTs0VHCgv497CgAAANR+BK0L3J4D2UpJTdPKjft07Hihqz22fmhxSfaucapXJ8iHPQQAAAAuPAStWsThNLRlz1Ft2ZsnZ+BRdW0TVO7tfcdyCrRy0z6lpKZpz4EcV3t4iFV9ujTWgKQ4tYqNpCQ7AAAA4CUErVpi9c8H9PrizcrMLpAkfbz6qKIjtuj2YR10acdGKrDZte6XdC3fkKZNOzLkLK7ILj+LWd3axWhAYpy6JsTI38/sw6sAAAAALg4ErVpg9c8HNPmtH8q0Z2YXaPJbP6hjq7r6LS1L+YV217Y2zaLUPylOvTs1Umiw9Xx2FwAAALjoEbRqOIfT0OuLN1e4z887j0iS6kcFa0BinPonxqpRvdDz0T0AAAAA5SBo1XBbd2e6bhesyNhh7TW0VwuZKckOAAAA+BwP7NRwR3POHrIkKSIkgJAFAAAA1BAErRouKjzQo/sBAAAA8D6CVg3XtkW0oiMqDlF1I4PUtkX0eeoRAAAAgLMhaNVwFrNJtw/rUOE+Y69pX+56WgAAAAB8g6BVC1zasZEmjUouM7NVNzJIk0Yl69KOjXzUMwAAAADloepgLXFpx0bq3r6hNm7bry3b96hdQnN1bdOYmSwAAACgBiJo1SIWs0ntmkfJXHBIbZpHEbIAAACAGopbBwEAAADAwwhaAAAAAOBhBC0AAAAA8DCCFgAAAAB4mM+DltPp1IwZM9S7d2917txZY8eOVVpa2hn3P3bsmB544AElJyerW7dueuKJJ5Sfn++2z5dffqkrr7xSHTt21LBhw7RmzRpvXwYAAAAAuPg8aM2ePVvvv/++nnzySX3wwQdyOp0aM2aMbDZbufuPHz9ev//+u95880299NJLWrlypR5//HHX9rVr12rChAm64YYbtGjRIvXs2VO33367du3adZ6uCAAAAMDFzqdBy2azaf78+Ro/frz69eunhIQETZ8+Xenp6Vq6dGmZ/Tdt2qT169fr2WefVbt27dSzZ0/95z//0SeffKJDhw5JkubMmaNBgwbp5ptvVsuWLfXwww+rXbt2euutt8735QEAAAC4SPk0aG3fvl25ubnq2bOnqy08PFxt27bVDz/8UGb/1NRU1atXTy1btnS1devWTSaTSRs2bJDT6dTGjRvdzidJ3bt3L/d8AAAAAOANPl2wOD09XZLUsGFDt/b69eu7tpV26NChMvtarVZFRkbq4MGDysnJUV5enho0aFCp81WFYRjKy8s7p3N4QsnzaKc/lwbPYHy9i/H1LsbXuxhf72J8vYvx9S7G17tq2vgahiGTyXTW/XwatEoGy2q1urUHBAQoOzu73P1P37dk/8LCQhUUFJzxfIWFhefU16KiIm3btu2czuFJe/fu9XUXLmiMr3cxvt7F+HoX4+tdjK93Mb7exfh6V00a3/Iyyel8GrQCAwMlFT+rVfJ3SSosLFRQUFC5+5dXJKOwsFDBwcEKCAhwne/07eWdryr8/f3VqlWrczqHJ+Tn52vv3r1q1qzZOV8TymJ8vYvx9S7G17sYX+9ifL2L8fUuxte7atr47ty5s1L7+TRoldwGmJGRoSZNmrjaMzIy1Lp16zL7N2jQQMuWLXNrs9lsysrKUv369RUZGang4GBlZGS47ZORkaGYmJhz6qvJZFJwcPA5ncOTgoKCalR/LjSMr3cxvt7F+HoX4+tdjK93Mb7exfh6V00Z38rcNij5uBhGQkKCQkNDtW7dOldbTk6Otm7dquTk5DL7JycnKz09Xb///rurbf369ZKkxMREmUwmde3a1dVWYt26dUpKSvLSVQAAAACAO5NhGIYvOzB9+nR98MEHeuaZZ9S4cWNNmzZN+/bt02effSaz2ayjR48qLCxMgYGBMgxDN954owoLC/X4448rLy9P//d//6fu3btr8uTJkqTvvvtOt99+uyZMmKA+ffro448/1nvvvaeFCxe6VSusio0bN8owjErdi+lthmGoqKhI/v7+lU7TqDzG17sYX+9ifL2L8fUuxte7GF/vYny9q6aNr81mc03wVMTnQcvhcOiFF17QwoULVVBQoOTkZD322GOKjY3Vvn37NHDgQE2ePFnDhw+XJGVmZuqJJ57QqlWrFBAQoCuuuEKTJk1yPZ8lSYsXL9bs2bOVnp6uVq1aacKECWVKvlfFpk2bZBiG/P39z/l6AQAAANReRUVFMplM6tKlS4X7+TxoAQAAAMCFxqfPaAEAAADAhYigBQAAAAAeRtACAAAAAA8jaAEAAACAhxG0AAAAAMDDCFoAAAAA4GEELQAAAADwMIIWAAAAAHgYQQsAAAAAPIygBQAAAAAeRtACAAAAAA8jaAEAAACAhxG0vCgrK0uPPfaY+vTpo65du+pvf/ubUlNTXdvXrFmj4cOHq1OnTrriiiv0+eefux1/8OBB3X///erVq5eSk5N122236bfffnPb58svv9SVV16pjh07atiwYVqzZk2FfXI6nZoxY4Z69+6tzv+/vfuPibr+4wD+BH+CwqQspObKkfyQH3KECP4iSKwJOFE3U1gKU2dLciNDmFISZihiZQ2NIGfIj81fTJLNyaZppXicDXXmj/MUNQNUxFM8UOD1/cO4PDl/IPerr8/Hxpafu/fn3u8nL993r+68T0AA5s+fj0uXLplu0RZki/nW19fD09Ozy8+OHTtMt3ALsUS+nVQqFby9vZ84J9bvv8yRL+v3X0/Kt6OjA/n5+XjnnXcQEBCAqKgobN269bFzam1tRUZGBkJDQ6FQKPDxxx+jsbHRtAu3EFvMV6VSGa3fqqoq0y7eAsydb3t7O9avX4/w8HD4+/tj2rRp2L9//2PnxP33X+bIl/vvv7rz/Hb37l3ExMQgNTX1sXOyWv0KmU1CQoJER0eLUqkUjUYjGRkZ4u/vL+fOnRO1Wi1+fn6ybt06UavVkp+fLyNGjJDff/9dRERaW1slOjpa4uPj5dixY3LmzBlJSkqS0NBQuX79uoiIHDp0SHx8fGTz5s2iVqslKytLfH19Ra1WP3JO3377rYwePVr27dsnf/75pyQmJsqkSZOktbXVIpmYki3mu3//fvHz85P6+nppaGjQ/+h0OotkYkrmzrdTdXW1BAcHi4eHxxPnxPo1b76s36fPNzc3V4KCgmT37t1SW1srpaWlMmLECNm5c+cj55SamioTJ04UpVIpNTU1MnXqVImLi7NEHCZni/kWFRXJxIkTDWq3oaGB+4ORfHNyciQkJET27dsnFy9elNzcXPH29pbjx48/ck7cf82bL/ff7j+/iYhkZmaKh4eHLF269LFzslb9stEykwsXLoiHh4dUV1frj3V0dMjEiRPl66+/lvT0dJkxY4bBmOTkZElMTBQRkd9++008PDykrq5Of3tLS4uMHDlStm7dKiIiiYmJsnjxYoNzzJw5U9LT043OqbW1VRQKhRQVFemP3bx5U/z9/aW8vLxH67U0W8xXRCQvL09iYmJ6ujyrs0S+9+7dk1WrVomPj4/ExsY+sRFg/Zo3XxHWb3fyHT9+vOTm5hqcIy0tTWbPnm10TnV1deLl5SX79+/XH9NoNOLh4SFHjx7t2YItzBbzFRH57LPPZOHChT1en7VZIt+srKwu+2ZQUJD88MMPRufE/de8+Ypw/+1Ovp0OHDggY8aMkaioqMc2WtasX3500ExcXFyQl5cHPz8//TE7OzvY2dlBq9WiuroaoaGhBmNCQkKgUqkgIhg+fDjy8vLg6uqqv93e/v6vS6vVoqOjA0ePHu1yjtGjR0OpVBqd06lTp9Dc3GwwxtnZGSNGjHjkGFtli/kCwOnTp+Hu7m6KJVqVufMFgDt37kCpVCI/Px/x8fFPnBPr17z5Aqzf7uwPq1evRmxsrME57O3t9fk/TKVS6R+n07Bhw+Dq6sr6Rc/zBVi/3dkfli5diujoaABAS0sLCgsLodPpMHr0aKNz4v5r3nwB1m938gWAxsZGpKWlITMzEy4uLo+dkzXrl42WmTg7OyMsLAx9+/bVH9uzZw9qa2sxfvx41NXVYciQIQZjXn75Zeh0Oty4cQMvvfQSwsLCDG4vLCxES0sLxo4dC61Wizt37hg9R11dndE5dR53c3N76jG2yhbzBYAzZ86gsbERcXFxGDNmDGbNmoUDBw6YYMWWZe58Ox9jx44dBi88H4f1a958Adbv0+Zrb2+P0NBQg3NcuXIFu3fvxrhx44zOqb6+Hi4uLujXr1+Xx2X99jxfADh79iw0Gg2mTZuGsWPHIiEhAceOHTPRqi3HEvtDp127diEgIAArV67EwoULDV4cP4j7r3nzBbj/djffZcuWITw8HBEREU+ckzXrl42WhRw9ehRpaWmYNGkS3nrrLbS0tBgUIQD9n+/evdtl/N69e5GTk4O5c+fC09MTLS0tBmM69evXD62trUbnoNPpuj3mv8IW8m1ra4NGo8HNmzeRlJSEvLw8BAQEYMGCBU/8Eg1bZ+p8nwXr17z5sn6fPd9r165h/vz5ePHFF/HBBx8YnYNOp+vymADrFzBNvn///Tdu3bqFO3fuYPny5cjNzcXgwYMRHx8PtVptglVajznzHTVqFMrKypCSkoINGzaguLjY6By4/5o3X+6/3cu3tLQU586dQ1pa2lPNwZr129usZycAQGVlJZYsWYLAwECsXbsWwP1f7sMF1flnBwcHg+MlJSXIzMzElClTkJKSoh//4JhOra2tXcZ36t+/v35M538/acx/ga3k27t3b1RVVaFXr176fH19fXH27FkUFBR0eav8v8Ic+T4L1q9582X9Plu+Go0GCxYsQHt7O3766Sc4OzsbnUf//v2Nvohg/ZomXzc3NyiVSjg4OKBPnz4AAD8/P5w8eRKFhYXIyMjo8Vqtwdz5urm5wc3NDV5eXqitrUVBQQFmz57d5X7cf82bL/ffp89Xo9EgOzsbBQUFcHR0fKp5WLN++Y6WmW3ZsgVJSUkIDw/Hxo0b9S/g3dzc0NDQYHDfhoYGODo6wsnJSX8sOzsbK1aswPvvv48vv/xS/znVQYMGwdHR0eg5Hvxc64M63zLtzhhbZ0v5AsCAAQMM/hIDwPDhw1FfX9+jdVqLufJ9Fqxf8+YLsH67m69KpcJ7770HBwcHlJaWYujQoY+cy5AhQ9DU1NTlBQbr1zT5Avc/stTZZAH3/12Hu7s76/ehfNva2lBZWYkrV64YnMPT0/ORWXH/NW++APffp823oqICzc3NSEhIgEKhgEKhQHV1NcrLy6FQKIzOxZr1y0bLjIqLi5GZmYm4uDisW7fO4C3LoKAgHDlyxOD+hw8fRmBgoL6YsrOzkZ+fj6VLlyI1NRV2dnb6+9rZ2SEwMLDLOaqqqhAUFGR0Pl5eXhg4cKDBNUW0Wi1OnjyJUaNG9Xi9lmZr+Z49exaBgYFdrtly4sQJvPHGGz1aqzWYM99nwfo1b76s3+7le+zYMcybNw/Dhw9HUVHRE5+s33zzTXR0dOi/FAMAzp8/j/r6etavCfI9cOAAFAqFwXVx2tracOrUKdbvQ/n26tUL6enpKCkpMThHTU3NI7Pi/mvefLn/Pn2+8fHx2LNnD8rKyvQ/vr6+iIiIQFlZmdH5WLV+zfqdhs8xjUYjPj4+8uGHH3a5podWq5UzZ86Ij4+PZGdni1qtloKCAoPrCBw+fFg8PDwkMzOzy/jbt2+LiMjBgwfF29tbfvzxR1Gr1bJ69Wrx9/c3uM7T9evXRavV6v+8bt06CQ4OlsrKSoPrCNy9e9eyAfWQLebb3t4u06dPl8mTJ4tSqRS1Wi2rVq0SX19fOX36tOVD6gFL5Pug7du3G/36cdav5fJl/T59vvfu3ZPIyEh5++235eLFiwa3P3idl4d/H8nJyRIRESGHDx/WX0crPj7e4vn0lC3me+vWLQkPD5dZs2bJ8ePH5dSpU5KcnCyjRo2Sq1evWiWnZ2WJ/SEvL0/8/f1l165dcv78efn+++/F29tbKisr9fPg/mu5fLn/Pvvzm4hIfHx8l693t5X6ZaNlJhs2bBAPDw+jP53F8Msvv0h0dLT4+vrKu+++K7t379aPX758+SPHr1+/Xn+/nTt3SmRkpPj5+UlsbKy+UDuFh4cbFF9bW5usWbNGQkJCJCAgQObPny+XLl0ycxqmZ6v5Xr16VVJTU2Xs2LHi5+cnM2fOFKVSaeY0TM9S+XZ6VCPA+rVsvqzf+56Ur0qleuTt4eHh+vM8/Ptobm6WZcuWSVBQkAQFBUlycrI0NjZaLhgTsdV8a2trJSkpSYKDg2XkyJGSmJj4n3uRKmKZ/aG9vV02bdokkZGR4uvrK1OmTJG9e/cazIP7r2Xz5f57X3ef30SMN1q2Ur92IiLmfc+MiIiIiIjo+cJ/o0VERERERGRibLSIiIiIiIhMjI0WERERERGRibHRIiIiIiIiMjE2WkRERERERCbGRouIiIiIiMjE2GgRERERERGZGBstIiJ6LqSlpcHT0xO//vqr0dsPHjwIT09PrF271sIzIyKi/0e8YDERET0XtFotoqKi0KdPH/z8889wdHTU33b79m3ExMTAyckJ27ZtQ9++fa04UyIi+n/Ad7SIiOi54OzsjIyMDPz111/46quvDG7LycnB1atXsWbNGjZZRERkEmy0iIjouREREYGYmBhs2bIFNTU1AACVSoWSkhJ89NFH8PLywpUrV5CcnIzg4GCMHDkSc+bMwcmTJw3Oc/nyZaSkpGDcuHHw8fFBaGgoUlJScOPGDYPHWrVqFebMmQN/f38sW7bMomslIiLr4kcHiYjoudLU1ISoqCi4ubmhuLgY06dPx4ABA1BUVISbN29i6tSpcHBwwKJFi+Dg4IDNmzfjxIkT2LZtG9zd3aHT6RAVFQUXFxcsXLgQTk5O+OOPP/Ddd99h+vTp+PzzzwHcb7Tq6+uRkJCAkJAQDBgwAAqFwsqrJyIiS+lt7QkQERFZ0qBBg7BixQosWrQIiYmJuHz5MsrKytCrVy9s3rwZTU1NKCkpwauvvgoAmDBhAiZPnoxvvvkG69evx4ULFzBkyBCsXr0aQ4cOBQCEhISgpqYGR44cMXisV155BUuWLLH4GomIyPrYaBER0XMnMjISkydPRkVFBT799FO89tprAIBDhw7B29sbrq6uaGtrAwDY29tjwoQJ2LVrFwDA29sbxcXF6OjowIULF1BbWwu1Wg2NRqMf08nb29uyCyMiIpvBRouIiJ5L48ePR0VFBcLCwvTHmpqaUFtbCx8fH6NjdDodHBwcsGnTJmzcuBFNTU0YPHgwfH194eDggFu3bhnc/8FvNiQioucLGy0iIqJ/ODk5ITg4GCkpKUZv79u3L8rLy5GVlYVPPvkE06ZNwwsvvAAAWLx4MY4fP27J6RIRkQ1jo0VERPSP4OBglJeXY9iwYRg4cKD++MqVK3Hv3j1kZGRApVLB2dkZ8+bN09/e3NwMlUqF3r35tEpERPfx692JiIj+MXfuXHR0dGDu3LmoqKjAoUOHkJ6ejsLCQgwbNgwA4O/vD61Wi6ysLFRVVaG8vBxxcXG4du0adDqdlVdARES2gv/rjYiI6B+urq4oLS1FTk4OVqxYgdbWVrz++uv44osvMGPGDABAbGwsLl++jO3bt6O4uBiurq4ICwvD7NmzkZ6ejnPnzsHd3d3KKyEiImvjdbSIiIiIiIhMjB8dJCIiIiIiMjE2WkRERERERCbGRouIiIiIiMjE2GgRERERERGZGBstIiIiIiIiE2OjRUREREREZGJstIiIiIiIiEyMjRYREREREZGJsdEiIiIiIiIyMTZaREREREREJsZGi4iIiIiIyMTYaBEREREREZnY/wD3/Nv63dED7AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Plot sentiment scores over time\n", + "plt.figure(figsize=(10, 6))\n", + "\n", + "# Plot Polarity\n", + "plt.plot(yearly_sentiment['year'], yearly_sentiment['polarity'], marker='o', linestyle='-', color='b', label='Polarity')\n", + "\n", + "# Plot Subjectivity\n", + "plt.plot(yearly_sentiment['year'], yearly_sentiment['subjectivity'], marker='o', linestyle='-', color='r', label='Subjectivity')\n", + "\n", + "# Add titles and labels\n", + "plt.title('Average Sentiment Scores by Year')\n", + "plt.xlabel('Year')\n", + "plt.ylabel('Average Score')\n", + "plt.legend()\n", + "plt.grid(True)\n", + "\n", + "# Show the plot\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "02793131-4dd8-4278-8f71-cc56b2ad14ac", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From fc84960db3a4fa12f62196b386d2115bf475d4b8 Mon Sep 17 00:00:00 2001 From: Aditya Gahlot Date: Sat, 10 Aug 2024 20:37:06 +1000 Subject: [PATCH 2/5] Move Jupyter notebook to personal-work/aditya-gahlot --- .../aditya-gahlot/Sentiment_Analysis.ipynb | 1000 +++++++++++++++++ 1 file changed, 1000 insertions(+) create mode 100644 personal-work/aditya-gahlot/Sentiment_Analysis.ipynb diff --git a/personal-work/aditya-gahlot/Sentiment_Analysis.ipynb b/personal-work/aditya-gahlot/Sentiment_Analysis.ipynb new file mode 100644 index 0000000..e919145 --- /dev/null +++ b/personal-work/aditya-gahlot/Sentiment_Analysis.ipynb @@ -0,0 +1,1000 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "a2a1d701-1644-4a79-a16a-d5196eacb4e1", + "metadata": {}, + "source": [ + "# EV News Articles Sentiment Analysis\n", + "Performing news article sentiment analysis of EV vehicles in Australia involves several steps, from data collection to sentiment analysis and visualization. Although the sentiments of people vary across various regions in Australia, I have presented a broad analysis of the Electric Vehicle industry through four online articles. The articles for this project were taken from the following links:\n", + "\n", + "1. https://thedriven.io/2024/02/23/most-australians-think-there-are-too-few-public-charging-stations-to-support-evs/\n", + "2. https://www.ey.com/en_au/sustainability/why-consumers-are-charging-toward-electric-vehicles\n", + "3. https://www.sydney.edu.au/news-opinion/news/2024/04/10/evs-face-future-challenges-despite-increasing-uptake-.html\n", + "4. https://www.carexpert.com.au/car-news/evs-in-australia-report-outlines-sales-and-improving-consumer-sentiment" + ] + }, + { + "cell_type": "markdown", + "id": "ac0279aa-b72c-4ccc-8808-9664ad081343", + "metadata": {}, + "source": [ + "# Procedure\n", + "Performing news article sentiment analysis of EV vehicles in Australia involves several steps, from data collection to sentiment analysis and visualization. These steps are summarized further.\n", + "## Step 1: Data Collection\n", + "After gathering the news articles for EVs, I used the technique of **web scraping** to extract meaningful information from the articles like the title, the publication date of the article and its broad content. For this purpose, I used web scraping tools like BeautifulSoup which is imported in the first cell along with other important libraries. After that, I have initialized all the URLs as an array." + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "id": "aea29846-81dc-468e-ac46-c98193afc97a", + "metadata": {}, + "outputs": [], + "source": [ + "import requests\n", + "from bs4 import BeautifulSoup\n", + "import pandas as pd\n", + "import time\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "id": "57681cd9-a557-4283-a734-cf346329ee34", + "metadata": {}, + "outputs": [], + "source": [ + "# List of article URLs\n", + "urls = [\n", + " 'https://thedriven.io/2024/02/23/most-australians-think-there-are-too-few-public-charging-stations-to-support-evs/',\n", + " 'https://www.ey.com/en_au/sustainability/why-consumers-are-charging-toward-electric-vehicles',\n", + " 'https://www.sydney.edu.au/news-opinion/news/2024/04/10/evs-face-future-challenges-despite-increasing-uptake-.html',\n", + " 'https://www.carexpert.com.au/car-news/evs-in-australia-report-outlines-sales-and-improving-consumer-sentiment',\n", + " \n", + "]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "id": "ac8f969b-2142-4494-889b-4e8bfd13caf8", + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize a list to store article data\n", + "articles_data = []\n" + ] + }, + { + "cell_type": "markdown", + "id": "fff14daf-1cb0-4e21-a0f1-175818fd1ec4", + "metadata": {}, + "source": [ + "## Step 2: Scraping an Article with Improved Selectors\n", + "After initializing an empty list to store article data named **articles_data**, I have defined a function **scrape_article** to fetch and parse a single article. It returns the details of an article, including its title, author, publication date, and content. Within the function, **headers** represents a dictionary with the User-Agent header. This helps to mimic a request from a web browser, which can be useful to avoid blocks from some websites that restrict automated scraping. Then an HTTP GET request was sent to the specified URL with the custom headers.\n", + "\n", + "The **BeautifulSoup (response.content, 'html.parser')** function parses the HTML content of the web page, creating a BeautifulSoup object for further extraction.I manually checked the structure of the HTML for each website to determine the correct selectors. This step required viewing the source code of each of the webpages." + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "id": "6320942d-9d3e-4299-aa52-af8866ccafe2", + "metadata": {}, + "outputs": [], + "source": [ + "def scrape_article(url):\n", + " headers = {\n", + " 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'\n", + " }\n", + " \n", + " try:\n", + " # Fetch the web page\n", + " response = requests.get(url, headers=headers)\n", + " response.raise_for_status() # Raise HTTPError for bad responses\n", + "\n", + " # Parse the HTML content\n", + " soup = BeautifulSoup(response.content, 'html.parser')\n", + "\n", + " # Initialize variables\n", + " title = 'No title found'\n", + " author = 'No author found'\n", + " publication_date = 'No date found'\n", + " content = 'No content found'\n", + "\n", + " # Check URL and set selectors accordingly\n", + " if 'thedriven.io' in url:\n", + " title = soup.find('h1').get_text(strip=True) if soup.find('h1') else 'No title found'\n", + " author_tag = soup.find('a', class_='url fn n')\n", + " author = author_tag.get_text(strip=True) if author_tag else 'No author found'\n", + " date_tag = soup.find('a', rel='bookmark')\n", + " publication_date = date_tag.get_text(strip=True) if date_tag else 'No date found'\n", + " content = ' '.join([p.get_text(strip=True) for p in soup.find_all('p')])\n", + "\n", + " elif 'ey.com' in url:\n", + " title = soup.find('h1').get_text(strip=True) if soup.find('h1') else 'No title found'\n", + " authors = [a.get_text(strip=True) for a in soup.find_all('a', class_='surfaceProfile-author-link')]\n", + " author = ', '.join(authors) if authors else 'No author found'\n", + " date_tag = soup.select_one('#container4 > div > div:nth-child(2) > div > div > span:nth-child(2)')\n", + " publication_date = date_tag.get_text(strip=True) if date_tag else 'No date found'\n", + " content = ' '.join([p.get_text(strip=True) for p in soup.find_all('p')])\n", + "\n", + " elif 'sydney.edu.au' in url:\n", + " title = soup.find('h1').get_text(strip=True) if soup.find('h1') else 'No title found'\n", + " author_tag = soup.find('h3', class_='b-contact-information__title')\n", + " author = author_tag.get_text(strip=True) if author_tag else 'No author found'\n", + " date_tag = soup.find('span')\n", + " publication_date = date_tag.get_text(strip=True) if date_tag else 'No date found'\n", + " content = ' '.join([p.get_text(strip=True) for p in soup.find_all('p')])\n", + "\n", + " elif 'carexpert.com.au' in url:\n", + " title = soup.find('h1').get_text(strip=True) if soup.find('h1') else 'No title found'\n", + " author_tag = soup.find('div', class_='gubuy9f')\n", + " author = author_tag.get_text(strip=True) if author_tag else 'No author found'\n", + " date_tag = soup.find('time')\n", + " publication_date = date_tag.get_text(strip=True) if date_tag else 'No date found'\n", + " content = ' '.join([p.get_text(strip=True) for p in soup.find_all('p')])\n", + "\n", + " # Store the data\n", + " article_data = {\n", + " 'title': title,\n", + " 'author': author,\n", + " 'publication_date': publication_date,\n", + " 'content': content\n", + " }\n", + "\n", + " # Print success message\n", + " print(f'Successfully scraped {url}')\n", + " \n", + " return article_data\n", + " \n", + " except Exception as e:\n", + " # Handle errors (e.g., missing elements, request errors)\n", + " print(f'Error fetching {url}: {e}')\n", + " return None\n" + ] + }, + { + "cell_type": "markdown", + "id": "d5d6a6e7-1f9d-4f92-8080-a56787f32bd5", + "metadata": {}, + "source": [ + "The below code iterates over a list of URLs, scraping article data from each URL using the **scrape_article** function, and then appends the collected data to a list. It also includes an optional delay of 2 seconds between requests to avoid overloading the server.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "id": "e5bb5795-ee78-4fd2-b8cd-a254e46e7460", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Successfully scraped https://thedriven.io/2024/02/23/most-australians-think-there-are-too-few-public-charging-stations-to-support-evs/\n", + "Successfully scraped https://www.ey.com/en_au/sustainability/why-consumers-are-charging-toward-electric-vehicles\n", + "Successfully scraped https://www.sydney.edu.au/news-opinion/news/2024/04/10/evs-face-future-challenges-despite-increasing-uptake-.html\n", + "Successfully scraped https://www.carexpert.com.au/car-news/evs-in-australia-report-outlines-sales-and-improving-consumer-sentiment\n" + ] + } + ], + "source": [ + "for url in urls:\n", + " article_data = scrape_article(url)\n", + " if article_data:\n", + " articles_data.append(article_data)\n", + " \n", + " # Optional: Delay between requests to avoid overwhelming the server\n", + " time.sleep(2)\n" + ] + }, + { + "cell_type": "markdown", + "id": "3645339f-324d-4832-b072-9be6162c9ff3", + "metadata": {}, + "source": [ + "In the below cell, I have stored the collected articles in a structured format such as CSV or JSON for further processing. It creates a DataFrame from a list of article data, saves it as a CSV file named **ev_articles.csv**, and displays the DataFrame for review. The **pd.Dataframe()** function creates a DataFrame named **articles_df** from the list of dictionaries **articles_data**. Each dictionary in the list represents a row in the DataFrame, with dictionary keys becoming column names." + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "id": "c6c2e563-874b-43c6-ad78-f8f7bc81bff8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
titleauthorpublication_datecontent
0Most Australians think there are too few publi...Jennifer Dudley-NicholsonFebruary 23, 2024Most Australians think the nation has too few ...
1Why Australian consumers are charging toward e...Neal Johnston, Glenn Maris, Damien Smith, Neal...27 Jul. 2022The CEO Imperative: Is your strategy set for t...
2EVs face future challenges despite increasing ...Harrison Vesey10 April 2024Professor David Hensher One in three Australia...
3EVs in Australia: Report outlines sales, and i...Mike Costello19 August 2020, 1:56pmGuest User Australia's electric-vehicle penetr...
\n", + "
" + ], + "text/plain": [ + " title \\\n", + "0 Most Australians think there are too few publi... \n", + "1 Why Australian consumers are charging toward e... \n", + "2 EVs face future challenges despite increasing ... \n", + "3 EVs in Australia: Report outlines sales, and i... \n", + "\n", + " author publication_date \\\n", + "0 Jennifer Dudley-Nicholson February 23, 2024 \n", + "1 Neal Johnston, Glenn Maris, Damien Smith, Neal... 27 Jul. 2022 \n", + "2 Harrison Vesey 10 April 2024 \n", + "3 Mike Costello 19 August 2020, 1:56pm \n", + "\n", + " content \n", + "0 Most Australians think the nation has too few ... \n", + "1 The CEO Imperative: Is your strategy set for t... \n", + "2 Professor David Hensher One in three Australia... \n", + "3 Guest User Australia's electric-vehicle penetr... " + ] + }, + "execution_count": 85, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Convert the articles data to a DataFrame\n", + "articles_df = pd.DataFrame(articles_data)\n", + "\n", + "# Save the DataFrame to a CSV file\n", + "articles_df.to_csv('ev_articles.csv', index=False)\n", + "\n", + "# Display the DataFrame\n", + "articles_df\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "b8532a3e-860a-4d5c-a594-b5528e60757d", + "metadata": {}, + "source": [ + "## Step 3: Data Preprocessing\n", + "To perform data preprocessing for each article, we need to clean and structure the data appropriately. This typically involves removing unwanted characters or HTML tags. Then we need to normalize text by converting it to lowercase, removing extra whitespace, and handling punctuation. After that, we need to break the text into tokens (words). All this is carried out in the further cells. " + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "id": "fcb4e4c7-f9ce-41c2-8f4e-b1166dcd13f5", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[nltk_data] Downloading package punkt to\n", + "[nltk_data] C:\\Users\\user\\AppData\\Roaming\\nltk_data...\n", + "[nltk_data] Package punkt is already up-to-date!\n", + "[nltk_data] Downloading package stopwords to\n", + "[nltk_data] C:\\Users\\user\\AppData\\Roaming\\nltk_data...\n", + "[nltk_data] Package stopwords is already up-to-date!\n", + "[nltk_data] Downloading package wordnet to\n", + "[nltk_data] C:\\Users\\user\\AppData\\Roaming\\nltk_data...\n", + "[nltk_data] Package wordnet is already up-to-date!\n" + ] + }, + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import re\n", + "import nltk\n", + "from nltk.corpus import stopwords\n", + "from nltk.stem import PorterStemmer, WordNetLemmatizer\n", + "from nltk.tokenize import word_tokenize\n", + "\n", + "# Download necessary NLTK data files\n", + "nltk.download('punkt')\n", + "nltk.download('stopwords')\n", + "nltk.download('wordnet')\n" + ] + }, + { + "cell_type": "markdown", + "id": "0b8887af-b132-4188-9dea-b1f4cd0687aa", + "metadata": {}, + "source": [ + "The **clean_text()** function removes unwanted characters and HTML tags from the text. It uses a regular expression to remove anything that looks like HTML tags. It is also used to remove special characters and numbers since we don' require them for sentiment analysis. It returns a cleaned version of the text with HTML tags, special characters, and extra whitespace removed. \n", + "\n", + "The **normalize_text()** function normalizes the text by converting it to lowercase and removing extra spaces. First, it converts all characters in the text to lowercase. Then it splits the text into words and then joins them back together with a single space between each word, effectively removing extra spaces. It returns the normalized text with all lowercase characters and consistent spacing.\n", + "\n", + "The **tokenize_text()** function tokenizes the text into individual words and a list of tokens (words) from the text.\n", + "\n", + "The **remove_stop_words()** function remove common stop words from the list of tokens. It returns a list of tokens with stop words removed.\n", + "\n", + "The **stem_tokens()** function apply stemming to the list of tokens. Stemming reduces words to their root form so that the kewords can be analysed easily. It returns a list of stemmed tokens (words reduced to their root form).\n", + "\n", + "Finally, the **lemmatize_tokens()** function applies lemmatization to the list of tokens. Lemmatization reduces words to their base or dictionary form, which is usually more meaningful than stemming. It returns a list of lemmatized tokens (words reduced to their base form)." + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "id": "bdb471d4-e732-4363-a62d-b3e1a98275ca", + "metadata": {}, + "outputs": [], + "source": [ + "def clean_text(text):\n", + " \"\"\"\n", + " Clean the text by removing unwanted characters and HTML tags.\n", + " \"\"\"\n", + " # Remove HTML tags\n", + " text = re.sub(r'<[^>]+>', '', text)\n", + " # Remove special characters and numbers\n", + " text = re.sub(r'[^a-zA-Z\\s]', '', text)\n", + " # Remove extra whitespace\n", + " text = text.strip()\n", + " return text\n", + "\n", + "def normalize_text(text):\n", + " \"\"\"\n", + " Normalize the text by converting to lowercase and removing extra spaces.\n", + " \"\"\"\n", + " # Convert to lowercase\n", + " text = text.lower()\n", + " # Remove extra whitespace\n", + " text = ' '.join(text.split())\n", + " return text\n", + "\n", + "def tokenize_text(text):\n", + " \"\"\"\n", + " Tokenize the text into words.\n", + " \"\"\"\n", + " tokens = word_tokenize(text)\n", + " return tokens\n", + "\n", + "def remove_stop_words(tokens):\n", + " \"\"\"\n", + " Remove stop words from the tokenized text.\n", + " \"\"\"\n", + " stop_words = set(stopwords.words('english'))\n", + " filtered_tokens = [word for word in tokens if word not in stop_words]\n", + " return filtered_tokens\n", + "\n", + "def stem_tokens(tokens):\n", + " \"\"\"\n", + " Apply stemming to tokens.\n", + " \"\"\"\n", + " stemmer = PorterStemmer()\n", + " stemmed_tokens = [stemmer.stem(word) for word in tokens]\n", + " return stemmed_tokens\n", + "\n", + "def lemmatize_tokens(tokens):\n", + " \"\"\"\n", + " Apply lemmatization to tokens.\n", + " \"\"\"\n", + " lemmatizer = WordNetLemmatizer()\n", + " lemmatized_tokens = [lemmatizer.lemmatize(word) for word in tokens]\n", + " return lemmatized_tokens\n" + ] + }, + { + "cell_type": "markdown", + "id": "484d6bf9-826f-4b57-9f5c-7b737c81979a", + "metadata": {}, + "source": [ + "This cell applies preprocessing functions to each article’s content, then converts the preprocessed data into a DataFrame and saves it to a CSV file. The **preprocessed_articles** list is initialized as an empty list to store the preprocessed article data. By looping through each article, many steps of preprocessing are applied like removing HTML tags, special characters, and extra whitespace using **clean_text** function, converting the text to lowercase and removing extra spaces using the **normalize_text** function, splitting the text into individual words (tokens) using **tokenize_text** function, filtering out common stop words from the tokens using **remove_stop_words** function and reducing to their root form using **stem_tokens** function.\n", + "\n", + "After all this, the preprocessed text is joined back into a single string and stored in a dictionary along with the article’s title, author, and publication date which is added to the **preprocessed_articles** list. Finally, we convert the list of preprocessed articles into a DataFrame using **pd.DataFrame** function, save it to a CSV file and display the resulting DataFrame to verify the output.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "id": "8f35cdf6-3bd8-49f9-956c-a0c587bd5b19", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
titleauthorpublication_datecontent
0Most Australians think there are too few publi...Jennifer Dudley-NicholsonFebruary 23, 2024australian think nation public charg station s...
1Why Australian consumers are charging toward e...Neal Johnston, Glenn Maris, Damien Smith, Neal...27 Jul. 2022ceo imper strategi set takeoff clever govern c...
2EVs face future challenges despite increasing ...Harrison Vesey10 April 2024professor david hensher one three australian c...
3EVs in Australia: Report outlines sales, and i...Mike Costello19 August 2020, 1:56pmguest user australia electricvehicl penetr wel...
\n", + "
" + ], + "text/plain": [ + " title \\\n", + "0 Most Australians think there are too few publi... \n", + "1 Why Australian consumers are charging toward e... \n", + "2 EVs face future challenges despite increasing ... \n", + "3 EVs in Australia: Report outlines sales, and i... \n", + "\n", + " author publication_date \\\n", + "0 Jennifer Dudley-Nicholson February 23, 2024 \n", + "1 Neal Johnston, Glenn Maris, Damien Smith, Neal... 27 Jul. 2022 \n", + "2 Harrison Vesey 10 April 2024 \n", + "3 Mike Costello 19 August 2020, 1:56pm \n", + "\n", + " content \n", + "0 australian think nation public charg station s... \n", + "1 ceo imper strategi set takeoff clever govern c... \n", + "2 professor david hensher one three australian c... \n", + "3 guest user australia electricvehicl penetr wel... " + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Apply preprocessing to each article's content\n", + "preprocessed_articles = []\n", + "\n", + "for article in articles_data:\n", + " # Clean the text\n", + " cleaned_content = clean_text(article['content'])\n", + " # Normalize the text\n", + " normalized_content = normalize_text(cleaned_content)\n", + " # Tokenize the text\n", + " tokens = tokenize_text(normalized_content)\n", + " # Remove stop words\n", + " filtered_tokens = remove_stop_words(tokens)\n", + " # Optionally apply stemming or lemmatization\n", + " stemmed_tokens = stem_tokens(filtered_tokens)\n", + " # lemmatized_tokens = lemmatize_tokens(filtered_tokens)\n", + " \n", + " # Store preprocessed data\n", + " preprocessed_article = {\n", + " 'title': article['title'],\n", + " 'author': article['author'],\n", + " 'publication_date': article['publication_date'],\n", + " 'content': ' '.join(stemmed_tokens) # Use lemmatized_tokens if preferred\n", + " }\n", + " preprocessed_articles.append(preprocessed_article)\n", + " \n", + "# Convert the preprocessed articles data to a DataFrame\n", + "preprocessed_articles_df = pd.DataFrame(preprocessed_articles)\n", + "\n", + "# Save the DataFrame to a CSV file\n", + "preprocessed_articles_df.to_csv('preprocessed_ev_articles.csv', index=False)\n", + "\n", + "# Display the DataFrame\n", + "preprocessed_articles_df\n" + ] + }, + { + "cell_type": "markdown", + "id": "592c4d07-49e8-4f5d-8165-3057d18f48dc", + "metadata": {}, + "source": [ + "In sentiment analysis, **polarity** and **subjectivity** are two key metrics used to assess the sentiment of a text. \n", + "\n", + "Polarity measures the sentiment of the text on a scale from -1 to 1. Negative sentiment indicates that the text expresses a strong negative sentiment or emotion. Neutral sentiment indicates that the text is neutral and does not convey any strong positive or negative sentiment. Positive sentiment indicates that the text expresses a strong positive sentiment or emotion. This can be useful for understanding overall attitudes or reactions.\n", + "\n", + "Subjectivity measures the degree to which the text expresses personal opinions, feelings, or beliefs, as opposed to objective facts. Zero subjectivity means the text is factual and does not include personal opinions or emotions. It is more about reporting facts.A subjectivity of 1 means the text is more personal and opinionated, including personal beliefs, emotions, or feelings. This can be useful for distinguishing between factual reports and personal opinions or feelings." + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "id": "7a2419ad-a537-4396-999f-efe9ad8fb316", + "metadata": {}, + "outputs": [], + "source": [ + "from textblob import TextBlob\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n" + ] + }, + { + "cell_type": "markdown", + "id": "16abc529-f4c0-42db-b793-624477ac2394", + "metadata": {}, + "source": [ + "This code defines a function **analyze_sentiment()** that uses the TextBlob library to analyze the sentiment of a given text. It takes a single argument **text**, which is a string of text that we want to analyze for sentiment. The TextBlob object **blob** has a sentiment property that returns a Sentiment namedtuple - polarity and subjectivity. The function returns the polarity and subjectivity scores as a tuple." + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "id": "7a253b62-1ce6-42c2-986c-bba61766c17a", + "metadata": {}, + "outputs": [], + "source": [ + "def analyze_sentiment(text):\n", + " \"\"\"\n", + " Analyze the sentiment of the given text using TextBlob.\n", + " \"\"\"\n", + " blob = TextBlob(text)\n", + " # Return polarity and subjectivity\n", + " return blob.sentiment.polarity, blob.sentiment.subjectivity\n" + ] + }, + { + "cell_type": "markdown", + "id": "d3c6d5f8-09c8-493b-b866-c0a2fd628a9d", + "metadata": {}, + "source": [ + "This code performs sentiment analysis on the preprocessed content of each article, stores the results, and saves them to a CSV file. The **sentiment_results[]** is an empty list initialized to store the sentiment analysis results for each article. In the 'for' loop, we iterate through each row in the preprocessed articles DataFrame (**preprocessed_articles_df**). Each row represents an article. For each article, the content is passed to the **analyze_sentiment()** function, which returns the polarity and subjectivity scores.\n", + "The results for each article, including its title, author, publication date, content, polarity, and subjectivity, are stored in a dictionary and appended to the above initialized list.\n", + "We then conver this list of dictionaries into pandas DataFrame. Finally, the DataFrame is displayed, showing the sentiment analysis results." + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "id": "1d55944e-1875-47bf-a203-5f2b5a360a6a", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
titleauthorpublication_datecontentpolaritysubjectivity
0Most Australians think there are too few publi...Jennifer Dudley-NicholsonFebruary 23, 2024australian think nation public charg station s...0.0022100.187689
1Why Australian consumers are charging toward e...Neal Johnston, Glenn Maris, Damien Smith, Neal...27 Jul. 2022ceo imper strategi set takeoff clever govern c...0.1020000.283466
2EVs face future challenges despite increasing ...Harrison Vesey10 April 2024professor david hensher one three australian c...0.1815630.347917
3EVs in Australia: Report outlines sales, and i...Mike Costello19 August 2020, 1:56pmguest user australia electricvehicl penetr wel...0.0112450.306212
\n", + "
" + ], + "text/plain": [ + " title \\\n", + "0 Most Australians think there are too few publi... \n", + "1 Why Australian consumers are charging toward e... \n", + "2 EVs face future challenges despite increasing ... \n", + "3 EVs in Australia: Report outlines sales, and i... \n", + "\n", + " author publication_date \\\n", + "0 Jennifer Dudley-Nicholson February 23, 2024 \n", + "1 Neal Johnston, Glenn Maris, Damien Smith, Neal... 27 Jul. 2022 \n", + "2 Harrison Vesey 10 April 2024 \n", + "3 Mike Costello 19 August 2020, 1:56pm \n", + "\n", + " content polarity subjectivity \n", + "0 australian think nation public charg station s... 0.002210 0.187689 \n", + "1 ceo imper strategi set takeoff clever govern c... 0.102000 0.283466 \n", + "2 professor david hensher one three australian c... 0.181563 0.347917 \n", + "3 guest user australia electricvehicl penetr wel... 0.011245 0.306212 " + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Apply sentiment analysis to each article's content\n", + "sentiment_results = []\n", + "\n", + "for index, article in preprocessed_articles_df.iterrows():\n", + " # Analyze sentiment\n", + " polarity, subjectivity = analyze_sentiment(article['content'])\n", + " \n", + " # Store the results\n", + " sentiment_results.append({\n", + " 'title': article['title'],\n", + " 'author': article['author'],\n", + " 'publication_date': article['publication_date'],\n", + " 'content': article['content'],\n", + " 'polarity': polarity,\n", + " 'subjectivity': subjectivity\n", + " })\n", + "\n", + "# Convert the results to a DataFrame\n", + "sentiment_df = pd.DataFrame(sentiment_results)\n", + "\n", + "# Save the sentiment analysis results to a CSV file\n", + "sentiment_df.to_csv('sentiment_analysis_results.csv', index=False)\n", + "\n", + "# Display the DataFrame\n", + "sentiment_df\n" + ] + }, + { + "cell_type": "markdown", + "id": "37a82af6-129d-4a96-ac4e-f063316184b9", + "metadata": {}, + "source": [ + "This code creates a visual representation of the sentiment analysis results for a set of articles, focusing on both polarity and subjectivity. The plotting style is configured to \"whitegrid\" for a clean and readable background. A figure is setup with two subplots arranged vertically, each subplot having its own set of axes. this code generates two horizontal bar plots within a single figure, visually comparing the polarity and subjectivity of the sentiment analysis for each article." + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "id": "8dfd03d0-cab3-4de2-939f-97b4a64bc416", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKAAAASgCAYAAADPWTC8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3yN5//H8XdE0BCxR1VtMUOsiC2ovVcFqQa192h8bWpTIqgVq7GJEbu09qraYlQIEqX2DEHy+8Mj9y9HduRU6ev5eOTxkHOuc9+f+zr3uTlv13XdFmFhYWECAAAAAAAAzCTJhy4AAAAAAAAAnzYCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAAAAA+iLCwsA9dQqw+hhrjg+MB8KEQQAEAAAD/cZcuXVKfPn1Uvnx5FSlSRBUqVFDv3r114cIFs+wvJCREY8eOla+vr/GYu7u7nJ2dzbK/hHj8+LEGDhyoY8eOxdjOzs4u0o+9vb3q1q2refPmKTQ0NF77dXZ2lru7+/uULkk6cuSI7OzsdOTIEUnSrVu39N133ykoKOi9tx2b169fy93dXQ4ODipRooQOHz4cbdunT5+qWLFiKly4sO7cuRPnfUR1PPHtOzs7O3l6esa5PYD3k/RDFwAAAADgw/nzzz/VsmVLFS9eXEOGDFH69Ol169YteXt7q0WLFlqyZImKFy+eqPv8+++/tXjxYo0bN854rGvXrnJ1dU3U/byP8+fPa8OGDWratGmsbZs1a6bmzZsbvwcHB2vHjh2aPHmyHj9+rH79+pmz1CgVLlxYK1euVN68eSVJBw8e1J49e/6Rfe/bt0/r1q1T165dVa5cORUqVCjatps2bZKNjY3evHmjNWvWqEuXLnHaR1THM2PGDKVKleq9agdgPgRQAAAAwH/YwoULlTZtWs2bN09Jk/7/14Pq1aurVq1amjVrlubOnWv2Or788kuz78NcsmTJEimkc3Jy0pUrV7R06VL17NlTVlZW/2hNqVKlSvTgMK4ePnwoSWrSpImyZ88eY1sfHx9VrFhRVlZWWr16tTp16qQkSRI2USemoAvAh8cUPAAAAOA/7O7duwoLC4s0Vcza2lr/+9//VLt2bZPHd+7cqSZNmqho0aIqX768fvjhBz1//tx43tPTUzVq1NDu3btVv359FSlSRDVr1tT69eslSYGBgapWrZokadCgQca0u3en4Dk7O2vGjBkaO3asHB0d5eDgoH79+unZs2eaO3euKlWqpJIlS6pHjx568OCBSY2rV69W3bp1VaRIEVWpUkWenp568+aN8by7u7vatWuntWvXqmbNmipSpIgaNmyovXv3Sno7fS18NJarq6vatm2boL4tUqSInj17pkePHkmSXr58qZkzZ6pWrVoqWrSovvrqK82dOzfGaXqBgYEaOHCgKlSooMKFC8vJyUkDBw40OWZnZ2eNHTtW33zzjezt7TV48GCTKXg+Pj4aNGiQJKlatWpyd3fXhAkTZG9vrydPnpjsb9asWSpZsqSCg4OjrOfNmzdaunSp6tevL3t7e1WpUkWTJ0/Wy5cvjb4NnwZXvXr1GPvu8uXLOnXqlKpUqaIGDRooKChI+/bti3T8dnZ2WrhwoWrVqqVixYpp7dq1kY4nvB8iTsF7+vSpRo8erYoVK6p48eJq2rSpdu/eHW09Dx8+1LBhw1SuXDkVLVpULVq00KFDh0zaHDhwQC1atJCDg4NKly6tLl26yN/fP9ptAvh/BFAAAADAf1iVKlV08+ZNff3111q6dKn8/f2NhZ1r1aqlxo0bG219fX3VrVs35c6dWzNnzlT37t21ceNGde3a1WQx6Dt37mjUqFFydXXV3Llz9cUXX+j777+Xv7+/MmXKpBkzZkiSunTpYvw5KgsWLNBff/2lqVOnqkuXLtq0aZOaNm2q/fv3a/To0erbt6927dql6dOnG6+ZM2eOhg4dKicnJ82ePVutW7fWvHnzNHToUJNtnz17Vl5eXurZs6dmzpwpS0tL9ejRQ48ePVLhwoU1bNgwSdKwYcM0fPjwBPXt1atXlTJlSqVPn15hYWHq3Lmz5s+fr+bNm2v27NmqVauWpk2bFu32g4OD5erqKn9/fw0fPlxeXl5ydXXV5s2bNXXqVJO2S5cuVdGiRTVr1iw1a9bM5LkqVaoYU9tmzJihrl27qlmzZnr58qW2bdtm0nbDhg2qU6eOPvvssyhrGjZsmMaNG6fq1avrp59+UuvWreXt7W2cA127djXZV0x9t3btWqVJk0ZVq1ZVqVKllCNHDi1fvjzKtp6enurYsaMmTpyocuXKRTqed71580Zubm7y9fVVp06dNGvWLOXOnVvdunWLcl2vly9f6ptvvtGuXbvUp08fzZgxQ1myZFGHDh2MEOrGjRvq2rWrihQpop9++kljxozR1atX9d1338V7rS/gv4gpeAAAAMB/mIuLi+7cuSMvLy+NGjVKkpQ2bVpVqFBBrq6usre3l/T2bmOTJ09WxYoVNXnyZOP1OXPmVLt27bRnzx5VqVJF0tvgZMyYMXJycjLaVK1aVXv27JGbm5sKFiwo6e20u5imTaVKlUpTp05V0qRJVa5cOa1bt063b9/W6tWrZWNjI+ntekPHjx+XJD158kSzZs1Sy5YtNWTIEElShQoVlCZNGg0ZMkTffvut8uXLZ7T18fExpv5ZW1urTZs2Onz4sGrWrGmsnZQ3b17jz9EJDQ3V69evjX66e/eufH199euvv6pDhw6ysLDQnj17dPDgQf3444+qW7euJKl8+fJKkSKFPDw85OrqatQWLiAgQFmyZNGECROMqWxly5bVqVOndPToUZO2n3/+ufr372/8Hr74uCSlS5fOOM6CBQvqiy++kCQ5ODhow4YNxvpVx48fV0BAgMaPHx/lcV6+fFlr1qxRv3799N133xnHkClTJg0cOFB79+5V5cqVo9zXu16/fq2NGzeqXr16SpYsmSSpcePG8vT01F9//aWsWbOatK9du7bJelyx7WPv3r06deqUZs6cqerVqxt9d+PGDR0+fFilSpUyab9hwwZduHBBq1atUrFixSRJlSpVUtu2bTV58mStXbtWp0+f1osXL9SpUydlzpxZ0tvpl7t27dLz589ZfwqIBSOgAAAAgP+4Xr16ad++fZoyZYqaNWumVKlSydfX11iEXJKuXLmiW7duydnZWa9fvzZ+SpcurVSpUunAgQMm24y4/lCWLFkkyWSqXlzY29ubrEuVIUMG5cqVywifJClNmjTGNLITJ07oxYsXkWoMn9oXscaIoUzEGqObehaTWbNmqXDhwipcuLAx7W/mzJlq2bKlevToIUk6evSokiZNqlq1apm8tkGDBsbz7ypYsKCWLVumbNmyKSAgQHv27JGXl5euXLmikJCQSG3jq2nTpjp27JhxJ7l169YpV65ccnBwiLJ9eI3hAVq4unXrytLS0iT0is3u3bt19+5dVa9eXY8fP9bjx4/l7Oys0NBQrV69OlL7+B7fH3/8ISsrK5NpnUmSJNGKFSvUvXv3SO0PHTqkjBkzqnDhwsZ58+bNG1WtWlVnz57Vo0ePVKxYMSVPnlzNmjXTmDFjtG/fPhUoUEB9+vQhfALigBFQAAAAAGRra6t69eqpXr16kiQ/Pz8NGDBAkyZNUv369Y2FpUeOHKmRI0dGev3ff/9t8nvEKVzhi0pHnKYXF1F9qbe2to62fXiN4aNzYqrx3SlmFhYWkpSgqVQtWrRQixYtjO2kTJlSX3zxhcnC448ePVLatGllaWlp8tqMGTNKUqS1mMItXLhQs2fP1sOHD5UhQwYVKVJEn332WaT2MfVLdOrUqaOxY8dqw4YNat++vbZu3Rpt34UfQ8SawyVNmlRp06aN9hiisnbtWklSu3btIj23Zs0ade3a1SR8jO/xPXz4UGnSpInzguYPHz7UnTt3VLhw4Sifv3PnjvLmzStvb2/NnTtXa9as0ZIlS5Q6dWq5uLiod+/exjkEIGoEUAAAAMB/1O3bt9W0aVP16tXLmIYVrlChQurTp4+6deumGzduKHXq1JKkgQMHqkyZMpG2ZWtr+4/UHJPwGidPnqycOXNGej5Dhgxm2W+mTJlUtGjRGNvY2trqwYMHevPmjUkIFR6KpU2bNtJrfH19NX78eA0YMEBNmjRRunTpJL0dsXbmzJn3rjtlypSqVauWtm7dqvz58+v58+dq2LBhjMcgvQ1jsmXLZjz+6tUrPXjwIMpjiMrdu3e1d+9eubi4RBoRdvLkSf3444/67bffVKNGjQQc1Vs2NjZ6+PChwsLCTIIhPz8/hYWFRQqabGxslDNnTpPppRGFT/Ozt7fXjBkzFBISoj/++EMrV67U7NmzVaBAgUgL9gMwxRQ8AAAA4D8qQ4YMSpo0qZYtW2bcxSyiK1euKHny5MqRI4dy586t9OnTKzAwUEWLFjV+MmfOrClTpsjPzy/O+313FFBiKVasmKysrHT79m2TGpMmTaoff/xRgYGBH6zGMmXK6PXr15EW/d64caMkqWTJkpFe88cffyh16tTq0KGDET49e/ZMf/zxR7xHakU3EqhZs2a6dOmSFi9erHLlyhlrG0V3DJK0efNmk8c3b96sN2/eRHkMUdmwYYNev36tb775Ro6OjiY/33zzjVKlSqUVK1Yk6HjClSpVSq9evTLubCi9HYE3aNAgzZkzJ8pj++uvv5Q+fXqTc+fAgQOaP3++LC0ttWjRIlWtWlUhISFKliyZnJycNHr0aEnSzZs343TswH8ZI6AAAACA/yhLS0uNGDFC3bp1U9OmTdW6dWvlyZNHwcHBOnDggJYuXapevXoZI1/69OmjYcOGydLSUlWrVtXjx481a9Ys3b59O9qpS1EJX8Pp0KFDypMnj7Ho8/tKmzatOnToIA8PDz19+lSOjo66ffu2PDw8ZGFhoQIFCsS7xt27d8vW1jZer41KpUqV5OjoqCFDhuj27dsqUKCAjh49qnnz5qlx48ZRLnRub2+v5cuXa/z48apatar+/vtveXl56e7du/EecRY+OuyXX35RpUqVlCdPHklvg69cuXLp6NGjke6s9668efOqcePGmj59uoKDg1W6dGmdP39eM2bMkKOjoypWrBinWnx8fFS4cOEoR6mlSJFCNWvWlI+Pj27cuBHttLbojidclSpV5ODgIHd3d/Xu3VvZs2fXhg0b5O/vb4RGETVp0kTe3t769ttv1blzZ2XNmlUHDx7UvHnz1KZNG1lZWals2bKaPHmyunXrpjZt2sjS0lIrVqxQsmTJVLVq1TgdO/BfRgAFAAAA/IdVqVJFq1atkpeXl2bPnq379+8rWbJkKlSokKZOnaqvvvrKaNu8eXOlTJlS8+fP18qVK2Vtba0SJUpo8uTJxl3a4iJVqlT69ttvtXLlSu3ZsyfSAubvo3fv3sqYMaOWLVum+fPny9bWVk5OTurbt6/J4uWxyZcvn+rVq6elS5dq37592rRp03vVZWFhoTlz5mj69OlatGiR7t+/ry+++EJ9+/bVt99+G+VrGjdurMDAQK1du1bLli1T5syZVblyZbm4uGjo0KHy9/ePFLxEx9HRUeXKldOUKVN06NAhzZ0713iuSpUqun//vnG3uJiMGTNGOXLk0Nq1azVv3jxlypRJrq6u6tq1a5zWWzp16pQuX76sgQMHRtumUaNGWrt2rVauXKmvv/463scjvQ1X582bp8mTJ8vDw0PBwcGys7PTggULjDs7RmRtba2lS5dqypQpmjRpkp48eaJs2bKpX79+cnNzkyQVKFBAs2fP1syZM9W3b1+9efNGRYoU0YIFC5Q7d+5Yjx34r7MIi+9KgAAAAACAT0JYWJjq1q2rChUq6H//+9+HLgfAJ4wRUAAAAADwH/P06VMtWrRIZ86c0Y0bN9S2bdsPXRKATxwBFAAAAAD8x6RIkUIrVqxQaGioxo4dG68plACQEEzBAwAAAAAAgFnFvkocAAAAAAAA8B4IoAAAAAAAAGBWBFAAAAAAAAAwKxYhBwAA/1knTpxQWFiYrKysPnQpAAAAH51Xr17JwsJCDg4OsbZlBBQAAPjPCgsLM34Qd2FhYQoJCaHf4ol+Sxj6LWHot4Sh3xKGfkuYT6Hf4vPvKEZAAQCA/ywrKyuFhIQob968sra2/tDlfDSeP3+u8+fP02/xRL8lDP2WMPRbwtBvCUO/Jcyn0G9nzpyJc1tGQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAA4D/PwsLiQ5cAAADwSSOAAgAA/2nJkiXTZ599FuVzoaGh/3A1AAAAn6akH7oAAACAD23S5DW6EXjX5LHsX2TQgP7NPlBFAAAAnxYCKAAA8J93I/Cu/P3/+tBlAAAAfLKYggcAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmRQAFAAAAAAAAsyKAAgAAAAAAgFkRQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAigAAAAAAACYFQEUAAAAAAAAzIoACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmRQAFAAAAAAAAsyKAAgAAAAAAgFkRQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZffAAytnZWXZ2dlq4cGGUzw8bNkx2dnby9PRMtH3++eef2r17d6zt+vXrJzs7O+3cuTPR9h3RH3/8oWPHjr3XNjw9PeXs7Gz8bmdnJx8fn/ctLcFevXqlRYsWGb+/W19U4lNzYGCg7OzsdOTIkTjXFLGfE/L6T8GDBw+0evVqs+9n5MiRcnBwUMmSJXX37l2z7+99xff8jEv7hHJ3d1fbtm3Nsu3Y/NuuG3Fx8+ZNbd682fjd2dk5Uf+eiK+wsDCtW7dO9+7d+2A1fEjPnz/X0qVLo30+/Nob3U+nTp30/PlzOTg4aPz48dFup2bNmho6dKg5DgEAAABm9sEDKEmysrLS9u3bIz3++vVr7dixQxYWFom6v06dOunMmTMxtnny5Il27typXLlyacWKFYm6/3AuLi66fv16om5z//79qlOnTqJuMz42bdqkcePGxes15q7ZHP38sZk4caI2btxo1n1cuHBBy5Yt0/fff68NGzYoQ4YMZt3fh+Dm5qY1a9Z86DIS3cd43fj++++1b98+4/c1a9bIzc0tsUuLs99//13u7u4KDg7+YDV8SAsWLJCXl1es7Tw9PbV///5IP5MmTZK1tbXq1KmjzZs3KzQ0NNJrjx8/roCAADVv3twchwAAAAAz+1cEUE5OTjp58qRu3bpl8vjhw4dlbW2trFmz/uM1bdq0SZaWluratasOHDigwMDAf7yGhMiYMaNSpEjxwfYfFhYW79d86Jr/CxLyvsTX48ePJUnly5fXF198Yfb9fQgpU6ZUunTpPnQZie5DfwYT4/xMly6dUqZMmQjVJMw/8Rn7N4vr8dva2ipjxoyRflKnTi1Jatq0qf7+++8oR6muX79e+fPnl729faLWDgAAgH/GvyKAsre31+eff65t27aZPL5lyxbVrl070gioEydOyNXVVSVLlpSjo6MGDRqkBw8eGM+fPn1aLi4ucnBwUOnSpdWjRw/dvHlT0ttpGkFBQZoxY0aM0118fHxUpkwZVatWTVZWVlq1apXJ81FNxXn3sT179qhJkyYqVqyYnJyc5O7urkePHkl6O+VFkgYNGiR3d3djesKcOXNUvnx5VatWTU+fPtWlS5fUqVMnlS5dWkWKFFG1atW0YMGCaOuOOJUmJCREEyZMkLOzs4oUKaIyZcqoV69eun//vqT/nxKxfft2NW/eXEWKFJGzs7NWrlxpbO/evXvq2bOnHB0dZW9vr6+//lpHjx6Nts8GDRpk1BHxC8TcuXNVqVIl2dvbq23btgoICIiyZnd3d7m7u2vChAlycnJSsWLF1KlTJ92+fTvKffr7+6t8+fIaOHCg3rx5E2V/ROzncKdOnTKOuVq1alq7dq3J69auXavatWvL3t5etWvX1uLFi43/kY/uvXry5ImGDh2qsmXLqmTJknJ1dY11pN3OnTvVvHlzFS9eXEWLFlWTJk1MRnW0bdtWQ4cOVfPmzVWqVCljFFNM9b3L3d1d69at09GjR43+ePPmjRYtWqSaNWuqaNGiqlmzppYvXx6pbzt37ixHR0eVLFlSPXv2VFBQUJT78PHxMT5P1atXN/ra399fHTt2lIODgypUqKB+/frpzp07kqTx48erfv36xjYePXqkggULatSoUcZjv/76qxwcHPTy5ctI+/T09FSrVq00c+ZMOTo6qlSpUho0aJCePn1qtIlqallUj4Vvo0SJEurfv78ePnwY5XG++xm/e/euBg4caPRRp06ddO3atShfK0nXrl1Tly5djGtX3759TaZsvXr1ShMmTFDZsmVVvHhxde3a1WQq47Fjx+Tq6qoSJUqoSJEiql27tjZs2GA87+7urp49e8rNzU0lSpTQvHnzJEm+vr6qXbu2ihYtqubNm2vJkiXGufBun8TlM3j9+nXjfa1YsaIWLlyoGjVqRDuN782bN5o0aZIqV66sIkWKqFatWsb5FtV1IzQ0VHPmzFHNmjVVpEgRlShRQh06dDBGMrZt21ZHjx7VunXrjPfj3Sl4u3fvVosWLYxzb9y4cXrx4oXJMa9Zs0bt2rWTvb29KlSooBkzZhjPBwcHa/DgwSpfvryKFi2qRo0aaceOHVEe35EjR+Tq6ipJqlatmtEPsf1d9a7YrrdRTTOM+JiPj48qVaqkVatWqUKFCnJwcFC3bt1M3jtnZ2fNmjVL7du3l729vWrUqBFpem5sdTs7O2vChAmqU6eOHB0d1bZtW82YMUNBQUGys7N7r/+wKVGihHLnzh1pxGZISIi2bt2qpk2bGo+tX79edevWVdGiRVWxYkWNGTNGISEhCd43AAAAzOtfEUBJUu3atU0CqJCQEO3cuVN169Y1aXf69Gm1bdtW+fLl06pVq+Th4aFTp06pffv2evPmjd68eWMENhs3btSiRYt08+ZN/e9//5P0dppGlixZ5ObmFu16IX/++adOnz6tWrVqKWXKlKpSpYrWrl2rV69exfl47t+/r+7du6tp06basmWLZsyYod9//10TJ06U9HbKiyT973//0+DBg43XrVu3TosXL9a0adNkaWkpNzc3pUmTRitWrNCmTZtUq1YtTZgwQefPn4+1hokTJ2rHjh0aP368tm/frvHjx+vw4cP66aefTNqNGzdOnTt31tatW1WlShWNGDFCN27ckCSNGDFCL1++lLe3t3x9fZUrVy517dpVz58/j7S/OnXqGP28f/9+OTg4SJKCgoJ0/PhxzZ07V97e3rpz547JMb9r06ZNevjwoby9vTVv3jydO3dO06ZNi9Tu2rVrateunSpVqqTx48fL0tIyUpvo+nnx4sXq0qWLtmzZoooVK2rIkCFGcLBy5UpNnDhR3bt31+bNm9W7d2/NmzdPkydPNtl2xPcqZcqU6tixo27cuKE5c+Zo1apVKl68uFq1aiU/P78oj/Ps2bPq0aOH6tatK19fX61atUrp0qXTwIEDTb5ErV69Wq6urlq2bJkqVqwY5/rCDR48WLVr15aDg4PRH+PHj9esWbPUvXt3+fr6qnXr1hozZoyxDk9QUJBatmypZMmSafHixVqwYIHu3LmjNm3amAQ84erUqWN8nlavXq3Bgwfr9u3bcnFxUY4cObRmzRrNnj1bT58+VcuWLfX8+XNVrVpVly5dMgKpQ4cOKSwszCS43L17typUqKDkyZNHeWxnzpzR/v37tWDBAs2cOVO///67evfuHWXb6AQFBenw4cNauHChZs+erTNnzhiBSExev34tNzc3Xb58WbNmzdKqVasUGhqqDh06RBmGPn78WK1bt1ZISIgWL16shQsX6vr16yb1njhxQo8fP9ayZcs0Z84cnTx50rhm3L59W+3bt1fRokW1bt06rV+/Xvb29ho8eLBJSLV9+3aVK1dOa9euVb169fTbb7/p+++/V7NmzbRx40Y1adIk2nMlXEyfweDgYLVr106hoaFavny5pk6dKh8fH+OaEZVly5Zp27Ztmjp1qrZv3642bdpoxIgROnbsWJTXjSVLlsjLy0vu7u7avn27Zs6cqYCAAGNtIE9PTzk4OKh27dpRTon85Zdf1KVLF1WpUkU+Pj4aOXKktmzZor59+5q0mzBhgho3bqzNmzerTZs28vT01O+//y5J8vDw0MWLFzV37lxt2bJFlSpVUp8+faIMVxwcHEzO/zp16sT6d1VU4nO9jc79+/eN69LixYv1119/qUOHDnr9+rXRZtasWXJwcND69evVunVrDRs2TFu2bJEU+9+x4by9vTVkyBDNnz9fs2bNkpubm7JkyaL9+/e/96jlpk2baseOHSbB865duxQcHKyGDRtKejvld8iQIerRo4e2b9+usWPHasOGDZo/f/577RsAAADmk/RDFxCudu3a8vLy0u3bt5U5c2YdOHBA6dKlU6FChUzaLViwQHZ2dsYipHny5NGPP/6ohg0bav/+/SpevLgePHigTJkyKVu2bMqePbumTZtmjDJIly6dLC0tZW1trTRp0kRZi4+Pj5InT67q1atLkurWravt27dr586dql27dpyO5/bt2woJCdHnn3+ubNmyKVu2bJo9e7bxD/iMGTNKkmxsbGRjY2OMjHJxcVHevHklvf0i4erqqtatWxtTS3r27Kn58+fr4sWLKliwYIw1FC1aVLVq1VKpUqUkSdmyZVO5cuV06dIlk3bt2rVTtWrVJEl9+vTR0qVLderUKWXPnl3Xr19X/vz5lT17dqVIkUKDBw9W/fr1owx7UqRIIRsbG5Pjk96u8TV58mSlSpVKkvT1119r6tSp0dZtY2OjUaNGycrKSnny5FGdOnW0Z88ekzaBgYEaOHCgKleurNGjR0e7Tlh0/dytWzdj5ESfPn20fPlynTt3Tjly5NCsWbPUpUsXI/zMnj27nj59qpEjR6pXr17GtiO+V4cOHdLJkyd1+PBh47zq27evjh8/riVLlkS5qK6lpaWGDh0qFxcX4zFXV1d17NhR9+7dM77EFSxY0GSkUGz1vRvW2NjYKEWKFLKyslLGjBn19OlTLV++XO7u7sZ2c+bMqcDAQM2dO1fffPONli1bJmtra02ePFnJkiWTJE2fPl3VqlXThg0b1Lp1a5N9pEiRQra2tpLefsZsbGzk5eWlLFmyaMiQIUa7adOmqWzZstq2bZsaNGggW1tbHThwQI0aNdLBgwdVrVo17dy5U3fv3lWGDBm0d+/eGAMlCwsLTZs2TZkzZ5b09qYFHTt21JUrV5Q7d+5oXxdR8uTJNXXqVGPNqmHDhsnNzU3Xrl1Tjhw5on3doUOHdPHiRW3btk25cuWSJP3www9atGiRHj16FGmq3pYtW/Ts2TP9+OOPRl/98MMP2rx5sxE4ZsyYUaNHj1aSJEmUO3du1alTRwcPHpQkvXz5Uj169FD79u2N8/27777T+vXrFRAQYNRva2urDh06GPsdMGCAatWqpfbt20uScuXKpYCAgBgX/Y7pM7hlyxbdv39fPj4+xrk+adIkIxiIyvXr12Vtba0vvvhCmTJlUps2bZQ7d27lypUryuvGl19+qQkTJqhq1aqS3l67atWqZfwnRZo0aWRlZaUUKVJEOSVy7ty5qlGjhrp27Wocc1hYmLp166bLly8bn9tGjRoZdXfu3FleXl46fvy4SpcurevXrytlypTKnj27UqdOrV69eql06dLGexdRsmTJTM7/FClSxPp3VeXKlaPsp7heb6MTPoquSJEikt6+N3Xq1NGhQ4dUsWJFSVKFChXUvXt3SVLu3Ll16tQpLV68WHXq1Ilz3ZUrV1a5cuWM/VpbW8vS0tLk2h+Vjh07Rnk8Hh4eqlSpkqS378vUqVP122+/qVatWpLejnaqXr260qZNK+nt3wEWFhbKli2bPv/8c33++efy8vIy/p4BAADAv8+/JoAqUqSIsmfPru3bt8vV1VVbtmyJNPpJki5duqTy5cubPFagQAHZ2Njo4sWLqly5sjp06KDRo0dr+vTpKlu2rCpXrhzn4Oj169fauHGjKleubPxDtkqVKkqZMqVWrFgR5+0ULFhQ9erVU+fOnZUxY0aVL19eVapUUY0aNWJ8XcQvvOnSpZOLi4s2bdokPz8/Xb9+XRcuXJCkaKdbRdSwYUMdPHhQkydPVkBAgK5cuaKrV68agVS4PHnyGH8O/yIYPtqre/fuGjBggLZv366SJUuqQoUKqlevXrQjUqKSPn16ky8FqVOnNpkK864vv/xSVlZWJjW9O/psxIgRevXqlbJmzZqgRerDAwNJxhfHly9f6v79+7p165Z+/PFHeXh4GG1CQ0P18uVLBQYGGsce8b06d+6cwsLCjC/M4UJCQqKcPia9PUdsbW01d+5cXblyRdeuXTPe34gjDSLuJy71RXw/o3LlyhW9evVKJUuWNHm8TJkyWrx4se7du6dLly6pSJEiRvgkvQ0HcuXKFSnAjI6fn5/+/PNPYyRcuJcvX8rf319JkyZVxYoVdfDgQTVq1EgHDhzQsGHDdOrUKR05ckR58uTR33//HeUX9XA5c+Y0wifp7fQd6e11Iq4BVI4cOUwWTC9WrJiktyMhYwqgLl26JFtbW5NzKXPmzPr++++jbZ8zZ06TAKNAgQIqUKCA8fuXX36pJEn+f2Cqra2t8Vn58ssv1aRJEy1ZskSXLl0yuR5Ed75Ib8/Nr776yuSx0qVLxxhAxfQZ9PPzU65cuUwC/PBrcHRat26tnTt3qnLlyipYsKDKly+vunXrKn369FG2d3Z21qlTp+Th4aGrV6/q6tWrunz5ssl7HZNLly5F+vujTJkyxnPhAdS7n5WIx9mxY0d17txZTk5Osre3V/ny5VW/fv0Yj/PdGmL7u+pdiXG9TZkypRE+hR+jra2tLl26ZARQjo6OJq9xcHAw7gwb17pj+mzE5IcffjA+YxFlypTJ+HOGDBlUuXJl+fr6qlatWrp3757279+vOXPmGG0qVqwoBwcHNWvWTF988YUxHTrisQMAAODf5V8TQEn/Pw2vZcuW2rVrV5S3jY9uodOwsDDjC1P//v3l4uKiPXv26NChQxo9erTmz5+v9evXm3yhjsru3bt19+5d/fLLLyajr968eaMjR47o6tWrJl84I4o4xUGSpkyZom7dumnv3r06ePCgBgwYoJIlS2rx4sXR7j/iQsB37txRy5YtlS5dOjk7O6tChQoqWrRojF/IIxo2bJi2b9+uRo0aydnZWd26dTNGmUUUVZ+E93ONGjW0b98+7du3TwcPHtTChQs1Y8YMrVq1Svny5YtTHfH53/vo6nlX48aNlT9/fo0fP141atRQ/vz547WPiF/yw4WFhRnB3qBBg0z+dz9c1qxZ9ffff0syfa9CQ0OVKlWqKNfAie54jh49qvbt26tKlSoqWbKk6tevr+DgYHXr1s2k3bv7ia2+2ET3GQrfdtKkSWNsEzGYiEloaKjKli2r4cOHR3ou/Et8tWrVNHbsWF2/fl23b99W6dKl5ejoqCNHjigwMFAlS5Y0RjxE5d1awoOY6M65dz+jUbUN30Zsx5k0afwun3FpH9Nn5fLly3JxcVHhwoVVrlw5ffXVV0qbNm2kO4K9u5h40qRJ4xRYRxTTZ9DS0jLe28uZM6d27Niho0eP6sCBA9q9e7fmzZuncePGqXHjxpHaz507VzNnzlTjxo3l5OSkdu3aadeuXdq8eXOc9hfV+Rvx/A4X07XPwcFBe/bs0YEDB3To0CGtX79eP/30k+bPny8nJ6cE1RD+eHTnVkKut++e01Ft+82bNybn1rvnYmhoqHFNjGvdCV20PnPmzHEKr5o1a6aePXvq0aNH8vX1VebMmU2uecmTJ9eSJUvk5+dn3Emvc+fOatSoUbzvqAgAAIB/xr9mDSjpbQB1/PhxrV27VtmzZ49yJIednZ3++OMPk8cuXLigp0+fKk+ePLpy5YqGDx+u9OnTq1WrVpo+fbrmz58vf39/Y7RATNauXau0adNq/fr1Jj+zZs1SWFiYsRi5lZWVnj17ZvLaiIsPnzp1SmPHjlXu3LnVrl07zZ07V2PHjtXhw4dNFh2OSfg6LMuXL1fXrl1Vo0YNYwpZbHccevDggVauXKnhw4dr0KBBatKkiQoWLKgrV67E+W5FISEhGjdunG7cuKE6derohx9+0M6dO5UkSRLjf8vflZDRSAlRt25dubi4qEiRIho0aFC0a6rEV/r06ZUuXTrduHFDOXLkMH6iW4cqXP78+fX06VO9evXK5HXz5s3Trl27onzNggUL5OjoKE9PT7Vr107ly5fXX3/9JSn69zeh9UV8X/LkySMrK6tIn6Njx44pY8aMsrW1lZ2dnc6cOWOyFtXdu3d17dq1WEdYhcuXL5/8/f2VNWtWo05bW1uNHTvWGEVVsWJFPXz4UEuWLFGxYsVkbW2tcuXK6fDhw/rtt9+MqaHRuXr1qp48eWL8fuLECUkywmMrKyuTNauiWiA8ICDApM0ff/whCwsLY5RMdPLmzatHjx6ZbPP+/ftydHTUyZMno2wfEBBgUu+5c+fk5OQU6Q6gUVmxYoXSp0+vhQsXqmPHjqpcubKx9lNMn+kCBQro1KlTJo+F91NCFChQQNeuXTNZqN3f39/kuN61ZMkS7dixw7hhgK+vr5ycnIx1h969bsyePVvdunXTiBEj1LJlSxUvXlwBAQFxvnbZ2dnp+PHjJo8dO3ZMUuRRT9GZPn26/vjjD1WrVk1DhgzR9u3bjVG6UXn3GGL7u+pdcbnevns+P336NNLfJw8fPjRZj+vPP//U06dPTf5D5d2bIxw/ftx4Pr51R3f876tSpUpKkyaNdu7cqc2bN6tJkyYm/3GwZ88ezZgxQ4UKFdJ3332nJUuWqGfPnsY5BQAAgH+ff1UAVbBgQeXIkUNTpkyJcvqdJH377be6ePGiRo8eLX9/fx05ckT9+/dXoUKF5OTkpLRp02rz5s0aNmyY/P39dfXqVa1bt062trbGlJyUKVMqICDAZOFe6e0X7L1796pFixYqUKCA8ufPb/xUq1ZNZcqUkY+Pj0JCQlS8eHE9fPhQXl5eCgwM1IoVK7R3715jW6lSpdKyZcs0adIkXbt2TZcuXdKWLVuUM2dOY0SHtbW1/P39o70rUpYsWRQcHKxt27bp5s2b2r9/v7GIbmx3+kmVKpVsbGy0a9cuXbt2TRcvXtTQoUN17ty5ON8lKFmyZDpz5oyGDh2qkydPKjAwUD4+Pnr+/HmkaVXhrK2tJb1dYDumaXaJIUmSJBo9erQuXrwY48KzsfVzRBYWFurYsaN+/vlneXt76/r16/rll180YsQIpUiRItqRIRUrVlTBggXVp08fHT58WNeuXdO4cePk4+MT7Ze2rFmz6uLFizp27JgCAwO1du1aY1pddO9RQuuztrbW33//rRs3bihVqlRq2bKlpk+frk2bNunatWtaunSpli1bJjc3N1lYWKhVq1Z69uyZBgwYoAsXLuj06dPq1auX0qZNG+1n810uLi568uSJ+vfvrwsXLujChQvq06ePzpw5Y4xYs7GxUalSpbRy5UpjVImTk5OuXbumU6dOxRpAPX/+XAMHDtSlS5d08OBBjRo1SnXq1FG2bNkkScWLF9fq1at1/vx5+fn5acSIEZH66OXLl+rdu7f8/Px04MABjR49Wo0aNTK2ER0nJycVKVJE33//vU6fPq0///xT33//vdKlS6fChQtHal+/fn3Z2toafXr27FkNHz5c+fPnV5YsWWLtzyxZsujWrVvas2ePgoKCtGPHDo0YMUJSzNeDjh07atu2bVq4cKECAgK0du1aeXt7x7q/6NSrV09p06Y13teTJ09qwIABkqIPIe7fv69Ro0Zp165dCgoK0r59+3T+/HnjOvLudSNr1qw6cOCALl++rCtXrmjq1KnasWOHyXGmTJlSQUFBUYZ3HTp00I4dOzRr1ixdvXpVv/32m0aPHq2qVavGOYC6ceOGhg8frkOHDikoKEjbt2/XzZs3Y732XbhwQc+ePYv176p3xeV6W7x4cW3ZskXHjx/X5cuX9b///S/KUXMDBgzQ2bNndfLkSQ0cONC4I2y4zZs3a+nSpQoICND8+fP1yy+/GOuGxbfuiMf/6NEjXb16NcYbdjx69Eh37tyJ9PNukJY0aVI1atRIS5cu1blz59SkSROT562srDRz5kwtWrRIN27c0NmzZ7V79+5o3x8AAAB8eP+qAEp6Owrq6dOnqlOnTpTPFytWTPPnz9fZs2fVqFEj9e7dWw4ODlq4cKGsrKyUNm1azZs3T0FBQWrRooUaN26swMBALVy40FiHqG3bttq9e7fc3NxMtr1x40aFhYWpVatWUe7722+/1cOHD7V161aVLVtWPXr00IIFC1S3bl0dOHBAPXv2NNrmyZNHnp6eOnz4sBo1aqRWrVrJ0tJS8+bNM/4X183NTd7e3tHecSt84eDx48erdu3aGjt2rJo1a6bSpUtH+h/sd1lZWcnDw0OXLl1S/fr11aFDBwUHB6tv3766fPmygoODY3x9uKlTpyp79uzq0qWLatWqpRUrVmjy5MmR1pEKV7ZsWRUrVkxff/21fvvttzjt433ky5dPHTt21IwZM3T58uUo28TWz1G1d3d3l7e3t+rUqaMxY8aoRYsWGjlyZLSvsbS01IIFC1SkSBH17t1bDRo00O+//64ZM2ZE+6WtZ8+eKl68uDFtZPXq1Ro7dqxSpEgR4/ubkPoaNWqk4OBg1atXT7dv39agQYPk6uqqyZMnq27dulq+fLmx+LYkffHFF/L29tbjx4/VsmVLtW/fXhkzZtTy5cuVOnXqOPVj9uzZ5e3trWfPnqlVq1Zq06aNrKystGTJEpOFo6tWraqQkBCVLVtWkvT5558rZ86cyps3r7Jnzx7jPrJmzaqCBQuqdevW6tu3r6pVq2ay4PuIESNka2urFi1aqEePHmrevHmksKdIkSIqWLCgXF1d1bt3b1WqVCnKaYPvSpIkiWbNmqUsWbLo22+/VatWrZQ8eXLNnz8/ymlQn332mby8vPT69Wt9/fXX6tChg/LmzRvjyLWIXF1dVbt2bQ0cOFD16tXTTz/9pL59+ypbtmwxni+VKlXSqFGjtHTpUtWrV0+rV69Wq1at4jyV8l3JkiXT/Pnz9erVK6NfmzZtKin6aYvdu3dXs2bN9MMPP6hmzZoaNmyYWrVqpU6dOkmKfN2YOHGiXrx4oaZNm6pNmza6dOmSRo4cqXv37unmzZuS3t7M4NKlS2rQoEGkEZA1a9bUjz/+qK1bt6p+/foaPny46tatG+e+lqThw4fLyclJAwYMUM2aNeXh4aH+/ftHu9h6/vz5VblyZfXu3VsrV66M9e+qqMR2ve3bt68KFSqkb7/9Vu3atVPx4sWNdc8iql+/vr777jt16NBB+fLl05w5c0zCwcaNG+uXX35R/fr1tWHDBk2bNs2Y2p2QuiXpq6++UsaMGdWgQYNo7/wpST169FCFChUi/YTf9COipk2bGqMEP//8c5PnypUrpzFjxmjNmjWqV6+e2rdvrxw5cujHH3+Mdt8AAAD4sCzC4jqnAQD+RTw9PbVu3Tr9+uuvH7qUf7WjR48qQ4YMJouyz549W2vWrNHOnTvjvb3AwEAFBASoQoUKxmO3b99WpUqVtHTp0mjDaZifj4+PBg0apIsXL0bbxtnZWY0bN1aPHj3+wcr+3cID3HleB+Tv/5fJc3nyZNX0aZ0/RFn/es+fP9f58+dVsGBBYwQgYke/JQz9ljD0W8LQbwlDvyXMp9Bv4f+WKlq0aKxt/3UjoAAAiWf//v1q3769Dh8+rJs3b2rXrl1avHhxtCN5YvPy5Ut999138vLy0o0bN+Tn56ehQ4cqZ86cUd7dDAAAAACkf9ld8AAAiat79+7GWln3799X1qxZ1a5dO2PNn/jKkyePfvzxR82ePVvTp09XihQp5OTkFOsULQAAAAD/bQRQAD5KPXr0YBpRHCRLlkxDhgzRkCFDEm2btWrVUq1atRJte0gcTZo0ibRY97uYsgoAAIAPhSl4AAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAigAAAAAAACYFQEUAAAAAAAAzIoACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmRQAFAAAAAAAAsyKAAgAAAAAAgFkRQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAigAAAAAAACYFQEUAAAAAAAAzIoACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWST90AQAAAB9a9i8yxOkxAAAAJAwBFAAA+M8b0L9ZlI+HhoYqSRIGjAMAALwv/kUFAAD+00JCQhQcHBzlc4RPAAAAiYN/VQEAgP+8sLCwD10CAADAJ40ACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmRQAFAAAAAAAAsyKAAgAAAAAAgFkRQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAA4D/PwsLiQ5fwUbGwsNBnn31Gv8UT/ZYw9FvC0G8A/m2SfugCAAAAPqRkyZLps88++9BlfFQ+++wzFSpU6EOX8dGh3xKGfkuY2PrtTWioLJMwHgHAP4cACgAA/OcN816ngNt3P3QZAPCPyJk5g0a1afyhywDwH0MABQAA/vMCbt/VxaBbH7oMAACATxZjLgEAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmRQAFAAAAAAAAsyKAAgAAAAAAgFkRQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAigAAAAAAACYFQEUAAAAAAAAzIoACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmRQAFAAAAAAAAsyKAAgAAAAAAgFkRQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAihEqXv37mrevHmkx1u0aCE7OzsdPXrU5PGNGzeqQIECunfvntzd3dW2bdtErykgIEB2dnZq1KhRom9bkp4/f66lS5e+93bs7Ozk4+MjSfL09JSzs/N7bxOftrZt28rd3f0f329gYKDs7Ox05MgRs+0jLCxM69at071798y2j8Rw5MgR2dnZKTAwMMHbiPjZTwy//fabLl++HO3z/8T7F5PYztv49Gli9D8AAAD+3QigECUnJyedP39eL168MB57+PChzpw5o6xZs2rfvn0m7Y8dO6YCBQooffr0ZqvJx8dHuXLl0vnz53Xq1KlE3/6CBQvk5eWVqNt0c3PTmjVrEnWbQGLJmjWr9u/fLwcHB7Pt4/fff5e7u7uCg4PNto9PUVBQkDp37hxjcPdPvH/vw8HBQfv371fWrFk/dCkAAAD4FyCAQpTKli2rV69e6cyZM8ZjBw8eVPr06dW0adMoA6hy5cqZrZ43b95o/fr1atKkifLkyaMVK1Yk+j7CwsISfZspU6ZUunTpEn27QGKwtLRUxowZlSxZMrPtwxyfq/+CuPTbP/H+vY9kyZIpY8aMsrS0/NClAAAA4F+AAApRypMnjzJnzqzjx48bj+3bt08VKlRQhQoVdOHCBd29e1eSdP/+ffn7+6tChQpG21evXmnChAkqW7asihcvrq5duxrtu3XrJldXV5P9XblyRXZ2dvrzzz+jrGf//v26ffu2ypcvr6+++kpbt27V48ePTdpENf0l4mPBwcEaPHiwypcvr6JFi6pRo0basWOHpLdT5WbMmKGgoCBjGoi7u7t69uwpNzc3lShRQvPmzVNoaKjmzJmjmjVrqkiRIipRooQ6dOig69evR1n3u1Pwjh07JldXV5UoUUJFihRR7dq1tWHDBuN5d3d3ubu7a8KECXJyclKxYsXUqVMn3b59O8rth/e1h4eHqlatqmLFiqlJkyY6cOCA8by/v786d+4sR0dHlSxZUj179lRQUJDxfNu2bTV58mT973//U6lSpVSiRAn169dPT58+Ndp4eXmpevXqKlKkiJydnTVz5kzjC3JU0wzffczOzk4rV66Ui4uLihYtqtq1a+v48eNauXKlqlSpohIlSqh3794mI+6OHz+u1q1by97eXlWqVNHIkSNNanJ2dtaECRNUp04dOTo66ujRowoICFD79u1VsmRJOTg4qH379rp48WK0fffo0SMNGTJEFStWVOHCheXk5KQhQ4YYo3WOHDmiQoUKae7cuXJ0dFSTJk0UGhqq27dvq0+fPipVqpQcHR3VuXNnBQQERLsfSTp9+rTatWsnBwcHlStXTsOHDzcZFfTs2TMNGjRIpUqVUsmSJeXu7q7nz58bz+/cuVPNmzdX8eLFVbRoUTVp0sQkCG7btq2GDh2q5s2bq1SpUtq4caMkadGiRXJ2dpa9vb2+/fZbzZgxw3hv3p3CFZdz4ezZs2rdurWKFSumatWqaePGjSpUqFCU08COHDlifNarVatmfBZPnDghV1dXlSxZUo6Ojho0aJAePHggSerRo4c6d+5sbOPChQuys7MzGZ34888/q0aNGpKkmzdvqk+fPnJyclLhwoVVqVIlTZo0SaGhoZLejpysUaOGfvjhB5UsWVJdu3aV9Paz2Lx5c9nb26tBgwa6cOFCjO+f9HZKXJMmTWRvb68aNWpo2rRpCgkJSXD7Z8+eafTo0apQoYIcHBzUpk0bnT17VoGBgapWrZokydXVVZ6enlGeizdu3DB5/8LCwrR48WLVrFlT9vb2qlu3rjZt2hRlbZ6enqpQoYLRT9Lba6SDg4NWr14t6e21o2PHjnJwcFCFChXUr18/3blzx2Q7MZ23706ri+1aFVFYWJjmzZunatWqqVixYmrYsKFxToeL6boEAACAfx8CKETLyclJJ06cMH7fv3+/ypcvL3t7e9nY2Gj//v2SpD/++EMpUqRQyZIljbYnTpzQ48ePtWzZMs2ZM0cnT57UxIkTJUlNmjTR0aNH9ddffxnt169fr6JFiypfvnxR1rJ27Vp9+eWXKly4sOrUqaPg4GCtX78+Xsfj4eGhixcvau7cudqyZYsqVaqkPn36KDAwUG5ubnJzc1OWLFlMpoxs375d5cqV09q1a1WvXj0tWbJEXl5ecnd31/bt2zVz5kwFBARo/Pjxse7/9u3bat++vYoWLap169Zp/fr1sre31+DBg41wTpI2bdqkhw8fytvbW/PmzdO5c+c0bdq0aLc7ZswYrVixQt9//718fX1VsWJFde7cWVeuXFFQUJBatmypZMmSafHixVqwYIHu3LmjNm3amIQKixYtUoYMGbRmzRpNmjRJu3bt0qJFiyRJv/76q+bMmaORI0dqx44d6t+/v3766adIXwZjM3XqVHXo0EEbNmyQjY2NOnfurO3bt2vu3LkaN26cdu7caXzxvXDhgr799ltVrFhRGzdu1OTJk3Xu3Dm5ubmZfMH09vbWkCFDNH/+fBUvXlx9+/ZV5syZtXbtWq1evVpJkiRR9+7do63J3d1dfn5+mjFjhrZv365BgwZp/fr1WrlypdHmzZs32rNnj1auXKkxY8boxYsXxhpn3t7e+vnnn5U2bVq1aNEi2qDwxo0b+uabb5QpUyatXLlSnp6eOnDggEaOHGm02bFjhzJlyiQfHx9NnDhRW7Zs0bx58yS9DX169OihunXrytfXV6tWrVK6dOk0cOBAk0Bj9erVcnV11bJly1SxYkUtXbpUU6dOVdeuXbVhwwaVKVNGM2fOjPF9iulcuH37tr755htly5ZNa9eu1bBhwzR16lS9efMmym05ODjI09PTqK1OnTo6ffq02rZtq3z58mnVqlXy8PDQqVOn1L59e71580ZVq1bV0aNH9fr1a0nSgQMHZGFhYRJw7d692whounTpoidPnmjhwoXatm2b3NzcNH/+fP36669G++vXr+vvv//W+vXr1adPH924cUNubm4qWLCg1q1bp27dumnWrFkx9svevXvVu3dvtWjRQps2bdLw4cO1detWDRgwIMHte/furb1792rcuHFav369smfPLjc3N6VMmdL4LHh6esrNzU1S5HPRwsLCZJ/z5883PmebNm3S119/rYEDB+rw4cOR6mvUqJHu3r1r0q87d+5UWFiYateurdu3b8vFxUU5cuTQmjVrNHv2bD19+lQtW7Y0CUZjOm/fFdO16l1Tp07V8uXLNXToUPn6+srV1VUjRoww1ulLrOsSAAAA/jlJP3QB+PdycnLSuHHjFBYWposXL+rOnTsqX768LC0t5eTkpH379qlRo0b6/fffVapUKSVPntx4bcaMGTV69GglSZJEuXPnVp06dXTw4EFJUuXKlZUhQwZt3LhRnTp1UmhoqDZs2KDvvvsuyjoePHigX3/9Ve3bt5ck5c+fX/nz59fKlSsjjaSKyfXr15UyZUplz55dqVOnVq9evVS6dGnZ2toqZcqUsra2Nqa0hLO1tVWHDh2M37/88ktNmDBBVatWlSRly5ZNtWrV0rZt22Ld/8uXL9WjRw+1b9/e+OL43Xffaf369QoICFCGDBkkSTY2Nho1apSsrKyUJ08e1alTR3v27Ilym0+fPtWaNWs0dOhQ1apVS5LUp08fhYWF6enTp1q7dq2sra01efJkY5rO9OnTVa1aNW3YsEGtW7eWJOXNm1d9+/aVJOXMmVPly5c3wsfr168rWbJkypYtmz7//HN9/vnnypQpkz7//PM4970kNW3a1Bh507BhQ40aNUrDhg1Tzpw5lT9/fs2fP98YAefl5aXy5csbI2Fy5sypKVOmqHr16jp69KgcHR0lvT2XIk79vH79usqVK6ds2bLJyspKY8eO1ZUrVxQaGqokSSLn7eXLl1fp0qVlZ2cnSfriiy/k7e2tS5cumbRzc3NTzpw5Jb0NUh4/fqxJkyYpadK3l9AxY8boyJEjWrVqlXr06BFpP6tWrVKaNGk0duxY4zU//PCDScBrb2+vPn36SHp7npUvX15nz56V9Haq1dChQ+Xi4mK0d3V1VceOHXXv3j0jMC1YsKDq169vtPHy8pKrq6uaNWsm6W1Yc+7cOfn5+UX3NsV4LqxcuVI2NjYaM2aMrKyslDdvXg0ZMsQYVfSuZMmSydbWVpKULl06pUiRQgsWLJCdnZ2GDh0q6e1oyx9//FENGzbU/v37VaVKFQ0ePFgnT55UqVKldPDgQVWrVk2HDh3S69evFRISoqNHj6pz58568eKFGjZsqNq1axt90K5dO82bN08XL15U9erVjVq6du2q7NmzS5KmTJmiDBkyaPjw4bK0tFSePHn0119/ady4cdH2y+zZs9WiRQt9/fXXxns0cuRIffPNNwoMDNQXX3wRr/YhISHau3evvLy8jNGjI0aMUOrUqfXo0SNj6m749SlcxHMx4oLd4aOfXF1djRtItG3bVi9evDDCvIiyZ8+u0qVLa+PGjXJycpIk+fr6qnr16kqVKpXmz5+vLFmyaMiQIcZrpk2bprJly2rbtm1q0qSJpJjP24hiu1ZF9Pz5cy1atEg//vijqlSpYmw7KChIXl5eat26daJdlwAAAPDPIYBCtJycnPTw4UNduXJF+/fvV6FChYwvReXLl9eMGTMkvZ3KUrduXZPXfvnllyZf+G1tbY3pVUmTJlWDBg20YcMGderUSYcPH9b9+/dVr169KOvw9fXVq1evVKdOHeOxunXraurUqTp27JhKlSoVp+Pp2LGjOnfuLCcnJ9nb26t8+fKqX7++bGxson1Njhw5TH53dnbWqVOn5OHhoatXr+rq1au6fPmyMmfOHOv+v/zySzVp0kRLlizRpUuXdP36dWPaT8QRJF9++aWsrKyM321sbPTq1asot3n16lW9evVKxYoVM3k8PEDw9PRUkSJFTNaIyZgxo3LlymUSsuTOndvk9TY2NsYUxwYNGmjt2rWqWbOm8ubNq3LlyqlmzZrx/qIXsS8/++wz41jDpUiRwhjN4+fnp2vXrkW5uLK/v78RQL37/vTp00djx47VsmXLVKZMGVWsWFH16tWLMnySJBcXF/36669at26dAgICdPnyZQUGBkbqj/Av/OG1PXr0SKVLlzZp8/LlS/n7+0e5n0uXLqlw4cJG+CS9XWetbNmyUe5DevuZCZ8qWbBgQdna2mru3Lm6cuWKrl27FuW5E7E/Hjx4oKCgIBUvXtxku6VKlYoxgIrpXPDz81ORIkVMzs93+yE2ly5dUvny5U0eK1CggGxsbHTx4kVVrlxZxYoV04EDB2Rvb69jx47p559/1u7du3X27Fndu3dP1tbWKlGihCwtLdWmTRtt27ZNp0+f1rVr13Tx4kXdvXvXZGqZZNq/ly5dUqFChUzWJipRokSMdfv5+en06dMmNxUIH43n7+8fKYCKrX349MuI70/y5Mk1aNAgSYr2bnDvnifhHjx4oDt37kS6FnTs2DHaY2ratKlGjx6tESNG6NmzZzpw4IAxesnPz09//vlnpM/gu+d5TOdtRLFdqyKOxLp8+bJevnypfv36mXx2wwPIFy9eJNp1CQAAAP8cAihEK3PmzMqVK5dOnDihAwcOmKzxVKFCBQ0bNkznzp3ThQsXNHbsWJPXxrbobNOmTeXl5aWzZ89q48aNqlatmjFS4l3h68Y0btzYeCz8i9zy5cujDaDe/V9/BwcH7dmzRwcOHNChQ4e0fv16/fTTT5o/f74xAuBdKVKkMPl97ty5mjlzpho3biwnJye1a9dOu3bt0ubNm2M8XuntlyoXFxcVLlxY5cqV01dffaW0adMaoxXCxWdB4YhBQFSiWw8lNDTU5LUx7TNdunTasGGDcR7s379fS5YsUY8ePaKd3hbViIuI4Uu46IKh0NBQ1a9f32QtoIj1hHv3/WndurVq1aqlPXv26NChQ5o+fbp++uknrV+/3hhhFnEfnTp10p9//ql69eqpTp06Kly4sDEyJ6KIo/tCQ0OVK1cu/fTTT5HaWVtbR3k8UR37u2L6zBw9elTt27dXlSpVVLJkSdWvX1/BwcHq1q2bSbuI/RG+z/iuiRPTuWBpaRkp2Imv6OoJCwszzklnZ2ft3LlTZcqUUerUqWVvb6+iRYvqyJEjCgoKUtWqVWVpaannz5+rTZs2evHihWrVqqXGjRvL3t7eGNkXUcS+sbCwiHQcsb1HoaGh6tChg8l1KFzEUZNxbR8+IjS+Ip6LEcV2LYjKV199pZEjR+q3337T3bt3lTFjRiMUDQ0NVdmyZTV8+PBIr4sY2sd1gfH41Bd+jkybNi1SICq9PUdTpEgR7+sSAAAAPizWgEKMypUrp+PHj+vEiRMmoxayZcumnDlzaunSpUqXLp0xhSmu8uTJIwcHB23dulW7du0ypnO8y8/PT+fPn1fnzp21fv1642fDhg2qWLGiduzYYSxebGVlZTKV49q1aybbmj59uv744w9Vq1ZNQ4YM0fbt25U9e3Zt375dkiKtpxKV2bNnq1u3bhoxYoRatmyp4sWLKyAgIE5f8lesWKH06dNr4cKF6tixoypXrmys/ZTQhXNz5MghKysrk7sVSlKLFi20aNEi2dnZ6cyZMybrBN29e1fXrl1Tnjx54rSPjRs3avny5cYC5qtWrVLz5s21ZcsWSW/7/dmzZyavebfv4ytfvny6fPmycuTIYfy8fv1a48aNM1k7LKJ79+5p1KhRevXqlZo0aaJJkyZp48aNunPnjo4ePRqp/fnz57V37155eHiof//+atCggb788ktdv349xvcjf/78unnzpmxsbIzaPv/8c02ZMkW///57lK/Jmzev/Pz8TEYr/fLLL3J2dtbLly9j7Y8FCxbI0dFRnp6eateuncqXL2/0Q3S12tjYKFu2bDp58qTJ4+/+Hh8FChSQn5+fyYi8iNMIo/Lu58rOzk5//PGHyWMXLlzQ06dPjXPS2dlZZ8+e1S+//GKEw+XKldPhw4dN1n/av3+/zp07pyVLlqhnz56qU6eOUqVKpXv37sX4HhYoUEBnz541+VxENW0sonz58unq1asm5+StW7c0ceLESOd/XNqHH2vEz+7r16/l7Oysbdu2xel6FJGNjY0yZcoU6VrQs2fPaKcWWltbq3bt2tqxY4c2b96shg0bGqFwvnz55O/vr6xZsxr129raauzYsZGmqMZFbNeqiHLnzq2kSZPq5s2bJv23Z88eeXl5KUmSJLFelwAAAPDvQwCFGDk5OWnr1q2ysLCINEWlYsWK2rp1q5ycnOL9ZUl6OwrK29tbKVKkiDQlJ5yPj48+++wzubm5GWs/hf907NhRISEhxgip4sWLa/Xq1Tp//rz8/Pw0YsQIk9EcN27c0PDhw3Xo0CEFBQVp+/btunnzpjHFxNraWo8ePTKmikQla9asOnDggC5fvqwrV65o6tSp2rFjR4x3wgqXJUsW3bp1S3v27FFQUJB27NihESNGSFKcXh+Vzz77TG3atJGHh4d27dql69ev68cff9SlS5dUqVIltWrVSs+ePdOAAQN04cIFnT59Wr169VLatGkjTZuMzsuXLzVhwgStX79egYGBOnbsmH7//Xej34oXL66HDx/Ky8tLgYGBWrFihfbu3Zug4wnn5uYmPz8/jRw5Uv7+/jpx4oT69eungICAaKcg2draavfu3RoyZIjOnz+vGzduaMWKFbKyslKRIkUitc+QIYOSJk2qrVu36saNGzpz5ox69+6tO3fuxPh+NGjQQLa2turZs6dOnTolf39/ubu7a+/evdEGsS4uLnrw4IGGDx8uf39//f7775o4caLKli0b7YiWiLJmzaqLFy/q2LFjCgwM1Nq1a+Xh4SEp5nOnY8eO8vb2lo+Pj65duyYvLy8jcE0IFxcXPX78WEOHDpW/v78OHjyo0aNHS4o+wA0fFXbhwgU9e/ZM3377rS5evKjRo0fL399fR44cUf/+/VWoUCEjbMqbN6+yZcum1atXG485OTnp8OHDevjwoXG9yJIli6S3IWlQUJCOHTumrl276tWrVzH2S6tWrRQcHKz//e9/8vf312+//WYslh6djh07avv27ZoxY4auXr2qQ4cOadCgQXry5EmUI6Bia58rVy5jBNLhw4d19epVDR06VC9fvlSZMmWMfrt06ZKePHkSY23hvvvuOy1evFgbNmzQ9evXtWTJEu3atcsI7KLSpEkT/fbbbzp58qTJfwS4uLjoyZMn6t+/vy5cuKALFy6oT58+OnPmjPLnzx+neiKK7VoVkY2Njb7++mt5eHhow4YNunHjhrEofqZMmSTFfl0CAADAvw9T8BAjR0dHvXjxQpUrV440haJChQr6+eefow2PYlO7dm2NHj1ajRo1inIaR0hIiHx9fVW/fv0op+c5OjqqcOHCWrVqldzc3DRixAiNGDFCLVq0UKZMmdSrVy/dunXLaD98+HBNmDBBAwYM0MOHD5UtWzb1799fDRs2lPR2OsqqVavUoEEDeXt7R1nzxIkTNWrUKDVt2lQpU6ZUsWLFNHLkSI0YMUI3b96Mcf0RV1dXXblyxbhzWc6cOdW3b19Nnz5dZ86cifQlLK769u0rS0tLDR8+XE+ePFGBAgU0d+5cY+qKt7e3Jk2aZNwNr3z58po0aZJSp04dp+03b95cDx8+1KxZs/TXX3/J1tZWNWvWVP/+/SW9XcuoR48eWrBggaZPn65KlSqpZ8+eWrJkSYKOR3obas2fP18eHh5q3LixrK2t5eTkpO+//z7aKWJJkybVvHnzNGHCBLVr107BwcEqWLCg5s6da7LWVLjMmTNr/Pjx8vT01NKlS5UxY0ZVqVJF7dq1M7mD2rtsbGzk7e2tiRMnGnduK1y4sBYsWBDtqLLMmTNrwYIFmjRpkho1aiRbW1vVqVPHWP8mNj179tTdu3eNKYl58+bV2LFjNWDAAJ05cyba/bZq1UqPHj3StGnT9ODBA5UpU0aNGzeONAIprtKnT6/58+dr7NixatiwobJkyaJWrVpp4sSJ0U6xyp8/vypXrqzevXurb9++xl3qpk2bpkaNGilVqlSqXr26+vXrZ7KNqlWravHixcaUsOLFiytFihRydHQ0whl7e3sNGjRIixYt0rRp05Q5c2bVqVNHWbNmjTTSJqLMmTNr8eLFGjt2rBo3bqysWbOqS5cuJnclfFetWrU0depUzZkzR7Nnz1aaNGnk7OxsfA4S0n7s2LGaOHGievXqpZCQEBUrVkxeXl7GNNOmTZtq4sSJunbtmmrUqBFtbeHCpyN6eHjozp07ypkzp6ZOnaoyZcpE+5pSpUopY8aMSp8+vckaYtmzZ5e3t7emTJmiVq1aydLSUiVKlNCSJUtMpsHGR0zXqjt37pi0HTRokNKmTSsPDw/9/fffypo1q3r27GncFCK26xIAAAD+fSzCEjr3B3hPN27c0FdffaWtW7dGO6oFQMLt3btXefPmNQlGhw4dquvXr2vx4sXx3t7ly5f16NEjlSxZ0njs+PHjatWqlXbv3m3ciQ74mISHlZN2HNbFoFuxtAaAT4Ndtixa0i/6G1X8lz1//lznz59XwYIFo13fE5HRbwnzKfRb+L+lihYtGmtbpuDhH/fXX39p+/btGjJkiCpWrEj4BJjJhg0b1LVrV508eVJBQUFav369Nm7caIz6i69bt27J1dVV69evV1BQkE6cOKFx48apTJkyhE8AAAAAYsQUPPzjHjx4IHd3d+XMmVMzZsz40OUAn6yhQ4dq/Pjx6tatmx4/fqwcOXLof//7X7SL/semQoUKGjx4sObMmaOhQ4fKxsYmxmloAAAAABCOAAr/uEKFCsV65ywA7y9NmjQaP358om7TxcVFLi4uibpNAAAAAJ8+puABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAigAAAAAAACYFQEUAAAAAAAAzIoACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmlTShL9yzZ48OHjyov//+W3379tX58+dVuHBhZcuWLTHrAwAAAAAAwEcu3gFUcHCwunXrpoMHDypVqlR69uyZOnTooOXLl8vPz0/e3t7Kly+fOWoFAAAAAADARyjeU/B+/PFHnTt3TosWLdLhw4cVFhYmSZowYYIyZ84sDw+PRC8SAAAAAAAAH694B1Bbt25V3759VbZsWVlYWBiPZ8qUSV26dNEff/yRqAUCAAAAAADg4xbvAOrx48fRrvNka2ur58+fv3dRAAAAAAAA+HTEO4DKly+ffH19o3zu119/Zf0nAAAAAAAAmIj3IuRdunRR9+7d9fDhQ1WtWlUWFhb6/fff5ePjoxUrVmjKlCnmqBMAAAAAAAAfqXgHUNWrV9ekSZM0ZcoU7dmzR5I0fvx4pU+fXiNGjFCtWrUSvUgAAAAAAAB8vOIdQElS/fr1Vb9+fV25ckUPHz5U6tSplTt3biVJEu8ZfQAAAAAAAPjEJSiACpc7d+7EqgMAAAAAAACfqDgFUAUKFJCFhUWcNmhhYSE/P7/3KgoAAAAAAACfjjgFUN26dYtzAAUAAAAAAABEFKcAqkePHsafb968qQwZMihZsmSR2r18+VLnzp1LvOoAAAAAAADw0Yv3quHVqlXThQsXonzu9OnT+vbbb9+7KAAAAAAAAHw64jQCasKECXr48KEkKSwsTLNmzVLatGkjtTt//rxsbGwStUAAAAAAAAB83OIUQOXOnVs//fSTpLeLjJ89ezbSFDxLS0vZ2Nho0KBBiV8lAAAAAAAAPlpxCqCaN2+u5s2bS5KcnZ01c+ZMFSxY0KyFAQAAAAAA4NMQpwAqol9//dUcdQAAAAAAAOATFacAytXVVcOHD1eePHnk6uoaY1sLCwstXrw4UYoDAAAAAADAxy9OAVRYWFiUf46tLQAAAAAAABCnAKpp06ZKly6dJOnnn382a0EAAAAAAAD4tCSJS6NBgwbpxo0b5q4FAAAAAAAAn6A4BVBMqwMAAAAAAEBCxSmAAgAAAAAAABIqTmtASdKaNWu0d+/eWNtZWFioW7du71UUAAAAAAAAPh1xDqBWrVoVp3YEUAAAAAAAAIgoXgGUvb29OWsBAAD4IHJmzvChSwCAfwzXPAAfQpwDKAAAgE/VqDaNP3QJAPCPehMaKsskLAkM4J/DFQcAAPynhYSEKDg4+EOX8VEJDg6Wn58f/RZP9FvC0G8JE1u/ET4B+Kdx1QEAAP95YWFhH7qEj0pYWJiCg4Ppt3ii3xKGfksY+g3Av02cpuBduHDB3HUAAAAAAADgE8UIKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALOK0yLkUfH399eBAwf0999/q23btrpx44YKFCigVKlSJWZ9AAAAAAAA+MjFO4AKDQ3VsGHDtHbtWoWFhcnCwkK1a9fWrFmzdP36dXl7eytLlizmqBUAAAAAAAAfoXhPwZs1a5Z8fX31ww8/6MCBAwoLC5MkDRgwQKGhoZo6dWqiFwkAAAAAAICPV7wDqLVr16pnz55q2rSp0qRJYzxesGBB9ezZUwcOHEjM+gAAAAAAAPCRi3cAdffuXRUsWDDK5zJnzqzHjx+/d1EAAAAAAAD4dMQ7gMqRI4f27NkT5XNHjx5Vjhw53rsoAAAAAAAAfDrivQj5N998o2HDhunVq1eqWrWqLCwsdO3aNR05ckQLFiyQu7u7OeoEAAAAAADARyreAVTz5s11//59/fTTT1q+fLnCwsLUt29fWVlZqUOHDmrVqpU56gQAAAAAAMBHKt4BlCR16tRJrVu31vHjx/Xo0SOlTp1axYoVM1mUHAAAAAAAAJASGEBJUqpUqVSpUqXErAUAAAAAAACfoDgFUM7OzrKwsIjTBi0sLLRz5873KgoAAAAAAACfjjgFUGXKlIlzAAUAAAAAAABEFKcAavz48ZEee/PmjSwtLSVJwcHBev36tWxsbBK3OgAAAAAAAHz0ksT3Ba9fv9bw4cPVokUL47ETJ07IyclJEyZMUGhoaKIWCAAAAAAAgI9bvAOo6dOna+PGjapbt67xWKFChdS/f3+tWrVK8+fPT9QCAQAAAAAA8HGL913wfH199f333+vrr782HkuTJo3atWunpEmTasmSJfruu+8StUgAAAAAAAB8vOI9AurBgwfKnj17lM/lzp1bt27deu+iAAAA/kncbCV+LCws9Nlnn9Fv8US/JQz9ljD0W8LQbwlDvyXMf63f4j0CKnfu3Nq+fbvKly8f6blff/1VOXLkSJTCAAAA/gnJkiXTZ5999qHL+Kh89tlnKlSo0Icu46NDvyUM/ZYw9FvC0G8JQ78ljLn67U1oqCyTxHu8kdnFO4BydXWVu7u7Hj58qOrVqyt9+vS6f/++fvvtN23dulXjxo0zR50AAABmM2TXal19cOdDlwEAAPBecqXNqB+qNf/QZUQp3gFUo0aN9OzZM82aNUs7duwwHk+bNq2GDh2qRo0aJWZ9AAAAZnf1wR1dvPvXhy4DAADgkxXvAEqSWrduLRcXF129elUPHz5U6tSplTt3biX5Fw7xAgAAAAAAwIeVoABKertYVu7cuROzFgAAAAAAAHyC4hRAFSxYUCtXrpS9vb0KFCgQ4wrtFhYW8vPzS7QCAQAAAAAA8HGLUwDVrVs3Zc6c2fjzf+UWgQAAAAAAAHh/cQqgunfvbvy5R48eMba9devW+1UEAAAAAACAT0q8Vw0vWLCgTp8+HeVzx44dU+3atd+7KAAAAAAAAHw64jQCasGCBXr+/LkkKSwsTKtXr9bevXsjtTtx4oSSJUuWuBUCAAAAAADgoxanAOrly5eaMWOGpLeLjK9evTpSmyRJksjGxkZdunRJ3AoBAAAAAADwUYtTANWlSxcjWCpQoIBWrVole3t7sxYGAAAAAACAT0O814AqV66cnj17Zo5aAAAAAAAA8AmKdwB14sQJWVhYmKMWAAAAAAAAfILiHUBVrFhRGzdu1KtXr8xRDwAAAAAAAD4xcVoDKqLkyZNr48aN2rp1q/LkySNra+tIbZYsWZIoxQEAAAAAAODjF+8A6tatW3JwcDB+DwsLM3n+3d8BAAAAAADw3xbvAOrnn3+O8vHbt29r9erVWrNmzXsXBQAAAAAAgE9HvAOod+3bt08rVqzQnj179Pr1a2XPnj0x6gIAAAAAAMAnIkEB1P3797VmzRqtWrVKQUFBSpUqlRo3bqyGDRuqVKlSiV0jAAAAAAAAPmLxCqAOHz6slStXaufOnXrz5o1KliypoKAgzZw5U2XKlDFXjQAAAAAAAPiIxSmAWrRokVauXKmrV68qR44c6tq1qxo3bixra2uVKVNGFhYW5q4TAAAAAAAAH6k4BVDjx4+XnZ2dlixZYjLS6cmTJ2YrDAAAAAAAAJ+GJHFpVLduXV27dk2dOnVS165d9csvv+j169fmrg0AAAAAAACfgDiNgJoyZYqePn0qX19f+fj4qEePHkqbNq2qV68uCwsLpuABAAAAAAAgWnEaASVJqVKlUqtWrbR69Wr5+vqqYcOG+vXXXxUWFqb//e9/8vDw0OXLl81ZKwAAAAAAAD5CcQ6gIsqXL5/c3d21Z88eeXp6Knfu3Jo3b57q16+vBg0aJHaNAAAAAAAA+IjFaQpetC9OmlQ1atRQjRo1dPfuXa1bt07r1q1LrNoAAAAAAADwCUjQCKioZMiQQR07dtSWLVsSa5MAAAAAAAD4BCRaAAUAAAAAAABEhQAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAigAAAAAAACYFQEUAAAAAAAAzIoACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFPAe2rZtKzs7u2h/7t+/r0GDBqlcuXJ68+ZNlNv46aefVKpUKb148SLe+3/48KHatWunokWLqlmzZu97OAkSEhKinj17yt7eXhUqVFBoaGisr3nw4IFWr179D1QXP23btpW7u3uibePIkSOys7NTYGBgYpT3r5IYfRUfnp6ecnZ2Nn7/888/tXv37gRv71N5b5ydneXp6fmhy4jVH3/8oWPHjsW5vbu7u9q2bWvGigAAAPBPS/qhCwA+drVr19bgwYOjfC5t2rRq2rSpfHx8dODAAVWqVClSm/Xr16tevXpKkSJFvPe9ceNGHTt2TMuWLVPmzJnj/frEsG/fPm3fvl1z5syRnZ2dkiSJPdeeOHGiAgMD1bx583+gQnwK3Nzc1Lp1a+P3Tp06qXHjxqpSpUqCtufg4KD9+/crXbp0iVThh7FmzRolT578Q5cRKxcXF40bN06lSpX60KUAAADgAyGAAt5TihQplDFjxmifL1WqlHLmzClfX99IAdTJkycVEBCgKVOmJGjfjx8/VsaMGWVvb5+g1yeGx48fS5IqV64sCwuLOL0mLCzMnCXhE5QyZUqlTJky0baXLFmyGD+3H4uPPUADAADAfwdT8IB/QNOmTbVz504FBwebPL5u3ToVKFBARYoUkSQFBASoffv2KlmypBwcHNS+fXtdvHgxym26u7vL09NTN2/elJ2dnXx8fBQaGqo5c+aoZs2aKlKkiEqUKKEOHTro+vXrxuuePXum0aNHq0KFCnJwcFCbNm109uxZ4/njx4+rdevWsre3V5UqVTRy5Eg9ffo0yho8PT2NaVgFChSQp6enfHx8ZGdnZ9Iu4mPu7u5at26djh49ajwW1XSud6eyFSpUSHPnzpWjo6OaNGmi0NBQ3b59W3369FGpUqXk6Oiozp07KyAgIMb34vTp02rXrp0cHBxUrlw5DR8+3OR9efbsmQYNGqRSpUqpZMmScnd31/Pnz43nd+7cqebNm6t48eIqWrSomjRpon379sW4z3BhYWGaN2+eqlWrpmLFiqlhw4bauHGj8Xz4ce7Zs0f16tVTkSJFVKtWLe3cudNo8+bNG02dOlUVKlRQ8eLF1bNnT40ZM8ZkupK/v786duwoBwcHVahQQf369dOdO3eM5+Nznklvp1mOHTtWTk5OKlmypCZNmhRpquX77tPOzk5Lly5VixYtVLRoUdWvX1+7du0yno84Bc/Z2VlBQUGaMWOGcdxPnjzR0KFDVbZsWZUsWVKurq46c+ZMtMf07hQ8Z2dneXl5qUePHnJwcJCjo6N++OEHvX792nhNTOdO27ZtNXToUDVv3lylSpUy3te1a9eqdu3asre3V+3atbV48WKTvjt27JhcXV1VokQJFSlSRLVr19aGDRuM5+/du6eePXvK0dFR9vb2+vrrr3X06FHj+YhT8Dw9PdWuXTvNnTtXlSpVUtGiRdWmTRv5+/sb7e/fv2/ymZk8ebJcXV2jncYX1VTFdx9r27atxowZo759+6pYsWKqVKmS5s6dawTN4Z/zQYMGGZ/p2I77XWPGjFHp0qV1+vRpSfF/vwEAAPDhEUAB/4BGjRrp5cuXJl+oQ0JCtHXrVpNpaH379lXmzJm1du1arV69WkmSJFH37t2j3ObgwYPl5uamLFmyaP/+/apTp46WLFkiLy8vubu7a/v27Zo5c6YCAgI0fvx443W9e/fW3r17NW7cOK1fv17Zs2eXm5ubHj16pAsXLujbb79VxYoVtXHjRk2ePFnnzp2Tm5tblKOW3Nzc9L///U+StH//frm5ucXaF4MHD1bt2rWNKVBx9ebNG+3Zs0crV67UmDFj9OLFCyN88Pb21s8//6y0adOqRYsWun37dpTbuHHjhr755htlypRJK1eulKenpw4cOKCRI0cabXbs2KFMmTLJx8dHEydO1JYtWzRv3jxJ0tmzZ9WjRw/VrVtXvr6+WrVqldKlS6eBAwcqJCQk1mOYOnWqli9frqFDh8rX11eurq4aMWKEli5danKckyZN0uDBg7Vp0yblz59f33//vZ49eyZJmjx5slauXKnhw4dr7dq1ypgxo37++Wfj9bdv35aLi4ty5MihNWvWaPbs2Xr69KlatmxpBGnxOc8k6YcfftCWLVs0fvx4rVixQrdu3TJZzyex9jl58mQ1bNhQGzZsUOXKldW9e3cdP348Uj1r1qxRlixZ5ObmJk9PT4WFhaljx466ceOG5syZo1WrVql48eJq1aqV/Pz8Yn1fwnl4eKh06dLauHGjBg4cKG9vb23atElS3M6d1atXy9XVVcuWLVPFihW1cuVKTZw4Ud27d9fmzZvVu3dvzZs3T5MnTzb6rX379ipatKjWrVun9evXy97eXoMHD9bdu3clSSNGjNDLly/l7e0tX19f5cqVS127djUJRSM6duyY/vjjD82dO1fLli3TvXv3jBpDQ0PVqVMnXbt2TfPnz9eCBQt08uRJk0AroZYvXy4bGxv5+PioT58+mjlzpvG5Cf+c/+9//9PgwYPjdNwRTZw4URs2bNDChQtlb2+faO83AAAA/llMwQPek6+vr7Zv3x7p8erVq2vSpEmSpEyZMqlSpUry9fVVvXr1JEm//vqrXrx4ofr16xuvuX79usqVK6ds2bLJyspKY8eO1ZUrVxQaGhppbSUbGxtZW1vL0tLSmEr05ZdfasKECapataokKVu2bKpVq5a2bdsmSbpy5Yr27t0rLy8vVahQQdLbL7ipU6fWgwcP5OXlpfLly6tz586SpJw5c2rKlCmqXr26jh49KkdHR5MaUqZMKRsbG0mK83QmGxsbpUiRQlZWVvGeAuXm5qacOXNKevtl//Hjx5o0aZKSJn17KRszZoyOHDmiVatWqUePHpFev2rVKqVJk0Zjx441XvPDDz/oxIkTRht7e3v16dNH0tv+LF++vDFCzNLSUkOHDpWLi4vR3tXVVR07dtS9e/eUNWvWaGt//vy5Fi1apB9//NFYt+jLL79UUFCQvLy8TNY36t27t5ycnCRJXbt21fbt23Xp0iUVKFBAy5Yt06BBg1SjRg1J0pAhQ0zqX758ubJkyaIhQ4YYj02bNk1ly5bVtm3b1KRJk3idZ0+fPpWPj4+GDx+uypUrS5LGjh2rw4cPJ/o+mzRpYvRD//79dfToUXl7e6tEiRImNaVLl06WlpaytrZWmjRpdOjQIZ08eVKHDx9WmjRpJL0NvI4fP64lS5aYBLAxqVChglxdXSVJ2bNn188//6zjx4+rUaNGcTp3ChYsaPJ5njVrlrp06aK6desa23z69KlGjhypXr166eXLl+rRo4fat29vTF/97rvvtH79egUEBChDhgy6fv268ufPr+zZsytFihQaPHiw6tevL0tLyyiP4fXr15o4caJsbW0lSV9//bVxHTp69KhOnz6trVu3Knfu3Mb7FHFx94TKlSuXRowYIQsLC+XJk0f+/v5asmSJOnbsaHzObWxsZGNjowcPHsR63OGmTp2qtWvXatGiRSpUqJAk6fDhw4nyfgMAAOCfRQAFvCdnZ2f1798/0uPW1tYmvzdr1ky9evXS/fv3lS5dOq1fv141atQwvihKUp8+fTR27FgtW7ZMZcqUUcWKFVWvXr04LewdXsupU6fk4eGhq1ev6urVq7p8+bKxQPmlS5ckScWLFzdekzx5cg0aNEiS5Ofnp2vXrsnBwSHStv39/SMFUP+08PBJelvro0ePVLp0aZM2L1++NJlyFNGlS5dUuHBhI0CQpLJly6ps2bJR7kOSbG1tFRQUJOltwGBra6u5c+fqypUrunbtmi5cuCBJ0d7lMNzly5f18uVL9evXz+T9fP36tUJCQkzughgeDkhSqlSpJEmvXr2Sv7+/Xrx4YfL+WVhYqGTJkkYdfn5++vPPPyO9hxH7JT7n2dWrV/Xq1SsVLVrUeCx58uRGGJCY+3z3/HJwcNCBAwei6k4T586dU1hYmBG8hgsJCdHLly9jfX24PHnymPxuY2OjV69eSYrbuZMjRw7jz/fv39etW7f0448/ysPDw3g8NDRUL1++VGBgoPLkyaMmTZpoyZIlunTpkq5fvx7pfOrevbsGDBig7du3q2TJkqpQoYLq1asX7cLjGTJkMLmmRDwGPz8/2drampxfGTJkUK5cueLcR9FxdHQ0WQPOwcFB8+bN04MHDyKtU/Xll1/GetzS2zXyfv/9d6VLl84k3E2s9xsAAAD/LAIo4D2lTJnS5ItndKpUqaI0adJo69atql27tvbt26f58+ebtGndurVq1aqlPXv26NChQ5o+fbp++uknrV+/3mRUQHTmzp2rmTNnqnHjxnJyclK7du20a9cubd68WZJMvjxHJTQ0VPXr1zdGQEX0PosdxxbORCXi2jvhIn7pDg0NVa5cufTTTz9Favdu+BcutuOXFO3IEuntCJL27durSpUqKlmypOrXr6/g4GB169Yt1u2GT2GcNm2aSQAQLlmyZFH+OeLrw+uPaRH30NBQlS1bVsOHD4/0XPhotficZ+Ghwrv7jNiXibXPd9+fN2/exCl8DQ0NVapUqeTj4xPpuaj6MjrR9XtUtUUl4p0sw9d5GjRokMqVKxepbdasWXX58mW5uLiocOHCKleunL766iulTZvWZFpujRo1tG/fPu3bt08HDx7UwoULNWPGDK1atUr58uWL0zGEs7S0jLR2V0JE9Xl+t3/C9xPV5ykuxy29/RzPnj1b/fr10w8//GDcrCGx3m8AAAD8s1gDCviHJE2aVA0aNNDWrVu1bds2ZcmSxWT0xL179zRq1Ci9evVKTZo00aRJk7Rx40bduXMnzmu0zJ49W926ddOIESPUsmVLFS9eXAEBAcaX6PARHhEX6339+rWcnZ21bds25cuXT5cvX1aOHDmMn9evX2vcuHH666+/4lSDlZWVJJksXP7uwuDv3i3PysrKpH1oaKhu3LgR437y58+vmzdvysbGxqj1888/15QpU/T7779H+Zq8efPKz8/P5Av0L7/8Imdn5ziNnFiwYIEcHR2NxZ7Lly9v9Etsd/bLnTu3kiZNqps3b5r07549e+Tl5RWnoCVHjhxKkSKFTp48afL4qVOnjD/ny5dP/v7+ypo1q7EPW1tbjR07VpcuXYr3eZYrVy4lT57cZC2m169fGyNWEnOf7y4ifeLECRUuXDjWfsmfP7+ePn2qV69emfTtvHnzTNZdex/xPXfSp0+vdOnS6caNGyY1nTt3TtOmTZMkrVixQunTp9fChQvVsWNHVa5c2VgDKSwsTCEhIRo3bpxu3LihOnXq6IcfftDOnTuVJEkS7d69O97HUKBAAT158sRkhOCDBw907dq1aF8Tl8+zFPm9O378uL744guT0VjhYjvucPnz55eDg4NGjBihTZs2GYvx/xPvNwAAABIfARTwnl68eKE7d+5E+fPuwtTNmjXT8ePHtXr1ajVt2tQkiLG1tdXu3bs1ZMgQnT9/Xjdu3NCKFStkZWVl3CUvNlmzZtWBAwd0+fJlXblyRVOnTtWOHTuMOnLlyqWvvvpKI0eO1OHDh3X16lUNHTpUL1++VJkyZeTm5iY/Pz+NHDlS/v7+OnHihPr166eAgIBIU9OiU7x4cVlYWMjT01OBgYHaunWr1q1bZ9LG2tpaf//9txEyFS9eXAcOHNDevXt17do1jR49Wo8fP45xPw0aNJCtra169uypU6dOyd/fX+7u7tq7d2+ku/CFc3Fx0YMHDzR8+HD5+/vr999/18SJE1W2bNlopzRFlDVrVl28eFHHjh1TYGCg1q5da0yvim0RchsbG3399dfy8PDQhg0bdOPGDa1Zs0aTJk1SpkyZYt23JH322Wdq27atpk+frp07d+rq1auaMGGCSQDl4uKiJ0+eqH///rpw4YIuXLigPn366MyZM8qfP3+8z7OUKVOqTZs2mj59unbs2CF/f38NHz7cZKH3xNrn4sWL5evraxzXxYsX9c0330TZFylTplRAQIDu3r2rihUrqmDBgurTp48OHz6sa9euady4cfLx8Yk0rS6h4nvuWFhYqGPHjvr555/l7e2t69ev65dfftGIESOUIkUKJUuWTFmyZNGtW7e0Z88eBQUFaceOHRoxYoSkt+dTsmTJdObMGQ0dOlQnT55UYGCgfHx89Pz58yinycbG0dFRxYoV08CBA3Xy5ElduHBB/fv3V3BwcKRQOFz+/PllbW2tuXPn6vr169q3b58WLlwYqd2xY8c0ffp0BQQEaM2aNVq6dKk6dOhgPG9tbS1/f389ePAg1uN+V6VKlVSvXj2NGDFCjx49+kfebwAAACQ+puAB72nr1q3aunVrlM95eHioVq1axu958uSRvb29Tp06FWnqWNKkSTVv3jxNmDBB7dq1U3BwsAoWLKi5c+fqyy+/jFMtEydO1KhRo9S0aVOlTJlSxYoV08iRIzVixAjdvHlTn3/+ucaOHauJEyeqV69eCgkJUbFixeTl5aV06dIpXbp0mj9/vjw8PNS4cWNZW1vLyclJ33//fZyntmTPnl0jR47UnDlztGzZMpUsWVIDBw7U999/b7Rp1KiRfvnlF9WrV087duyQm5ubrl+/rl69eilZsmRq1qyZ6tatG+OoIhsbG3l7e2vixIlq37693rx5o8KFC2vBggXRfgnNnDmzFixYoEmTJqlRo0aytbVVnTp11Ldv3zgdW8+ePXX37l1jimLevHk1duxYDRgwQGfOnIn1y++gQYOUNm1aeXh46O+//1bWrFnVs2dPky/qsenVq5devXqlIUOGKDg4WFWrVlW1atWMUTjZs2eXt7e3pkyZolatWsnS0lIlSpTQkiVLjGmU8T3P+vXrp+TJk2vUqFF69uyZateubbJwdWLt8+uvv9aiRYuMBde9vLxUoECBKGtq27atJkyYoD///FMbN2403tfevXsrODhYefLk0YwZM4zF3N9XQs4dNzc3JU+eXD///LPGjx+vDBkyqEWLFurZs6ektwvYX7lyxbiLYs6cOdW3b19Nnz5dZ86cUaVKlTR16lSNGzdOXbp00ZMnT5Q7d25NnjxZpUqVStBxeHp6atSoUWrXrp2SJ08uFxcXXblyxRjp9K5UqVJp0qRJmjx5surUqaMCBQro+++/jzTttFq1avL391eDBg2UKVMmDRo0SK1atTLpi/nz58vf31/Tp0+P9bjfFX73zB9++EGTJk0y+/sNAACAxGcRFtu8EQDAv8Yvv/yikiVLmqzJ5ebmpixZsmjs2LEfsLL3Y2dnp3HjxqlJkyYfupRP1v3793Xq1ClVqFDBCJxCQkLk6Oio4cOHq1GjRgnabtu2bZUtW7aP9u5z4dMHx1/cp4t34zbVGAAA4N/KLkNWLW3W9R/bX/i/pSLetCg6jIACgI+Il5eXli1bpoEDBypVqlTatWuXDh8+rAULFnzo0vAvlzRpUvXp00dff/21WrVqpVevXsnLy0vJkiWLctQRAAAAkJhYAwoAPiKTJ09WypQp1a5dO9WrV0++vr7y8PAwWdAeiErq1Kk1e/ZsnTx5Uo0aNVLLli119+5dk6mSAAAAgLkwBQ8AAPxnMQUPAAB8Sv7NU/AYAQUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmRQAFAAAAAAAAsyKAAgAAAAAAgFkRQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAigAAAAAAACYFQEUAAAAAAAAzIoACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmRQAFAAAAAAAAsyKAAgAAAAAAgFkRQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZpX0QxcAAADwoeVKm/FDlwAAAPDe/s3/piGAAgAA/3k/VGv+oUsAAABIFG9CQ2WZ5N834e3fVxEAAMA/KCQkRMHBwR+6jI9KcHCw/Pz86Ld4ot8Shn5LGPotYei3hKHfEsZc/fZvDJ8kAigAAACFhYV96BI+KmFhYQoODqbf4ol+Sxj6LWHot4Sh3xKGfkuY/1q/EUABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAigAAAAAAACYFQEUAAAAAAAAzIoACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKz+j737jq/xfPw//g4Su0FttUuMCIkZMROKoCL2SolZq6gRn9pqb0GtWLVHxBalqD1be4aYbWqPGkHO74/8cn9zZCKnqfb1fDzyIPe5znVf93Xf507OO9d1HQIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAID/PCsrq8RuAgAAwL8aARQAAPhPs7GxUcqUKRO7GZKkMFNYYjcBAADAIpIldgMAAAASm//52brz7HaitiFTquzyLNQhUdsAAABgKQRQAADgP+/Os9v64+n1xG4GAADAvxZT8AAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALCo/3QA1apVK9nZ2cX4df/+ffXv31/ly5fXmzdvoq3jhx9+UKlSpfTixYv32r+Pj8+HHoYmTZokOzs7LVy48IPris6lS5e0a9euD6rD399fdnZ2xveurq7y9fX9wJb9n0OHDkU5f4UKFZKTk5OaNm2qAwcOJNi+PsSzZ8+0ZMkSi+9n586dunz5sqT/65ubN29KSrjrLrHcvHlTdnZ2OnToUGI35YPF9jr4WI/z7dc6/n1evXqlBQsWGN/7+vrK1dU18RokyWQyae3atbp3716itgMAAAAx+08HUJJUq1Yt7d27N9qv9OnTq0GDBrp375727dsX7fMDAgJUp04dpUiR4p337evrq+++++6D2h8WFqaAgADlzZtXK1as+KC6YtKxY0edOnUqQetcvXq1vL29E7ROSVq1apVx/nbv3q25c+cqWbJk6tixo27dupXg+3tX8+bNk5+fn0X3cevWLXXq1CnGN2IJcd3B8rJly6a9e/fK0dExsZvyTtzd3bV3797EbgYsaOPGjRo1apTxvbe3t1avXp2ILZKOHDkiHx8fPX/+PFHbAQAAgJj95wOoFClSKFOmTNF+WVlZqVSpUsqTJ482bNgQ5bm//fabgoOD1bBhw/fad7p06ZQ2bdoPav/evXv1xx9/qE+fPgoKCtKRI0c+qL6/S4YMGZQ6dWqL1Btx/rJkySInJyeNHTtWL1++1I4dOxJ8f+/KZDIl+j4S4rqD5SVNmlSZMmWSjY1NYjflnUTcU/Hv9fY9JnXq1MqQIUMitSbc33FvBQAAwIf5zwdQ8dGgQQNt3749yl9W165dq0KFCsne3l6SFBwcrLZt26pkyZJydHRU27ZtdeHChRjrjTwVyt/fX9WrVzf+tbe3l6enp44dOxZr2/z9/VWwYEG5uroqW7ZsWr58eZTH354O8/a2kydPqnnz5nJ0dFTp0qXVrVs33b59W1L4FKFbt25p2rRpatWqlSTJzs5OU6dOVdWqVVWhQgUFBwfr9u3b6tmzp5ydnVW0aFFVqlRJ48aNU1hYWLTtjjz1KCwsTLNmzVKNGjVkb28vJycntWvXTtevXzfK+/j4vPcUj+TJk0uSkiVLZmw7fvy4WrRoIQcHB1WpUkVDhw7V06dPzdo3Y8YMtW3bVg4ODqpevbpWrVplVu+vv/4qLy8vlSxZUmXLllX//v314MEDszrGjBkjd3d3lS1bVq1atdK0adN069Ytsylxb4tPvW9P24rYdvPmTbm5uUmSvLy8op3e9a7XXWhoqMaNG6eKFSvK0dFRjRs3Nhvh8ubNG40bN06VK1eWvb29atasqWXLlsVwNuIuHxoaqjFjxsjV1VX29vYqU6aMvvnmG92/fz/GOtesWaNatWrJwcFBtWrV0sKFC82uvYCAANWuXVvFihVTxYoVNWLECIWGhsZY39viur7j049PnjxRv379VKpUKZUrV07z58+PdZ9vT8Fr1aqVxowZo969e8vR0VEVKlTQsmXLdOzYMdWrV0/FixdX06ZNFRwcbPb8iFGaDg4Oaty4sVmbfHx81L17d3l7e8vJyUlz5syRJO3atUuNGzc29jNq1ChjmrGPj48aNWpk1tZbt26pUKFC2r9/f5T7i52dnVavXq3WrVvLwcFBFSpU0LRp08yev2HDBtWqVUvFihVTo0aNtGjRolin8ZlMJi1cuFA1atSQg4ODateurY0bNxqP//777+rdu7dcXFxUokQJtW3bVufPnzc7bh8fH40ZM0bOzs4qXry4OnbsqJCQEKNMbNdMfO6rrq6umj17tjp06KDixYvL1dVV27dv1/bt21WjRg2jXZFHKgYFBal9+/ZGv3/77be6c+eO8XirVq00cOBANWrUSKVKldL69euj9E18Xo+xvV4irpvAwEA1atRI9vb2cnV1NUbY+vv7q3///sa5PXTokNkUvIjnb9q0SR4eHipWrJg8PT0VFBSk6dOnq3z58ipTpoyGDh1qFhrt3LlTnp6exv128uTJZq/R2K6jQ4cOycvLS5Lk5uYmf3//KP0CAACAxEcAFQ8eHh5RRtCEhoZqy5YtZm/EevXqpSxZsmjNmjVatWqVkiRJoq5du8Z7P7///ruWL1+ucePGae3atUqZMqV8fHxi/Mvuw4cPtWPHDtWsWVNWVlaqVauWAgMDY32j/rY3b96oY8eOKl26tNavX68FCxbo9u3b+t///icpfKpc1qxZ5e3tbRZmLF26VFOnTtW0adOUJ08eff3113ry5Inmz5+vrVu3ytvbW3PnztXPP/8cZxsWLVokPz8/+fj4KDAwUNOnT1dwcLBGjx5tlPnuu+/ea4rHnTt3NGzYMKVJk8YIZs6fP682bdqoYsWKWr9+vcaPH68zZ87I29vbrK9nzJghR0dHBQQEqEWLFho0aJA2b94sKTy0a9WqlQoUKKCVK1dqypQpOnHihNq2bWu2XtjixYs1YMAAzZ07VzNmzJC3t7eyZs2qvXv3Klu2bFHaG996Y5ItWzYjKPP19Y3XNMe4rrv+/ftr3759Gj9+vNauXatatWqpU6dOxrpgS5cu1datWzVp0iQFBgaqZcuWGjJkiI4ePRrt/uIqP3bsWG3btk2jR49WYGCgRo8erYMHD+qHH36Itr4VK1Zo7Nix6tq1qzZt2qQePXpozpw5Gj9+vKTw8z1gwAB169ZNgYGBGjlypNatW6e5c+fG2TcR4nN9x9WPPXr00MmTJzVz5kzNnz9fu3bteudpoT/++KMKFy6s9evXy83NTd9//72GDBmi//3vf1q8eLH+/PNPTZgwwew5o0ePVqdOnbR27Vrly5dP3t7eunHjhvF4YGCgypcvrzVr1qhOnTr66aef9PXXX6tKlSry9/fX0KFDtXnzZvXq1UuS5OnpqZMnT5oFxBs2bFDWrFlVrly5aNs9ZswY1a9fX5s2bVLLli3l6+trjNbcuXOn+vXrp4YNG2r9+vXy9PQ0zl1M5s6dq0mTJqldu3bauHGjmjZtqr59++rgwYN6+vSpmjVrppCQEP3www9avny5UqRIoZYtW5r198aNG/Xw4UMtXrxYc+bM0ZkzZzR58mRJCXPNSOH3EHd3d23YsEGFChVS3759NXPmTI0bN04zZ87UqVOnjNAvJCREzZs3V+7cubV69WrNnDlTT58+VZMmTfTs2TOjzlWrVsnLy0tLly5VxYoVo+wzrtdXXK+XCKNGjVKnTp20ZcsWValSRUOGDNGNGzfk7u5u/HyIbYropEmT9L///U+rVq3S48eP1axZMwUHB+vHH39Uz549tXTpUu3cuVOS9Msvv6hHjx5q3LixNm7cqMGDB2vLli3q06ePWZ0xXUeOjo7Gz6dVq1bJ3d39nc4TAAAA/h7J4i7y77ZhwwYFBgZG2V6tWjWNGzdOkpQ5c2ZVqlRJGzZsUJ06dSRJP//8s168eKG6desaz7l+/brKly+vHDlyyNraWiNHjtSVK1cUFhamJEnizvpevXqloUOHqnDhwpKkNm3aqEuXLrpz544yZ84cpfzGjRsVGhqq2rVrS5Jq166tefPmyd/fX+3atYvX8T99+lQPHjxQ5syZlSNHDuXMmVOTJ082/iqfIUMGJU2aVKlSpVK6dOmM59WrV0/FihWTJL148UL16tVTrVq1jFCldevWmjNnji5cuKBq1arF2oZcuXJpzJgxqlq1qiQpR44cqlmzprZu3WqUie+UsTp16sjKykqSjMCmdOnSWrJkibJkySJJ8vPzk4uLizp16iRJypMnjyZMmKBq1arp8OHDKlu2rCSpQoUKRoCYL18+nThxQgsXLpS7u7vmzZsnOzs7DRw4UJKUP39+TZw4UfXq1dPevXtVuXJlSVLlypVVvnx5o32pUqUyplZFJ771xiRp0qTGVBhbW9t4TXOM7bp7/vy5Nm7cqICAALPHz58/Lz8/P1WpUkXXr19XqlSp9Nlnnylz5sxq2bKl8uXLp7x580a7v7jKFytWTDVr1lSpUqUkhV8P5cuX18WLF6Otb8aMGfr666+N10HOnDn19OlTDR06VN98841u3rwpKysr5ciRQ9mzZ1f27Nnl5+enNGnSxNk3Uvyv79j68enTp9q7d68WLFhgHNeECROMaz6+ChcurLZt20qSWrZsqeXLl6tVq1bGNVurVi1t377d7DkdOnQw7lvDhw/XwYMHtXLlSn377beSwq+TyPeL7t27q3r16urcubMkKW/evDKZTOrSpYsuX76s0qVLK2fOnFq/fr3x+tiwYYPq1asX433Ow8ND9erVkyR16tRJfn5+On78uEqXLi0/Pz/VrFnTOK68efMqODjYbJHryCJGP3l5eRl/AGjVqpVevHih169fa/369Xrw4IH8/f2N10LE63vJkiXq27evpPB7yrBhw2Rtba38+fPL3d1du3fvlqQPvmYiVKlSRR4eHpKkxo0ba8eOHerZs6ccHBwkSeXLl9elS5ckScuWLVPWrFk1YMAA4/mTJ09WuXLltHXrVnl6ekoKvwYi/9x5W1yvr7heLxFat25thPY9e/bUkiVLdOLECdWpU8e4H8c21dLb21tlypSRJFWvXl0//vijhg0bppQpUyp//vzy9fXVpUuX5OrqqpkzZ6px48Zq2rSppPCfCUOHDtVXX32lmzdv6rPPPpMU+3Vka2srKfxn1vusyQgAAADL+88HUK6ururdu3eU7alSpTL7vmHDhsY0oAwZMiggIEDVq1c3fumVwn9JHzlypJYuXaoyZcqoYsWKqlOnTrzCpwj58+c3/h/xS/6rV6+iLbtmzRoVLVpUefLkkSTZ29srT548Wrlypdq2bWsEMbGJePM5fPhwTZ06VeXKlVPlypVVq1atWJ+XO3du4/8Rowu2bt2qkydP6tq1a7pw4YLu3r0b4xS8yFxdXXXixAlNmTJFV69e1dWrV3X58mUjMHoXs2fPVpYsWfT06VPNnj1bJ06cUOfOnVWoUCGjzNmzZ3Xt2rVo/3IfFBRkvJmP+DeCo6OjMern4sWLcnFxMXu8UKFCSps2rS5cuGAERZH7KT7iW29Ci+m6O3v2rCSpefPmZuVfvXqlTz75RJLUokULbd++XZUrV1bhwoXl4uKi2rVr69NPP412X3GVr1evnvbv36/x48crODhYV65c0dWrV43gJrL79+/rjz/+0MSJEzVlyhRje1hYmF6+fKmbN28aUwcbNmyozz77TC4uLnJzczOmzsblXa7vmPoxIjyLCG0lKWPGjMqZM2e82hAhV65cxv9TpkwpSWZ1pEiRIsr9IvJ1bG1tLXt7e7Mw7+1r9OLFi0Y4ESEiSLh48aI+//xzeXh4aMOGDeratavOnj2ry5cva8aMGTG2O3K/SOF9E9HOM2fO6IsvvjB7vHTp0jEGUA8ePNCdO3dUvHhxs+3t27eXJA0ZMkR58uQxW5MoRYoUcnBwMDvuXLlyydraOto2feg1EyFy30acr8jnMEWKFEbYf/bsWV26dCnKfenly5cKCgqKts7oxPb6is/rJWLK8rv8LIrr2FOlSqWMGTMafRBx7BFT7M6ePauTJ0+ajXKNGDkYFBRkBFCxXUcAAAD45/vPB1CpU6eOV0hQpUoVpUuXTlu2bFGtWrW0Z8+eKNMxWrRooZo1a2r37t06cOCApk6dqh9++EEBAQHKmDFjvNoT3YLD0U3BO3/+vM6ePSsrKysVKVLE2B4WFiaTyaT9+/dHCTIivD2Vq3fv3mrevLnR7uHDh2vu3LkKCAiIcQHkyH9hfvbsmVq2bKkXL16oZs2aql+/vhwcHNSiRYt4HfPs2bM1ffp01a9fX87OzmrdurV27NihTZs2xev5kWXPnt14szJx4kS1a9dOHTp0kL+/v3Gew8LCVLduXWMEVGSR37RGXjMq4nkRYWJM0yJNJpPZm9p3/Ut8fOt92+vXr99pP2+L6bqLaM+SJUuijKaK6Is8efJo27ZtOnz4sPbt26ddu3Zpzpw5GjVqlOrXrx+l3rjKDxo0SIGBgfLw8JCrq6u6dOkiPz8/s/V5IkQEQP379zcbaRYhW7ZssrGx0aJFi3T27FnjExI7deokDw8Ps0/yism7XN8x9WNEGPx2YPX2NRaX6K6BuALut/fx5s0bs+e8fY1Gdw1GtDuirvr162vatGk6deqUNm/eLCcnp1jvo7Hd15IlSxavoDpCbK+DmNovhR9D5L6IbXH35MmTv/M1E90U2ejOb0x/GAgLC1O5cuU0ePDgKI9FHgEa1z0lttdXxJS92F4vf/75p6T4/yyKydvHHtt1GhYWpnbt2kV7v4g8yupD2wQAAIDExRpQ8ZQsWTJ9+eWX2rJli7Zu3RplvZN79+5p2LBhevXqlTw9PTVu3DitX79ed+7c0eHDhxO8PatXr5a1tbWWLl2qgIAA42vZsmWytrY2FoyNeLMWeYHtiEWKJenKlSsaPHiwPv30UzVr1kxTp07V3LlzFRQUZLZob2z27t2rM2fOaNGiRerevbvc3d2VJk0a3bt3L15vDmbOnKkuXbpoyJAhatKkiUqUKKHg4OAPfmORNGlSjR49WkmSJFG/fv2MN7kFChTQ5cuXlTt3buPr9evXGjVqlH7//Xfj+adOnTKr7/jx40bYZ2dnF2WB+PPnz+vp06dR/kofWVyj0uJTr7W1tdn5fPr0qdlCxvEZ+RZfBQoUkBS+llbk/vL39zcW+l20aJG2bdsmFxcX9e3bVxs2bJCzs7OxXtbbYiv/4MEDrVixQoMHD1b//v3l6empwoUL68qVK9FeD59++qkyZMigGzdumLUv8no+u3fv1rRp01SkSBF16NDBuE5jat/bPvT6lmRMyzt+/Lix7fHjx2brKFlK5Os4NDRUZ86cUdGiRWMsb2dnZ9ZOScb6QRHXYI4cOVS2bFkFBgZqy5YtxvSw91GoUCGdOHHCbNuvv/4aY/m0adMqc+bMUV6f3bt316hRo2RnZ6fg4GCz18TLly91+vRpff755/FqU1zXTFz31fdRoEABBQUFKVu2bMZ1bGtrq5EjR8Y4/TQ6sb2+4vN6iY+EvMdI4cd+9epVszb98ccfGjt2rP76669EaRMAAAAS3n8+gHrx4oXu3LkT7dfbn5LVsGFDHT9+XKtWrVKDBg3MfuG1tbXVrl27NGDAAJ07d043btzQ8uXLjSkvCSk0NFQbNmxQjRo15OTkpIIFCxpfjo6OqlOnjnbs2KE7d+6oRIkSsrKyMj4hbcuWLVq7dq1RV/r06bVp0yYNGjRIQUFBunr1qtauXStbW1vly5dPUvgoseDgYN29ezfa9mTNmlWStH79et26dUtHjx5V586d9erVq3h90li2bNm0b98+Xb58WVeuXNGkSZO0bds2s+c+efLknRZXj5AlSxb17dtXv/76q5YsWSIpfG2Ss2fPaujQoQoKCtKvv/6qb7/9VsHBwcZ0RknatGmTlixZouDgYM2dO1c//fSTsVZOmzZtdOHCBQ0fPlxBQUE6dOiQevfurSJFisjZ2TnG9qRKlUqPHj3S1atXo506Ep96S5Qooc2bN+v48eO6fPmy/ve//ylp0qRm+5DCp0s9efLknfsssgIFCqhq1aoaPHiwfv75Z924cUNz5szRrFmzjKlE9+/f17Bhw7Rjxw7dunVLe/bs0blz52JcnDi28mnSpFHatGm1Y8cOY6rbwIEDdebMmWivJSsrK7Vv314//vijFi9erOvXr+unn37SkCFDlCJFCtnY2Mja2lrTp0/XggULdOPGDZ0+fVq7du0ya9+dO3difKP7ode3FD7tqmbNmho2bJj279+vixcvqm/fvu/0SXzva/Lkydq1a5dxrTx//lyNGzeOsXy7du20bds2zZgxQ1evXtXOnTs1fPhwVa1a1SxcrV+/vpYuXaqHDx/GOWU3Nu3bt9fWrVs1f/58BQcHa82aNVq8eHGsz+nQoYMWLlyodevW6fr161q0aJF27NghNzc31a1bV+nSpTMWfT9//rx69+6tZ8+eqUmTJvFqU1zXTFz31ffRvHlzPXnyRL1799b58+d1/vx59ezZU6dOnVLBggXjXU9sr6/4vF7iI+Iec/r0aePTET9E+/btFRgYqGnTpunq1as6cOCA+vfvrydPnsS6zlR0bTp//ny8QysAAAD8vf7zU/C2bNmiLVu2RPvYlClTVLNmTeP7/Pnzy8HBQSdOnIjyiVzJkiXTnDlzNGbMGLVu3VrPnz9X4cKFNXv2bLM1PxLCzp079fDhwxinuLVu3Vpr167VqlWr1LlzZw0dOlSzZs3S0qVLVbJkSfXt21f9+vWTFB5AzZkzRxMmTFDjxo315s0blShRQvPnzzcW3I34+PdLly5F+7HfDg4O6t+/vxYsWKDJkycrS5Yscnd3V7Zs2aKMUojO2LFjNWzYMDVo0ECpU6dW8eLFNXToUA0ZMkS3b99W9uzZNWLECB0+fDhen6r3tkaNGmnjxo2aOHGi3NzcVKJECc2dO1dTpkxR/fr1lSpVKjk7O6tfv35mb8Dq16+vn376SaNHj1aePHk0efJkYw2m4sWLa+7cuZo8ebI8PDyUJk0aVatWTd9++22sU4S++OILrVy5Ul9++aUWL14cZR2b+NTbq1cvPXz4UG3atFHatGnl7e2tx48fG3WkT59eDRo00NixY3Xt2jVVr179nfssskmTJmnSpEkaNGiQHj16pFy5cmnEiBHGdJmuXbvq1atX+v7773Xnzh1lypRJzZo1U8eOHaOtL7bySZMm1ZQpUzR69GjVrVtXtra2Klu2rHr16qVZs2bp+fPnUerz9vZW8uTJ9eOPP2r06NHKmDGjGjdurO7du0sKX+h5xIgRmjdvniZNmqQUKVKocuXK8vHxMeqIWHC+W7duUer/0Os7wpgxYzRmzBj17NlTYWFhatKkyXuFqu+qWbNmGjNmjG7fvq3ixYvrxx9/jPZDDSLUqFFDEydO1A8//KAZM2YoQ4YMqlOnjtGfkcsNGzZM1apVe+fFuSOrVKmShg0bplmzZmnChAmyt7dXs2bNYg2hIqZETpkyRXfu3FGePHk0adIkY62qxYsXa/To0WrdurUkqWTJklq2bFm819yK65rJmTNnrPfV95EzZ04tXrxYEyZMULNmzZQ0aVI5OTlp0aJFZlOD4xLX6zGu10t8lCtXTsWLF1fTpk2ND+v4EDVr1tSkSZM0a9YszZw5U+nSpYtxfcaYFCxYUJUrV1aPHj3Uq1eveH0CKAAAAP5eViYWUACicHV1Vf369aMNJPDvs2XLFt24cUMdOnRI7KYkmJs3b8rNzU2LFi2KsqD+P8nhw4eVMWNGY8SlFD4td/Xq1VE+0Q+whIggef+rNfrjqeWnxcYma5pc6ug0JFHbEF/Pnj3TuXPnVLhw4Sgf3IKY0W/vh357P/Tb+6Hf3g/99n7+Df0W8btU5A9cisl/fgoegP+2sLAwLVy48INHiuH97N27V23bttXBgwd1+/Zt7dixQwsXLlS9evUSu2kAAAAAEtB/fgoegP+2JEmSaNGiRfFe/wYJq2vXrnr27Jn69u2r+/fvK1u2bGrdurWx3hoAAACAfwcCKCAa77PWFD5e/8bw6bPPPtOFCxcSuxlxsrGx0YABAzRgwIDEbgoAAAAAC2IKHgAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYVLLEbgAAAEBiy5Qqe2I34R/RBgAAAEshgAIAAP95noU6JHYTJElhpjAlsWKAOgAA+PfhNxwAAPCfFhoaqufPnyd2MySJ8AkAAPxr8VsOAAD4zzOZTIndBAAAgH81AigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKCuTyWRK7EYAAAAkhuPHj8tkMsna2lpWVlaJ3ZyPhslk0qtXr+i3d0S/vR/67f3Qb++Hfns/9Nv7+Tf0W2hoqKysrOTk5BRn2WR/Q3sAAAD+kSJ+2ftYf+lLLFZWVrKxsUnsZnx06Lf3Q7+9H/rt/dBv74d+ez//hn6zsrKK9+9RjIACAAAAAACARbEGFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAB+tsLAwTZ06VRUrVlSJEiXUvn173bhxI8byDx480LfffqvSpUurTJkyGjp0qJ4/f25WZsuWLXJ3d5eDg4M8PDx04MCBd67jny6h+y0sLExz585VjRo1VKJECdWuXVurVq0yq+OHH36QnZ1dlK+PiSWuty+++CJKn/j4+LxTHf90Cd1v0V1HEV+3b9+WJB07dizaxw8dOmTx400o79pvkZ/Xrl07+fr6RnmM+1vsz4uu37i/xf28mK437m+xPy+6fvvX399MAAAAHylfX19T2bJlTTt37jSdO3fO5O3tbfriiy9ML1++jLZ8y5YtTQ0aNDCdPn3atH//flPVqlVNffv2NR4/cOCAqWjRoqaFCxeaLl++bBo9erTJ3t7edPny5XjX8TFI6H6bMWOGqVSpUqZNmzaZrl27Zlq+fLmpSJEiprVr1xplvvnmG1OfPn1Mf/75p9nXxySh++2vv/4yFSpUyLRz506zPnn8+HG86/gYJHS/vX0NXbp0yVS2bFmzMkuWLDFVq1YtStmY9vlP9K79ZjKZTC9fvjT169fPVLBgQdPUqVPNHuP+9n79xv3t/fqN+9v79du//f5GAAUAAD5KL1++NDk6OpqWLFlibHv06JHJwcHBtGHDhijljx8/bipYsKDZm609e/aY7OzsTH/88YfJZDKZvL29Td98843Z85o0aWIaOHBgvOv4p7NEv1WsWNE0Y8YMs+f179/f1Lx5c+P7WrVqmebPn5/AR/P3sUS/nThxwlSwYEHTw4cPo90n11u4uI65W7duppo1a5q9+Ro8eLCpU6dOCXgkf6937TeTyWQ6duyYqXbt2iY3NzdTqVKloryx5f72fv3G/e39+o372/v129v+bfc3puABAICP0vnz5/XXX3/J2dnZ2PbJJ5+oSJEiOnLkSJTyR48eVaZMmZQ/f35jW5kyZWRlZaVjx44pLCxMx48fN6tPksqWLWvUF1cdHwNL9NuYMWNUv359s+clSZJEjx8/liSFhoYqODhY+fLls9BRWV5C95skXbhwQRkzZpStrW20++R6CxfbMe/du1fbtm3T8OHDZWNjY2y/cOGCWR0fm3ftN0navXu3KlasqICAAKVNm9bsMe5v799v3N/evd8k7m/v22+R/Rvvb8kSuwEAAADv448//pAkZcuWzWx75syZjcciCwkJiVLWxsZG6dKl0++//67Hjx/r2bNnypo1a4z1xVXHxyCh+y1JkiRR3tTevn1bmzZtUtOmTSVJly9f1ps3bxQYGKgRI0bo5cuXKl26tPr06aPMmTMn5OFZTEL3mxT+JiJVqlTq3r27jh8/rvTp06tBgwby8vJSkiRJuN7+v9iOeeLEiXJzc1OpUqXMtl+6dEnp06eXp6enQkJCVLBgQfXs2VMODg4fekh/i3ftN0nq2bNnjPVxf3u/fuP+9n79JnF/e99+i+zfeH9jBBQAAPgoRSxUGvmvgpKUPHlyvXz5Mtryb5eNXP7Fixdx1hdXHR+DhO63t929e1ft27fXp59+qq+//lqSdPHiRUlSypQpNWXKFI0YMUJXrlyRl5eX0e//dJbot0uXLunx48eqUaOG/Pz81KxZM02ZMsVYlJbrLfbyR44c0ZkzZ9S5c2ez7b///ruePHmiZ8+eacCAAZoxY4YyZsyoli1b6vLlyx96SH+Ld+23uHB/S5hj4P4Wf9zfPuwY/q33N0ZAAQCAj1KKFCkkhU9/iPi/JL18+VIpU6aMtnxoaGiU7S9fvlSqVKmUPHlyo763H4+oL646PgYJ3W+RXblyRR06dNCbN2+0aNEiffLJJ5IkDw8PVapUSRkyZDDKFihQQJUqVdLPP/8sd3f3BDk2S7JEv82ZM0cvX740pmHY2dnp6dOn+uGHH9StWzeut0iiO+a1a9fKwcFBRYsWNdueLVs2HTlyRClTppS1tbUkqVixYjp79qx+/PFHDR069IOPy9Letd/iwv3t/fotMu5v74b724ddb//W+xsjoAAAwEcpYsj7n3/+abb9zz//VJYsWaKUz5o1a5SyoaGhevjwoTJnzqx06dIpVapUsdYXVx0fg4TutwjHjh1T06ZNlTJlSi1fvlw5c+Y0e07kN2eSjD6PaZrCP40l+s3GxibKGiAFCxbUs2fP9OjRI663/y+6Yw4LC9PPP/+sunXrRrvfTz75xHhzJoVPpcqfP79CQkLe+1j+Tu/ab3Hh/vZ+/RaB+9u74/72/tfbv/n+RgAFAAA+SoUKFVKaNGl06NAhY9vjx4919uxZlS5dOkr50qVL648//tC1a9eMbYcPH5YklSxZUlZWVnJycjK2RTh06JCx/kJcdXwMErrfJOnkyZNq166dChQooCVLlkT5xXvSpEmqUaOGTCaTse3mzZt68OCBPv/88wQ9PktJ6H4zmUyqVq2apk2bZva8U6dOKVOmTEqfPj3X2/8X3TFfvnxZDx48UPny5aPU8csvv8jR0VE3btwwtr1+/Vrnz5//115vceH+9n79JnF/e59+4/72/teb9O++vxFAAQCAj5KNjY1atmyp8ePHa8eOHTp//rx69uyprFmz6osvvtCbN290584dYw2O4sWLy8nJST179tTJkyd18OBBDRo0SB4eHsYbijZt2mjTpk2aP3++goKCNHbsWJ07d05fffVVvOv4p0vofnv9+rV69+6tTz/9VKNHj9bLly91584d3blzR/fv35ckVa9eXbdu3dKQIUN09epVHTlyRN26dZOTk5MqVqyYmN0Rbwndb1ZWVqpevbr8/Py0efNmXb9+XStWrNDcuXPVvXv3eNXxMbDE61SSzp49K2tr62g/eczJyUnp06dXv379dPr0aV24cEH9+vXTw4cP1bp167/r0D/Iu/ZbfHB/e/d+4/72fv3G/e39X6fSv/z+ZgIAAPhIvX792jR27FhTuXLlTCVKlDC1b9/edOPGDZPJZDLduHHDVLBgQdOaNWuM8nfv3jV169bNVKJECVPZsmVNgwcPNr148cKszrVr15qqV69uKlasmKl+/fqm/fv3mz0enzr+6RKy344dO2YqWLBgtF9Vq1Y16ti/f7+pSZMmphIlSpjKlClj6t+/v+nhw4d/74F/oIS+3l69emWaNm2ayc3NzVS0aFFTjRo1TCtWrDDbJ9db9Mc8e/ZsU/ny5WPc57Vr10zdunUzlSlTxlS8eHGTt7e36cKFC5Y5QAt5136LrGrVqqapU6dG2c797d36jfvb+19v3N/e/3X6b76/WZlMkcYKAgAAAAAAAAmMKXgAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAA4F/MZDIldhMAgAAKAAAAAN5Vq1atZGdnZ/Zlb2+vKlWqaOjQoXr06FG86/Lx8ZGrq2uCtMvOzk6+vr6SpNDQUI0cOVIbNmxIkLoB4EMkS+wGAAAAAMDHqEiRIho8eLDx/atXr3TmzBlNnDhR586d07Jly2RlZfW3tmnFihXKmjWrJOnPP//UwoULNWrUqL+1DQAQHQIoAAAAAHgPadKkUYkSJcy2lS5dWn/99ZemTp2qEydORHnc0v7u/QFAfDEFDwAAAAASkL29vSTp9u3bkqTNmzfL09NTjo6OcnFx0aBBg2KdovfixQtNmDBBX3zxhezt7eXk5KQ2bdro3LlzRhkfHx999dVXGjx4sJycnOTu7q43b94YU/Bu3rwpNzc3SVL//v3l6uqqXbt2yc7OTnv37jXb39GjR2VnZ6djx44ldFcAgIEACgAAAAAS0NWrVyVJOXPm1IwZM9SrVy+VKFFCU6dOVZcuXRQYGKhWrVrpxYsX0T6/b9++WrNmjTp06KB58+apf//+unTpkr799luzBcWPHj2q33//XdOnT9e3336rpEmTGo9lzpxZ06ZNkyR9/fXXmjZtmipWrKjMmTNr3bp1ZvsLCAhQnjx5VLJkyYTuCgAwMAUPAAAAAN6DyWTS69evje8fPXqkw4cP64cffpCjo6Ny5cqlH374QY0bN9agQYOMcgULFlSLFi20Zs0atWjRwqzO0NBQ/fXXXxowYIDc3d0lSWXKlNHTp081evRo3b17V5kyZZIkvX79WsOGDTPWfIrMxsZGhQsXliTlypVLRYoUkSTVr19fP/74o/766y+lTp1aL1680JYtW9ShQ4eE7RwAeAsBFAAAAAC8hyNHjqho0aJm25IkSaLy5ctr2LBh+u233xQaGqo6deqYlSlVqpRy5Mihw4cPRwmgbGxs5OfnJ0kKCQnR1atXFRwcrJ07d0oKD6gipEuXLtrwKTYNGjTQrFmz9NNPP8nDw0M//fSTnj17Jg8Pj3eqBwDeFQEUAAAAALyHokWLaujQoZIkKysrJU+eXNmyZVOaNGkkyVhTKWPGjFGemzFjRj158iTaevfs2aORI0fqypUrSp06tQoVKqRUqVJJktkUvNSpU79zm3Pnzq0yZcooICBAHh4eCggIUPny5ZUlS5Z3rgsA3gVrQAEAAADAe0idOrWKFSumYsWKyd7eXgUKFDDCJ0mytbWVJN29ezfKc+/cuaP06dNH2X79+nV16dJFhQsX1k8//aRjx45p6dKlqlq1aoK1u0GDBjp8+LCCgoJ04MABNWjQIMHqBoCYEEABAAAAgAUUL15cNjY22rhxo9n2o0eP6vbt23JycorynNOnT+vly5fq0KGDcuXKJSsrK0nho6Ik8xFQcYm8KHlkNWrUUMqUKTVkyBClTp1a1apVi3edAPC+mIIHAAAAABaQLl06dejQQdOnT5e1tbWqVq2qmzdvasqUKfr8889Vv379KM8pWrSokiVLpnHjxsnb21uhoaHy9/fXrl27JEnPnj2L9/7Tpk0rSTpw4IDy58+v4sWLS5JSpkyp2rVra8WKFWrWrJlsbGw+/GABIA6MgAIAAAAAC+nWrZsGDx6sgwcPqlOnTpo2bZpq1qyppUuXGus6RZY7d25NmDBBISEh+vrrr41Pz/vxxx9lZWWlo0ePxnvfadKkUZs2bbR9+3a1b99er169Mh6rUqWKJMnT0/PDDhAA4snK9C5jOAEAAAAAH73BgwfrxIkTCggISOymAPiPYAoeAAAAAPxHLFq0SFeuXNHKlSs1bty4xG4OgP8QAigAAAAA+I84evSo9uzZo6+++kp16tRJ7OYA+A9hCh4AAAAAAAAsikXIAQAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAvDeTyZTYTYjTx9DGhJTQx/tv679/2/EAHwsCKAAAAOBf4OLFi+rZs6dcXFxkb2+vChUqqEePHjp//rxF9hcaGqqRI0dqw4YNxjYfHx+5urpaZH/v4/Hjx+rbt6+OHj0aZ9mff/5ZX331lUqVKqVixYqpevXqGjFihO7du/fO+23VqpVatWoVaxlfX1/Z2dm9c92xSYhz8na7jh07pg4dOiRoO2Pyxx9/qEWLFipWrJicnZ31/PnzGMvu27dPdnZ2qlu37jvt4+3juXnzpuzs7OTv7x+v5x86dEh2dnY6dOjQO+0XAAEUAAAA8NG7dOmSmjRpoocPH2rAgAGaN2+e+vbtq9u3b6tx48b67bffEnyff/75pxYuXKjXr18b2zp37qxp06Yl+L7e17lz57Ru3TqFhYXFWm7t2rXq3Lmz8ubNq3HjxmnOnDn66quvFBgYqCZNmujRo0cJ3rZGjRppxYoVCVpnQpyTt9u1atUqBQUFJWg7Y7Jw4UL99ttvGjNmjKZNm6aUKVPGWHbNmjUqWLCgLl68qGPHjsV7H28fT+bMmbVixQpVqVLlQ5oOIB6SJXYDAAAAAHyY+fPnK3369JozZ46SJfu/X/GrVaummjVrasaMGZo9e7bF25ErVy6L78MSpk+frtq1a2vIkCHGtnLlyqlUqVKqV6+eVq1apXbt2iXoPrNmzaqsWbMmaJ3Reddz8ne1KzoPHz5U5syZ5e7uHmu5x48fa/v27Ro6dKhmzZql5cuXq2TJku+1TxsbG5UoUeK9ngvg3TACCgAAAPjI3b17VyaTKcpIn1SpUul///ufatWqZbZ9+/bt8vT0VLFixeTi4qLvv/9ez549Mx739fVV9erVtWvXLtWtW1f29vaqUaOGAgICJIVPW3Jzc5Mk9e/f35ji9fZ0L1dXV02bNk0jR45U2bJl5ejoqG+//VZ//fWXZs+erUqVKqlkyZLq1q2bHjx4YNbGVatWqXbt2rK3t1eVKlXk6+urN2/eGI/7+PiodevWWrNmjWrUqCF7e3vVq1dPv/zyi6TwqVJeXl6SJC8vr1inxEX039sKFSqk/v37y97e3jju6KZrxTTNbfr06SpfvrwcHR3VuXNn3bhxw6yP356CF9d5kaTffvtN3t7ecnJyUrly5dSrVy+FhITE65wMHDhQLi4uZv0oSSNGjFDZsmX16tUrs3b5+Pho7dq1unXrlnHcDRo0UNOmTaMca+vWrdWmTZtoejfckydPNGrUKFWrVk3FihVTnTp1tHr1auNxV1dX+fv76/bt27Kzs5Ovr2+MdW3YsEGvX79WxYoV9eWXXyowMFAPHz40K+Pv768iRYpo1apVcnFxUZkyZfTNN99EOZ7ozumVK1fUtWtXlSlTRqVLl1bHjh1jHQV28eJFdezYUU5OTnJyclKXLl3MzrUUPrqrZs2aKlasmCpWrKghQ4bo6dOnMdYJ/BsRQAEAAAAfuSpVquj27dtq2rSplixZoqCgICNQqVmzpurXr2+U3bBhg7p06aJ8+fJp+vTp6tq1q9avX6/OnTubhTB37tzRsGHD5OXlpdmzZ+uzzz5Tv379FBQUpMyZMxvTur7++utYp3jNmzdPv//+uyZNmqSvv/5aGzduVIMGDbR3714NHz5cvXr10o4dOzR16lTjObNmzdLAgQPl7OysmTNnqkWLFpozZ44GDhxoVvfp06fl5+en7t27a/r06UqaNKm6deumR48eqWjRoho0aJAkadCgQRo8eHCs/bdp0yZ16dJFGzduVEhIiPFY69atVa5cuficBjPHjh3Tpk2bNGjQIH3//fc6f/68vLy8Ygwd4nNezp49q5YtW+rly5caO3ashg4dqtOnT6tt27bxOif16tXT3bt3zdYvCgsL05YtW1S7dm1ZW1uble/cubMqV66sTJkyGdPUGjZsqF9//VXXrl0zyv3+++86dOiQPD09oz22Fy9eqHnz5tqwYYPatWunGTNmqGTJkvruu+80c+ZMSdK0adPM9tWoUaMY+3bNmjWqWLGiMmbMKA8PD7169Upr166NUu7NmzeaN2+eRowYof79++vbb7+NcjxvCwkJUZMmTRQcHKwhQ4Zo3Lhxunv3rr766qsoIZckXb16VU2bNtW9e/c0ZswYjRgxQjdu3FCzZs2M9cM2btyocePGqUWLFvLz81OXLl20bt06DR8+PMZjBP6NmIIHAAAAfOSaN2+uO3fuyM/PT8OGDZMkpU+fXhUqVJCXl5ccHBwkhX/61/jx41WxYkWNHz/eeH6ePHnUunVr7d6923hT/vz5c40YMULOzs5GmapVq2r37t3y9vZW4cKFJYVP8SpSpEiMbUuTJo0mTZqkZMmSqXz58lq7dq1CQkK0atUqpU2bVpK0Z88eHT9+XFL4SJkZM2aoSZMmGjBggCSpQoUKSpcunQYMGKA2bdqoQIECRll/f39jmlmqVKnUsmVLHTx4UDVq1NDnn38uSfr888+N/0dn+PDhCgsL07Zt27R9+3bjuNzc3NSmTRtlyZIlvqfCkDRpUs2bN8+YzpYvXz55eHgoICBALVu2NCsb3/Myc+ZMpUuXTvPmzVPy5Mklha9h9O233yooKCjOc1KyZEnlyJFDGzduVPny5SWFjxS7c+eO6tWrF6V8rly5lCFDBrNpanXq1NHo0aO1bt06de/eXZK0bt06pU6dWtWrV4+2L/z9/XXx4kUtX75cjo6OkqSKFSvq9evXmjFjhpo2baoiRYpE2Vd0Lly4oDNnzhiBZfbs2VWuXDmtWLEi2hFYnTp1Mgua3t7H2yPMFixYoNDQUM2fP1+ZMmWSFD4SrlmzZjpx4oRSpEhhVj5iraoFCxYoTZo0kiRnZ2dVq1ZNc+fOVb9+/XT48GF99tlnatGihZIkSaIyZcooVapUFllbDPgnYwQUAAAA8C/wzTffaM+ePZowYYIaNmyoNGnSaMOGDWrcuLEWLVokKXxq0R9//CFXV1e9fv3a+CpdurTSpEmjffv2mdUZOQiICFLefsMeFwcHB7N1qTJmzKi8efMa4ZMkpUuXTk+ePJEk/frrr3rx4kWUNkZMI4vcxgwZMpitcRTRxtg+PS06adOm1dSpU7V9+3YNGjRINWrU0OPHjzV//nzVrFlTv/766zvVJ0lOTk5maykVLlxYOXPm1JEjR6KUje95OXbsmCpVqmSET5Lk6Oion3/+2QifYmNlZaUvv/xS27dvV2hoqCRp06ZNypMnj4oXLx6v40qbNq2++OILrV+/3ti2du1aubu7RwlnIhw+fFg5cuQwwqcIX375pV6+fKkTJ07Ea99S+OinTz75RKVKldLjx4/1+PFj1ahRQ1evXtXBgwejlI9Pv0R27NgxlShRwgifpPDraufOnapcuXKU8gcPHlSZMmWUIkUK47ylSZNGpUqV0v79+yWFryd29epVeXp6atq0aTp16pTq1q0b5yclAv82jIACAAAA/iVsbW1Vp04d1alTR1L4lK0+ffpo3Lhxqlu3rjGFaOjQoRo6dGiU5//5559m30f+FLIkScL/dh3dWkmxiRgVElmqVKliLB/Rxg4dOkT7eOQ2vv0paVZWVpIU56fexSRilEqLFi0UFham7du3y8fHR8OHD4+y7lNcMmbMGGXbp59+qsePH0fZHt/z8vDhQ3366afv1I631atXTz/88IP27NmjihUratu2bfrqq6/eqY6GDRtq/fr1Onr0qJImTarg4GCNGTMmxvKPHj0yC3QiRPRRdH0SnVevXmn9+vV6/PixMYIrsuXLl0eZLhnbtRadhw8f6rPPPnun8ps3b9bmzZujPJYhQwZJkru7u8LCwrR06VLNmDFDvr6+ypEjh3r37h3nguvAvwkBFAAAAPARCwkJUYMGDfTNN99EWTenSJEi6tmzp7Eo8ieffCJJ6tu3r8qUKROlLltb27+lzbGJaOP48eOVJ0+eKI9HF+x8iMDAQA0ePFjLli1T3rx5je1JkiTRF198oSNHjmjlypWS/i/gensR7+hGhUU3verOnTtRRgFJivd5SZs2re7fvx/l8d27d8d7pE/evHnl4OCgLVu2KEmSJHr8+LG+/PLLeD03QpkyZZQrVy5t3bpVSZIkUb58+WKdNmdra2u2ZlSEO3fuSAqfLhofO3fu1IMHDzR8+HDlzp3b7LFly5Zp+/btunfv3geFdDH18YEDB6INptKmTavy5ctHO/0v8si/iGD4yZMn2rt3r+bMmaM+ffqoZMmS7zXFE/gYMQUPAAAA+IhlzJhRyZIl09KlS/Xy5csoj1+5ckXJkydX7ty5lS9fPn366ae6efOmihUrZnxlyZJFEyZM0NmzZ+O936RJkybkYRiKFy8ua2trhYSEmLUxWbJkmjhxom7evJmgbSxQoIAePnyohQsXRvt4cHCwChYsKOn/RnNFXqT81atXOnnyZJTnHTt2zJhWKEknTpzQrVu3ol3QPL7npVSpUtq3b58xfU4KH+XWoUMHnTlzJt7npF69etqzZ482bdokJycn5cyZM8ayESPfIrOyspKnp6e2b9+un3/+2WyR++iULl1at27dijKVcf369bK2tjbWKIvLmjVrlDVrVjVq1Ehly5Y1+2rVqpVevXqlNWvWxFpHdMcTWalSpXTixAmzEOrevXtq166ddu/eHaV8mTJldPnyZRUuXNg4b/b29lqwYIF++uknSVKPHj3UpUsXSeGBVa1atdS5c2e9fv06yqhD4N+MEVAAAADARyxp0qQaMmSIunTpogYNGqhFixbKnz+/nj9/rn379mnJkiX65ptvjFE0PXv21KBBg5Q0aVJVrVpVjx8/1owZMxQSEqKiRYvGe78RazgdOHBA+fPnj/caQnFJnz692rVrpylTpujp06cqW7asQkJCNGXKFFlZWalQoULv3MZdu3bJ1tY22ufmy5dPHTp00KxZs3T79m19+eWXypo1q+7du6d169bpwIEDmj9/vqTwkTyOjo768ccflTt3btna2mrRokV68eJFlKleYWFh6tChgzp16qQHDx5owoQJKliwYLSjjZImTRqv89K5c2c1adJEHTt2lJeXl168eKHJkyfLwcFBLi4uRjAV1zlxd3fX6NGjtXnz5lg/HVAKH5119+5dY5RV5syZJUmenp7y9fWVpGgXMI/M09NTS5cuVZcuXdS9e3d99tln+vnnn7VmzRp17drVGAEWmz///FN79uzRV199ZYxEi6xkyZLKlSuXVqxYofbt28f7eN7WunVrBQQEqF27durYsaOsra31ww8/KGvWrKpbt67Onz9vVr5z585q2rSpOnbsqGbNmil58uRasWKFtm/fbiyUXq5cOQ0ePFhjxoxRpUqV9PjxY02bNk158uR5p+sZ+NgRQAEAAAAfuSpVqmjlypXy8/PTzJkzdf/+fdnY2KhIkSKaNGmSvvjiC6Nso0aNlDp1as2dO1crVqxQqlSp5OTkpPHjx8c6EuZtadKkUZs2bbRixQrt3r07ygLmH6JHjx7KlCmTli5dqrlz58rW1lbOzs7q1auX2eLlcSlQoIDq1KmjJUuWaM+ePdq4cWO05Xr16qXChQtr1apV+v777/X06VNjoevVq1ebhQSjR4/W8OHDNWDAAKVJk0YNGzZUyZIltWrVKrM6q1WrpuzZs6tPnz56/fq1qlatqu+++85sAfHI4nNeihQpoh9//FETJkxQjx49lCZNGlWuXFm9e/eWjY2NbGxs4nVOMmTIoAoVKmjfvn2qWbNmrH3o6emp3bt3G+FRxNpcWbJkUaFChZQxY8Y4p5ClTJnSaHdEsJgvXz6NGDFCDRs2jPW5EQICAvTmzZtY10yqV6+efH19tWfPnngfz9v1ZcuWTUuXLtW4cePk4+MjGxsblS1bVpMmTYp2imqhQoW0ZMkSTZo0SX379pXJZFLBggU1ffp0ubm5SZKaNm2qV69eafny5Vq6dKlSpEghZ2dn9enTR9bW1vE6fuDfwMr0rqsIAgAAAAA+yPjx47V48WL99ttvid2U9xISEqKqVatq6tSpqlatWmI3B8BHgBFQAAAAAPA3efr0qXbu3KmdO3cqV65cid2cd3bu3Dnt2LFDgYGBypMnj1xdXRO7SQA+EixCDgAAAAB/kwsXLmjw4MF6+fKlfHx8Ers57+zly5eaP3++3rx5o4kTJ8a5qDcARGAKHgAAAAAAACyKuBoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEXxKXgAAOA/69dff5XJZJK1tXViNwUAAOCj8+rVK1lZWcnR0THOsoyAAgAA/1kmk8n4wvszmUwKDQ2lHz8AfZgw6McPRx9+OPowYdCPH+7v6MN3+T2KEVAAAOA/y9raWqGhofr888+VKlWqxG7OR+vZs2c6d+4c/fgB6MOEQT9+OPrww9GHCYN+/HB/Rx+eOnUq3mUZAQUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAgP88KyurxG7CR83KykopU6akHz8AfZgw6EcA+OdKltgNAAAASEw2NjZKmTJlYjfjo5YyZUoVKVIksZvxUaMPE8Z/tR/DwsKUJAljCwD8sxFAAQCA/7xx41frxs27id0MAHhnOT/LqD69GyZ2MwAgTgRQAADgP+/GzbsKCvo9sZsBAADwr8U4TQAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACwq0QMoV1dX2dnZaf78+dE+PmjQINnZ2cnX1zfB9nnp0iXt2rUrznLffvut7OzstH379gTbd2THjh3T0aNHP6gOX19fubq6Gt/b2dnJ39//Q5v23l69eqUFCxYY37/dvui8S5tv3rwpOzs7HTp0KN5titzP7/P8f4MHDx5o1apVFt/P0KFD5ejoqJIlS+ru3bsW39+HetfrMz7l35ePj49atWplkbrj8k+7b8TH7du3tWnTJuN7V1fXBP058a5MJpPWrl2re/fuJVobEtOzZ8+0ZMmSGB+PuPfG9NWxY0c9e/ZMjo6OGj16dIz11KhRQwMHDrTEIQAAAMDCEj2AkiRra2sFBgZG2f769Wtt27ZNVlZWCbq/jh076tSpU7GWefLkibZv3668efNq+fLlCbr/CM2bN9f169cTtM69e/fK3d09Qet8Fxs3btSoUaPe6TmWbrMl+vljM3bsWK1fv96i+zh//ryWLl2qfv36ad26dcqYMaNF95cYvL29tXr16sRuRoL7GO8b/fr10549e4zvV69eLW9v74RuWrwdOXJEPj4+ev78eaK1ITHNmzdPfn5+cZbz9fXV3r17o3yNGzdOqVKlkru7uzZt2qSwsLAozz1+/LiCg4PVqFEjSxwCAAAALOwfEUA5Ozvrt99+0x9//GG2/eDBg0qVKpWyZcv2t7dp48aNSpo0qTp37qx9+/bp5s2bf3sb3kemTJmUIkWKRNu/yWR65+ckdpv/C97nvLyrx48fS5JcXFz02WefWXx/iSF16tTKkCFDYjcjwSX2azAhrs8MGTIoderUCdCa9/N3vMb+yeJ7/La2tsqUKVOUr08++USS1KBBA/3555/RjlINCAhQwYIF5eDgkKBtBwAAwN/jHxFAOTg4KHv27Nq6davZ9s2bN6tWrVpRRkD9+uuv8vLyUsmSJVW2bFn1799fDx48MB4/efKkmjdvLkdHR5UuXVrdunXT7du3JYVP07h165amTZsW63QXf39/lSlTRm5ubrK2ttbKlSvNHo9uKs7b23bv3i1PT08VL15czs7O8vHx0aNHjySFT3mRpP79+8vHx8eYnjBr1iy5uLjIzc1NT58+1cWLF9WxY0eVLl1a9vb2cnNz07x582Jsd+SpNKGhoRozZoxcXV1lb2+vMmXK6JtvvtH9+/cl/d+UiMDAQDVq1Ej29vZydXXVihUrjPru3bun7t27q2zZsnJwcFDTpk11+PDhGPusf//+Rjsiv4GYPXu2KlWqJAcHB7Vq1UrBwcHRttnHx0c+Pj4aM2aMnJ2dVbx4cXXs2FEhISHR7jMoKEguLi7q27ev3rx5E21/RO7nCCdOnDCO2c3NTWvWrDF73po1a1SrVi05ODioVq1aWrhwofEX+ZjO1ZMnTzRw4ECVK1dOJUuWlJeXV5wj7bZv365GjRqpRIkSKlasmDw9Pc1GdbRq1UoDBw5Uo0aNVKpUKWMUU2zte5uPj4/Wrl2rw4cPG/3x5s0bLViwQDVq1FCxYsVUo0YNLVu2LErfdurUSWXLllXJkiXVvXt33bp1K9p9+Pv7G6+natWqGX0dFBSk9u3by9HRURUqVNC3336rO3fuSJJGjx6tunXrGnU8evRIhQsX1rBhw4xtP//8sxwdHfXy5cso+/T19VWzZs00ffp0lS1bVqVKlVL//v319OlTo0x0U8ui2xZRh5OTk3r37q2HDx9Ge5xvv8bv3r2rvn37Gn3UsWNHXbt2LdrnStK1a9f09ddfG/euXr16mU3ZevXqlcaMGaNy5cqpRIkS6ty5s9lUxqNHj8rLy0tOTk6yt7dXrVq1tG7dOuNxHx8fde/eXd7e3nJyctKcOXMkSRs2bFCtWrVUrFgxNWrUSIsWLTKuhbf7JD6vwevXrxvntWLFipo/f76qV68e4zS+N2/eaNy4capcubLs7e1Vs2ZN43qL7r4RFhamWbNmqUaNGrK3t5eTk5PatWtnjGRs1aqVDh8+rLVr1xrn4+0peLt27VLjxo2Na2/UqFF68eKF2TGvXr1arVu3loODgypUqKBp06YZjz9//lzfffedXFxcVKxYMXl4eGjbtm3RHt+hQ4fk5eUlSXJzczP6Ia6fVW+L634b3TTDyNv8/f1VqVIlrVy5UhUqVJCjo6O6dOlidu5cXV01Y8YMtW3bVg4ODqpevXqU6blxtdvV1VVjxoyRu7u7ypYtq1atWmnatGm6deuW7OzsPugPNk5OTsqXL1+UEZuhoaHasmWLGjRoYGwLCAhQ7dq1VaxYMVWsWFEjRoxQaGjoe+8bAAAAlvWPCKAkqVatWmYBVGhoqLZv367atWublTt58qRatWqlAgUKaOXKlZoyZYpOnDihtm3b6s2bN3rz5o0R2Kxfv14LFizQ7du39b///U9S+DSNrFmzytvbO8b1Qi5duqSTJ0+qZs2aSp06tapUqaI1a9bo1atX8T6e+/fvq2vXrmrQoIE2b96sadOm6ciRIxo7dqyk8CkvkvS///1P3333nfG8tWvXauHChZo8ebKSJk0qb29vpUuXTsuXL9fGjRtVs2ZNjRkzRufOnYuzDWPHjtW2bds0evRoBQYGavTo0Tp48KB++OEHs3KjRo1Sp06dtGXLFlWpUkVDhgzRjRs3JElDhgzRy5cvtXjxYm3YsEF58+ZV586d9ezZsyj7c3d3N/p57969cnR0lCTdunVLx48f1+zZs7V48WLduXPH7JjftnHjRj18+FCLFy/WnDlzdObMGU2ePDlKuWvXrql169aqVKmSRo8eraRJk0YpE1M/L1y4UF9//bU2b96sihUrasCAAUZwsGLFCo0dO1Zdu3bVpk2b1KNHD82ZM0fjx483qzvyuUqdOrXat2+vGzduaNasWVq5cqVKlCihZs2a6ezZs9Ee5+nTp9WtWzfVrl1bGzZs0MqVK5UhQwb17dvX7E3UqlWr5OXlpaVLl6pixYrxbl+E7777TrVq1ZKjo6PRH6NHj9aMGTPUtWtXbdiwQS1atNCIESOMdXhu3bqlJk2ayMbGRgsXLtS8efN0584dtWzZ0izgieDu7m68nlatWqXvvvtOISEhat68uXLnzq3Vq1dr5syZevr0qZo0aaJnz56patWqunjxohFIHThwQCaTySy43LVrlypUqKDkyZNHe2ynTp3S3r17NW/ePE2fPl1HjhxRjx49oi0bk1u3bungwYOaP3++Zs6cqVOnThmBSGxev34tb29vXb58WTNmzNDKlSsVFhamdu3aRRuGPn78WC1atFBoaKgWLlyo+fPn6/r162bt/fXXX/X48WMtXbpUs2bN0m+//WbcM0JCQtS2bVsVK1ZMa9euVUBAgBwcHPTdd9+ZhVSBgYEqX7681qxZozp16mjnzp3q16+fGjZsqPXr18vT0zPGayVCbK/B58+fq3Xr1goLC9OyZcs0adIk+fv7G/eM6CxdulRbt27VpEmTFBgYqJYtW2rIkCE6evRotPeNRYsWyc/PTz4+PgoMDNT06dMVHBxsrA3k6+srR0dH1apVK9opkT/99JO+/vprValSRf7+/ho6dKg2b96sXr16mZUbM2aM6tevr02bNqlly5by9fXVkSNHJElTpkzRhQsXNHv2bG3evFmVKlVSz549ow1XHB0dza5/d3f3OH9WRedd7rcxuX//vnFfWrhwoX7//Xe1a9dOr1+/NsrMmDFDjo6OCggIUIsWLTRo0CBt3rxZUtw/YyMsXrxYAwYM0Ny5czVjxgx5e3sra9as2rt37wePWm7QoIG2bdtmFjzv2LFDz58/V7169SSFT/kdMGCAunXrpsDAQI0cOVLr1q3T3LlzP2jfAAAAsJxkid2ACLVq1ZKfn59CQkKUJUsW7du3TxkyZFCRIkXMys2bN092dnbGIqT58+fXxIkTVa9ePe3du1clSpTQgwcPlDlzZuXIkUM5c+bU5MmTjVEGGTJkUNKkSZUqVSqlS5cu2rb4+/srefLkqlatmiSpdu3aCgwM1Pbt21WrVq14HU9ISIhCQ0OVPXt25ciRQzly5NDMmTONX+AzZcokSUqbNq3Spk1rjIxq3ry5Pv/8c0nhbyS8vLzUokULY2pJ9+7dNXfuXF24cEGFCxeOtQ3FihVTzZo1VapUKUlSjhw5VL58eV28eNGsXOvWreXm5iZJ6tmzp5YsWaITJ04oZ86cun79ugoWLKicOXMqRYoU+u6771S3bt1ow54UKVIobdq0Zscnha/xNX78eKVJk0aS1LRpU02aNCnGdqdNm1bDhg2TtbW18ufPL3d3d+3evduszM2bN9W3b19VrlxZw4cPj3GdsJj6uUuXLsbIiZ49e2rZsmU6c+aMcufOrRkzZujrr782ws+cOXPq6dOnGjp0qL755huj7sjn6sCBA/rtt9908OBB47rq1auXjh8/rkWLFkW7qG7SpEk1cOBANW/e3Njm5eWl9u3b6969e8abuMKFC5uNFIqrfW+HNWnTplWKFClkbW2tTJky6enTp1q2bJl8fHyMevPkyaObN29q9uzZ+uqrr7R06VKlSpVK48ePl42NjSRp6tSpcnNz07p169SiRQuzfaRIkUK2traSwl9jadOmlZ+fn7JmzaoBAwYY5SZPnqxy5cpp69at+vLLL2Vra6t9+/bJw8ND+/fvl5ubm7Zv3667d+8qY8aM+uWXX2INlKysrDR58mRlyZJFUviHFrRv315XrlxRvnz5YnxeZMmTJ9ekSZOMNasGDRokb29vXbt2Tblz547xeQcOHNCFCxe0detW5c2bV5L0/fffa8GCBXr06FGUqXqbN2/WX3/9pYkTJxp99f3332vTpk1G4JgpUyYNHz5cSZIkUb58+eTu7q79+/dLkl6+fKlu3bqpbdu2xvXeoUMHBQQEKDg42Gi/ra2t2rVrZ+y3T58+qlmzptq2bStJyps3r4KDg2Nd9Du21+DmzZt1//59+fv7G9f6uHHjjGAgOtevX1eqVKn02WefKXPmzGrZsqXy5cunvHnzRnvfyJUrl8aMGaOqVatKCr931axZ0/gjRbp06WRtba0UKVJEOyVy9uzZql69ujp37mwcs8lkUpcuXXT58mXjdevh4WG0u1OnTvLz89Px48dVunRpXb9+XalTp1bOnDn1ySef6JtvvlHp0qWNcxeZjY2N2fWfIkWKOH9WVa5cOdp+iu/9NiYRo+js7e0lhZ8bd3d3HThwQBUrVpQkVahQQV27dpUk5cuXTydOnNDChQvl7u4e73ZXrlxZ5cuXN/abKlUqJU2a1OzeH5327dtHezxTpkxRpUqVJIWfl0mTJmnnzp2qWbOmpPDRTtWqVVP69Oklhf8MsLKyUo4cOZQ9e3Zlz55dfn5+xs8ZAAAA/PP8YwIoe3t75cyZU4GBgfLy8tLmzZujjH6SpIsXL8rFxcVsW6FChZQ2bVpduHBBlStXVrt27TR8+HBNnTpV5cqVU+XKleMdHL1+/Vrr169X5cqVjV9kq1SpotSpU2v58uXxrqdw4cKqU6eOOnXqpEyZMsnFxUVVqlRR9erVY31e5De8GTJkUPPmzbVx40adPXtW169f1/nz5yUpxulWkdWrV0/79+/X+PHjFRwcrCtXrujq1atGIBUhf/78xv8j3ghGjPbq2rWr+vTpo8DAQJUsWVIVKlRQnTp1YhyREp1PP/3U7E3BJ598YjYV5m25cuWStbW1WZveHn02ZMgQvXr1StmyZXuvReojAgNJxhvHly9f6v79+/rjjz80ceJETZkyxSgTFhamly9f6ubNm8axRz5XZ86ckclkMt4wRwgNDY12+pgUfo3Y2tpq9uzZunLliq5du2ac38gjDSLvJz7ti3w+o3PlyhW9evVKJUuWNNtepkwZLVy4UPfu3dPFixdlb29vhE9SeDiQN2/eKAFmTM6ePatLly4ZI+EivHz5UkFBQUqWLJkqVqyo/fv3y8PDQ/v27dOgQYN04sQJHTp0SPnz59eff/4Z7Rv1CHny5DHCJyl8+o4Ufp+IbwCVO3duswXTixcvLil8JGRsAdTFixdla2trdi1lyZJF/fr1i7F8njx5zAKMQoUKqVChQsb3uXLlUpIk/zcw1dbW1nit5MqVS56enlq0aJEuXrxodj+I6XqRwq/NL774wmxb6dKlYw2gYnsNnj17Vnnz5jUL8CPuwTFp0aKFtm/frsqVK6tw4cJycXFR7dq19emnn0Zb3tXVVSdOnNCUKVN09epVXb16VZcvXzY717G5ePFilJ8fZcqUMR6LCKDefq1EPs727durU6dOcnZ2loODg1xcXFS3bt1Yj/PtNsT1s+ptCXG/TZ06tRE+RRyjra2tLl68aARQZcuWNXuOo6Oj8cmw8W13bK+N2Hz//ffGayyyzJkzG//PmDGjKleurA0bNqhmzZq6d++e9u7dq1mzZhllKlasKEdHRzVs2FCfffaZMR068rEDAADgn+UfE0BJ/zcNr0mTJtqxY0e0Hxsf00KnJpPJeMPUu3dvNW/eXLt379aBAwc0fPhwzZ07VwEBAWZvqKOza9cu3b17Vz/99JPZ6Ks3b97o0KFDunr1qtkbzsgiT3GQpAkTJqhLly765ZdftH//fvXp00clS5bUwoULY9x/5IWA79y5oyZNmihDhgxydXVVhQoVVKxYsVjfkEc2aNAgBQYGysPDQ66ururSpYsxyiyy6Pokop+rV6+uPXv2aM+ePdq/f7/mz5+vadOmaeXKlSpQoEC82vEuf72PqT1vq1+/vgoWLKjRo0erevXqKliw4DvtI/Kb/Agmk8kI9vr372/21/0I2bJl059//inJ/FyFhYUpTZo00a6BE9PxHD58WG3btlWVKlVUsmRJ1a1bV8+fP1eXLl3Myr29n7jaF5eYXkMRdSdLlizWMpGDidiEhYWpXLlyGjx4cJTHIt7Eu7m5aeTIkbp+/bpCQkJUunRplS1bVocOHdLNmzdVsmRJY8RDdN5uS0QQE9M19/ZrNLqyEXXEdZzJkr3b7TM+5WN7rVy+fFnNmzdX0aJFVb58eX3xxRdKnz59lE8Ee3sx8WTJksUrsI4sttdg0qRJ37m+PHnyaNu2bTp8+LD27dunXbt2ac6cORo1apTq168fpfzs2bM1ffp01a9fX87OzmrdurV27NihTZs2xWt/0V2/ka/vCLHd+xwdHbV7927t27dPBw4cUEBAgH744QfNnTtXzs7O79WGiO0xXVvvc799+5qOru43b96YXVtvX4thYWHGPTG+7X7fReuzZMkSr/CqYcOG6t69ux49eqQNGzYoS5YsZve85MmTa9GiRTp79qzxSXqdOnWSh4fHO3+iIgAAAP4e/5g1oKTwAOr48eNas2aNcubMGe1IDjs7Ox07dsxs2/nz5/X06VPlz59fV65c0eDBg/Xpp5+qWbNmmjp1qubOnaugoCBjtEBs1qxZo/Tp0ysgIMDsa8aMGTKZTMZi5NbW1vrrr7/Mnht58eETJ05o5MiRypcvn1q3bq3Zs2dr5MiROnjwoNmiw7GJWIdl2bJl6ty5s6pXr25MIYvrE4cePHigFStWaPDgwerfv788PT1VuHBhXblyJd6fVhQaGqpRo0bpxo0bcnd31/fff6/t27crSZIkxl/L3/Y+o5HeR+3atdW8eXPZ29urf//+Ma6p8q4+/fRTZciQQTdu3FDu3LmNr5jWoYpQsGBBPX36VK9evTJ73pw5c7Rjx45onzNv3jyVLVtWvr6+at26tVxcXPT7779Livn8vm/7Ip+X/Pnzy9raOsrr6OjRo8qUKZNsbW1lZ2enU6dOma1FdffuXV27di3OEVYRChQooKCgIGXLls1op62trUaOHGmMoqpYsaIePnyoRYsWqXjx4kqVKpXKly+vgwcPaufOncbU0JhcvXpVT548Mb7/9ddfJckIj62trc3WrIpugfDg4GCzMseOHZOVlZUxSiYmn3/+uR49emRW5/3791W2bFn99ttv0ZYPDg42a++ZM2fk7Owc5RNAo7N8+XJ9+umnmj9/vtq3b6/KlSsbaz/F9pouVKiQTpw4YbYtop/eR6FChXTt2jWzhdqDgoLMjuttixYt0rZt24wPDNiwYYOcnZ2NdYfevm/MnDlTXbp00ZAhQ9SkSROVKFFCwcHB8b532dnZ6fjx42bbjh49KinqqKeYTJ06VceOHZObm5sGDBigwMBAY5RudN4+hrh+Vr0tPvfbt6/np0+fRvl58vDhQ7P1uC5duqSnT5+a/UHl7Q9HOH78uPH4u7Y7puP/UJUqVVK6dOm0fft2bdq0SZ6enmZ/ONi9e7emTZumIkWKqEOHDlq0aJG6d+9uXFMAAAD45/lHBVCFCxdW7ty5NWHChGin30lSmzZtdOHCBQ0fPlxBQUE6dOiQevfurSJFisjZ2Vnp06fXpk2bNGjQIAUFBenq1atau3atbG1tjSk5qVOnVnBwsNnCvVL4G+xffvlFjRs3VqFChVSwYEHjy83NTWXKlJG/v79CQ0NVokQJPXz4UH5+frp586aWL1+uX375xagrTZo0Wrp0qcaNG6dr167p4sWL2rx5s/LkyWOM6EiVKpWCgoJi/FSkrFmz6vnz59q6datu376tvXv3GovoxvVJP2nSpFHatGm1Y8cOXbt2TRcuXNDAgQN15syZeH9KkI2NjU6dOqWBAwfqt99+082bN+Xv769nz55FmVYVIVWqVJLCF9iObZpdQkiSJImGDx+uCxcuxLrwbFz9HJmVlZXat2+vH3/8UYsXL9b169f1008/aciQIUqRIkWMI0MqVqyowoULq2fPnjp48KCuXbumUaNGyd/fP8Y3bdmyZdOFCxd09OhR3bx5U2vWrDGm1cV0jt63falSpdKff/6pGzduKE2aNGrSpImmTp2qjRs36tq1a1qyZImWLl0qb29vWVlZqVmzZvrrr7/Up08fnT9/XidPntQ333yj9OnTx/jafFvz5s315MkT9e7dW+fPn9f58+fVs2dPnTp1yhixljZtWpUqVUorVqwwRpU4Ozvr2rVrOnHiRJwB1LNnz9S3b19dvHhR+/fv17Bhw+Tu7q4cOXJIkkqUKKFVq1bp3LlzOnv2rIYMGRKlj16+fKkePXro7Nmz2rdvn4YPHy4PDw+jjpg4OzvL3t5e/fr108mTJ3Xp0iX169dPGTJkUNGiRaOUr1u3rmxtbY0+PX36tAYPHqyCBQsqa9ascfZn1qxZ9ccff2j37t26deuWtm3bpiFDhkiK/X7Qvn17bd26VfPnz1dwcLDWrFmjxYsXx7m/mNSpU0fp06c3zutvv/2mPn36SIo5hLh//76GDRumHTt26NatW9qzZ4/OnTtn3Efevm9ky5ZN+/bt0+XLl3XlyhVNmjRJ27ZtMzvO1KlT69atW9GGd+3atdO2bds0Y8YMXb16VTt37tTw4cNVtWrVeAdQN27c0ODBg3XgwAHdunVLgYGBun37dpz3vvPnz+uvv/6K82fV2+Jzvy1RooQ2b96s48eP6/Lly/rf//4X7ai5Pn366PTp0/rtt9/Ut29f4xNhI2zatElLlixRcHCw5s6dq59++slYN+xd2x35+B89eqSrV6/G+oEdjx490p07d6J8vR2kJUuWTB4eHlqyZInOnDkjT09Ps8etra01ffp0LViwQDdu3NDp06e1a9euGM8PAAAAEt8/KoCSwkdBPX36VO7u7tE+Xrx4cc2dO1enT5+Wh4eHevToIUdHR82fP1/W1tZKnz695syZo1u3bqlx48aqX7++bt68qfnz5xvrELVq1Uq7du2St7e3Wd3r16+XyWRSs2bNot13mzZt9PDhQ23ZskXlypVTt27dNG/ePNWuXVv79u1T9+7djbL58+eXr6+vDh48KA8PDzVr1kxJkybVnDlzjL/ient7a/HixTF+4lbEwsGjR49WrVq1NHLkSDVs2FClS5eO8hfst1lbW2vKlCm6ePGi6tatq3bt2un58+fq1auXLl++rOfPn8f6/AiTJk1Szpw59fXXX6tmzZpavny5xo8fH2UdqQjlypVT8eLF1bRpU+3cuTNe+/gQBQoUUPv27TVt2jRdvnw52jJx9XN05X18fLR48WK5u7trxIgRaty4sYYOHRrjc5ImTap58+bJ3t5ePXr00JdffqkjR45o2rRpMb5p6969u0qUKGFMG1m1apVGjhypFClSxHp+36d9Hh4eev78uerUqaOQkBD1799fXl5eGj9+vGrXrq1ly5YZi29L0meffabFixfr8ePHatKkidq2batMmTJp2bJl+uSTT+LVjzlz5tTixYv1119/qVmzZmrZsqWsra21aNEis4Wjq1atqtDQUJUrV06SlD17duXJk0eff/65cubMGes+smXLpsKFC6tFixbq1auX3NzczBZ8HzJkiGxtbdW4cWN169ZNjRo1ihL22Nvbq3DhwvLy8lKPHj1UqVKlaKcNvi1JkiSaMWOGsmbNqjZt2qhZs2ZKnjy55s6dG+00qJQpU8rPz0+vX79W06ZN1a5dO33++eexjlyLzMvLS7Vq1VLfvn1Vp04d/fDDD+rVq5dy5MgR6/VSqVIlDRs2TEuWLFGdOnW0atUqNWvWLN5TKd9mY2OjuXPn6tWrV0a/NmjQQFLM0xa7du2qhg0b6vvvv1eNGjU0aNAgNWvWTB07dpQU9b4xduxYvXjxQg0aNFDLli118eJFDR06VPfu3dPt27clhX+YwcWLF/Xll19GGQFZo0YNTZw4UVu2bFHdunU1ePBg1a5dO959LUmDBw+Ws7Oz+vTpoxo1amjKlCnq3bt3jIutFyxYUJUrV1aPHj20YsWKOH9WRSeu+22vXr1UpEgRtWnTRq1bt1aJEiWMdc8iq1u3rjp06KB27dqpQIECmjVrllk4WL9+ff3000+qW7eu1q1bp8mTJxtTu9+n3ZL0xRdfKFOmTPryyy9j/ORPSerWrZsqVKgQ5SviQz8ia9CggTFKMHv27GaPlS9fXiNGjNDq1atVp04dtW3bVrlz59bEiRNj3DcAAAASl5UpvnMaAOAfxNfXV2vXrtXPP/+c2E35Rzt8+LAyZsxotij7zJkztXr1am3fvv2d67t586aCg4NVoUIFY1tISIgqVaqkJUuWxBhOw/L8/f3Vv39/XbhwIcYyrq6uql+/vrp16/Y3tuyfLSLAneO3T0FBvydyawDg3eXPn01TJ3dKsPqePXumc+fOqXDhwsYIX7wb+jBh0I8f7u/ow4jfpYoVKxZn2X/cCCgAQMLZu3ev2rZtq4MHD+r27dvasWOHFi5cGONInri8fPlSHTp0kJ+fn27cuKGzZ89q4MCBypMnT7SfbgYAAAAA0j/sU/AAAAmra9euxlpZ9+/fV7Zs2dS6dWtjzZ93lT9/fk2cOFEzZ87U1KlTlSJFCjk7O8c5RQsAAADAfxtT8AAAwH8WU/AAfOyYgvfPQx8mDPrxwzEFDwAAAAAAAP8pBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAopIldgMAAAASW87PMiZ2EwDgvXD/AvCxIIACAAD/eX16N0zsJgDAewsLC1OSJExuAfDPxl0KAAD8p4WGhur58+eJ3YyP2vPnz3X27Fn68QPQhwnjv9qPhE8APgbcqQAAwH+eyWRK7CZ81Ewmk54/f04/fgD6MGHQjwDwz0UABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAA8J9nZWWV2E34qFlZWSllypT04wegDxMG/fjh6MMPRx8C0UuW2A0AAABITDY2NkqZMmViN+OjljJlShUpUiSxm/FRow8TBv344ejDD/dv78M3YWFKmoSxLHh3BFAAAOA/b9DitQoOuZvYzQAA4B8tT5aMGtayfmI3Ax8pAigAAPCfFxxyVxdu/ZHYzQAAAPjXYtwcAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUAhWh17dpVjRo1irK9cePGsrOz0+HDh822r1+/XoUKFdK9e/fk4+OjVq1aJXibgoODZWdnJw8PjwSvW5KePXumJUuWfHA9dnZ28vf3lyT5+vrK1dX1g+vEv1urVq3k4+Pzt+/35s2bsrOz06FDhyy2D5PJpLVr1+revXsW20dCOHTokOzs7HTz5s33riPyaz8h7Ny5U5cvX47x8b/j/MUmruv2Xfo0IfofAAAA/2wEUIiWs7Ozzp07pxcvXhjbHj58qFOnTilbtmzas2ePWfmjR4+qUKFC+vTTTy3WJn9/f+XNm1fnzp3TiRMnErz+efPmyc/PL0Hr9Pb21urVqxO0TiChZMuWTXv37pWjo6PF9nHkyBH5+Pjo+fPnFtvHv9GtW7fUqVOnWIO7v+P8fQhHR0ft3btX2bJlS+ymAAAA4B+AAArRKleunF69eqVTp04Z2/bv369PP/1UDRo0iDaAKl++vMXa8+bNGwUEBMjT01P58+fX8uXLE3wfJpMpwetMnTq1MmTIkOD1AgkhadKkypQpk2xsbCy2D0u8rv4L4tNvf8f5+xA2NjbKlCmTkiZNmthNAQAAwD8AARSilT9/fmXJkkXHjx83tu3Zs0cVKlRQhQoVdP78ed29e1eSdP/+fQUFBalChQpG2VevXmnMmDEqV66cSpQooc6dOxvlu3TpIi8vL7P9XblyRXZ2drp06VK07dm7d69CQkLk4uKiL774Qlu2bNHjx4/NykQ3/SXytufPn+u7776Ti4uLihUrJg8PD23btk1S+FS5adOm6datW8Y0EB8fH3Xv3l3e3t5ycnLSnDlzFBYWplmzZqlGjRqyt7eXk5OT2rVrp+vXr0fb7ren4B09elReXl5ycnKSvb29atWqpXXr1hmP+/j4yMfHR2PGjJGzs7OKFy+ujh07KiQkJNr6I/p6ypQpqlq1qooXLy5PT0/t27fPeDwoKEidOnVS2bJlVbJkSXXv3l23bt0yHm/VqpXGjx+v//3vfypVqpScnJz07bff6unTp0YZPz8/VatWTfb29nJ1ddX06dONN8jRTTN8e5udnZ1WrFih5s2bq1ixYqpVq5aOHz+uFStWqEqVKnJyclKPHj3MRtwdP35cLVq0kIODg6pUqaKhQ4eatcnV1VVjxoyRu7u7ypYtq8OHDys4OFht27ZVyZIl5ejoqLZt2+rChQsx9t2jR480YMAAVaxYUUWLFpWzs7MGDBhgjNY5dOiQihQpotmzZ6ts2bLy9PRUWFiYQkJC1LNnT5UqVUply5ZVp06dFBwcHON+JOnkyZNq3bq1HB0dVb58eQ0ePNhsVNBff/2l/v37q1SpUipZsqR8fHz07Nkz4/Ht27erUaNGKlGihIoVKyZPT0+zILhVq1YaOHCgGjVqpFKlSmn9+vWSpAULFsjV1VUODg5q06aNpk2bZpybt6dwxedaOH36tFq0aKHixYvLzc1N69evV5EiRaKdBnbo0CHjte7m5ma8Fn/99Vd5eXmpZMmSKlu2rPr3768HDx5Ikrp166ZOnToZdZw/f152dnZmoxN//PFHVa9eXZJ0+/Zt9ezZU87OzipatKgqVaqkcePGKSwsTFL4yMnq1avr+++/V8mSJdW5c2dJ4a/FRo0aycHBQV9++aXOnz8f6/mTwqfEeXp6ysHBQdWrV9fkyZMVGhr63uX/+usvDR8+XBUqVJCjo6Natmyp06dP6+bNm3Jzc5MkeXl5ydfXN9pr8caNG2bnz2QyaeHChapRo4YcHBxUu3Ztbdy4Mdq2+fr6qkKFCkY/SeH3SEdHR61atUpS+L2jffv2cnR0VIUKFfTtt9/qzp07ZvXEdt2+Pa0urntVZCaTSXPmzJGbm5uKFy+uevXqGdd0hNjuSwAAAPjnIYBCjJydnfXrr78a3+/du1cuLi5ycHBQ2rRptXfvXknSsWPHlCJFCpUsWdIo++uvv+rx48daunSpZs2apd9++01jx46VJHl6eurw4cP6/fffjfIBAQEqVqyYChQoEG1b1qxZo1y5cqlo0aJyd3fX8+fPFRAQ8E7HM2XKFF24cEGzZ8/W5s2bValSJfXs2VM3b96Ut7e3vL29lTVrVrMpI4GBgSpfvrzWrFmjOnXqaNGiRfLz85OPj48CAwM1ffp0BQcHa/To0XHuPyQkRG3btlWxYsW0du1aBQQEyMHBQd99950RzknSxo0b9fDhQy1evFhz5szRmTNnNHny5BjrHTFihJYvX65+/fppw4YNqlixojp16qQrV67o1q1batKkiWxsbLRw4ULNmzdPd+7cUcuWLc1ChQULFihjxoxavXq1xo0bpx07dmjBggWSpJ9//lmzZs3S0KFDtW3bNvXu3Vs//PBDlDeDcZk0aZLatWundevWKW3atOrUqZMCAwM1e/ZsjRo1Stu3bzfe+J4/f15t2rRRxYoVtX79eo0fP15nzpyRt7e32RvMxYsXa8CAAZo7d65KlCihXr16KUuWLFqzZo1WrVqlJEmSqGvXrjG2ycfHR2fPntW0adMUGBio/v37KyAgQCtWrDDKvHnzRrt379aKFSs0YsQIvXjxwljjbPHixfrxxx+VPn16NW7cOMag8MaNG/rqq6+UOXNmrVixQr6+vtq3b5+GDh1qlNm2bZsyZ84sf39/jR07Vps3b9acOXMkhYc+3bp1U+3atbVhwwatXLlSGTJkUN++fc0CjVWrVsnLy0tLly5VxYoVtWTJEk2aNEmdO3fWunXrVKZMGU2fPj3W8xTbtRASEqKvvvpKOXLk0Jo1azRo0CBNmjRJb968ibYuR0dH+fr6Gm1zd3fXyZMn1apVKxUoUEArV67UlClTdOLECbVt21Zv3rxR1apVdfjwYb1+/VqStG/fPllZWZkFXLt27TICmq+//lpPnjzR/PnztXXrVnl7e2vu3Ln6+eefjfLXr1/Xn3/+qYCAAPXs2VM3btyQt7e3ChcurLVr16pLly6aMWNGrP3yyy+/qEePHmrcuLE2btyowYMHa8uWLerTp897l+/Ro4d++eUXjRo1SgEBAcqZM6e8vb2VOnVq47Xg6+srb29vSVGvRSsrK7N9zp0713idbdy4UU2bNlXfvn118ODBKO3z8PDQ3bt3zfp1+/btMplMqlWrlkJCQtS8eXPlzp1bq1ev1syZM/X06VM1adLELBiN7bp9W2z3qrdNmjRJy5Yt08CBA7VhwwZ5eXlpyJAhxjp9CXVfAgAAwN8nWWI3AP9czs7OGjVqlEwmky5cuKA7d+7IxcVFSZMmlbOzs/bs2SMPDw8dOXJEpUqVUvLkyY3nZsqUScOHD1eSJEmUL18+ubu7a//+/ZKkypUrK2PGjFq/fr06duyosLAwrVu3Th06dIi2HQ8ePNDPP/+stm3bSpIKFiyoggULasWKFVFGUsXm+vXrSp06tXLmzKlPPvlE33zzjUqXLi1bW1ulTp1aqVKlMqa0RLC1tVW7du2M73PlyqUxY8aoatWqkqQcOXKoZs2a2rp1a5z7f/nypbp166a2bdsabxw7dOiggIAABQcHK2PGjJKktGnTatiwYbK2tlb+/Pnl7u6u3bt3R1vn06dPtXr1ag0cOFA1a9aUJPXs2VMmk0lPnz7VmjVrlCpVKo0fP96YpjN16lS5ublp3bp1atGihSTp888/V69evSRJefLkkYuLixE+Xr9+XTY2NsqRI4eyZ8+u7NmzK3PmzMqePXu8+16SGjRoYIy8qVevnoYNG6ZBgwYpT548KliwoObOnWuMgPPz85OLi4sxEiZPnjyaMGGCqlWrpsOHD6ts2bKSwq+lyFM/r1+/rvLlyytHjhyytrbWyJEjdeXKFYWFhSlJkqh5u4uLi0qXLi07OztJ0meffabFixfr4sWLZuW8vb2VJ08eSeFByuPHjzVu3DglSxZ+Cx0xYoQOHTqklStXqlu3blH2s3LlSqVLl04jR440nvP999+bBbwODg7q2bOnpPDrzMXFRadPn5YUPtVq4MCBat68uVHey8tL7du3171794zAtHDhwqpbt65Rxs/PT15eXmrYsKGk8LDmzJkzOnv2bEynKdZrYcWKFUqbNq1GjBgha2trff755xowYIAxquhtNjY2srW1lSRlyJBBKVKk0Lx582RnZ6eBAwdKCh9tOXHiRNWrV0979+5VlSpV9N133+m3335TqVKltH//frm5uenAgQN6/fq1QkNDdfjwYXXq1EkvXrxQvXr1VKtWLaMPWrdurTlz5ujChQuqVq2a0ZbOnTsrZ86ckqQJEyYoY8aMGjx4sJImTar8+fPr999/16hRo2Lsl5kzZ6px48Zq2rSpcY6GDh2qr776Sjdv3tRnn332TuVDQ0P1yy+/yM/Pzxg9OmTIEH3yySd69OiRMXU34v4UIfK1GHnB7ojRT15eXsYHSLRq1UovXrwwwrzIcubMqdKlS2v9+vVydnaWJG3YsEHVqlVTmjRpNHfuXGXNmlUDBgwwnjN58mSVK1dOW7dulaenp6TYr9vI4rpXRfbs2TMtWLBAEydOVJUqVYy6b926JT8/P7Vo0SLB7ksAAAD4+xBAIUbOzs56+PChrly5or1796pIkSLGmyIXFxdNmzZNUvhUltq1a5s9N1euXGZv+G1tbY3pVcmSJdOXX36pdevWqWPHjjp48KDu37+vOnXqRNuODRs26NWrV3J3dze21a5dW5MmTdLRo0dVqlSpeB1P+/bt1alTJzk7O8vBwUEuLi6qW7eu0qZNG+NzcufObfa9q6urTpw4oSlTpujq1au6evWqLl++rCxZssS5/1y5csnT01OLFi3SxYsXdf36dWPaT+QRJLly5ZK1tbXxfdq0afXq1ato67x69apevXql4sWLm22PCBB8fX1lb29vtkZMpkyZlDdvXrOQJV++fGbPT5s2rTHF8csvv9SaNWtUo0YNff755ypfvrxq1Kjxzm/0IvdlypQpjWONkCJFCmM0z9mzZ3Xt2rVoF1cOCgoyAqi3z0/Pnj01cuRILV26VGXKlFHFihVVp06daMMnSWrevLl+/vlnrV27VsHBwbp8+bJu3rwZpT8i3vBHtO3Ro0cqXbq0WZmXL18qKCgo2v1cvHhRRYsWNcInKXydtXLlykW7Dyn8NRMxVbJw4cKytbXV7NmzdeXKFV27di3aaydyfzx48EC3bt1SiRIlzOotVapUrAFUbNfC2bNnZW9vb3Z9vt0Pcbl48aJcXFzMthUqVEhp06bVhQsXVLlyZRUvXlz79u2Tg4ODjh49qh9//FG7du3S6dOnde/ePaVKlUpOTk5KmjSpWrZsqa1bt+rkyZO6du2aLly4oLt375pNLZPM+/fixYsqUqSI2dpETk5Osbb77NmzOnnypNmHCkSMxgv6f+3dd3xO9///8WdsIbVXVa1KYoVYsUdQo9RW+6Oxas8iLRXUpgS1o0RsYoTGLGqPGlURI4SgWntGgly/P/xyvrkkkURyScnjfrvlVjnXGa/zvt7XqevpvN8nICBSABXT+uHDLyO+P6lTp5arq6skRfs0uNf7Sbh79+7p1q1bka4FXbp0ifacmjVrptGjR8vNzU1PnjzR/v37jbuX/Pz8dOHChUifwdf7+Zv6bUQxXasi3ol18eJFhYSEaODAgWaf3fAA8tmzZwl2XQIAAMC7QwCFaOXIkUP58+fXiRMntH//frM5nipXrqwffvhBZ86ckb+/v8aOHWu2bUyTzjZr1kweHh7666+/tHHjRtWsWdO4U+J14fPGNGnSxFgW/kVu+fLl0QZQr/+rv6Ojo/bs2aP9+/fr4MGDWr9+vWbPnq0FCxYYdwC8Lk2aNGa/z5s3Tz///LOaNGmiChUqqGPHjtq5c6c2b978xvOVXn2patOmjYoWLaqKFSvq888/V6ZMmYy7FcLFZULhiEFAVKKbDyUsLMxs2zcdM3PmzNqwYYPRD/bt2ydPT0/17t072uFtUd1xETF8CRddMBQWFqaGDRuazQUUsZ5wr78/bdu2Vd26dbVnzx4dPHhQ06dP1+zZs7V+/XrjDrOIx+jWrZsuXLigBg0aqH79+ipatKhxZ05EEe/uCwsLU/78+TV79uxI61lbW0d5PlGd++ve9Jk5cuSIOnXqpOrVq6t06dJq2LChgoOD1bNnT7P1IrZH+DHjOifOm/pC8uTJIwU7cRVdPSaTyeiTzs7O2rFjh8qVK6ePPvpIDg4OKl68uA4fPqzr16+rRo0aSp48uZ4+fap27drp2bNnqlu3rpo0aSIHBwfjzr6IIraNlZVVpPOI6T0KCwtT586dza5D4SLeNRnb9cPvCI2riH0xopiuBVH5/PPPNXLkSO3atUu3b99WtmzZjFA0LCxM5cuX14gRIyJtFzG0j+0E43GpL7yPTJs2LVIgKr3qo2nSpInzdQkAAACJizmg8EYVK1bU8ePHdeLECbO7FnLnzq18+fJp6dKlypw5szGEKbYKFiwoR0dH+fr6aufOncZwjtf5+fnp7Nmz+uabb7R+/XrjZ8OGDapSpYq2bdtmTF6cMmVKs6EcV65cMdvX9OnT9ccff6hmzZoaNmyYtm7dqjx58mjr1q2SFGk+lajMmTNHPXv2lJubm7766iuVLFlSgYGBsfqSv2LFCmXJkkW//PKLunTpomrVqhlzP73txLl58+ZVypQpzZ5WKEktW7bUokWLZGdnp9OnT5vNE3T79m1duXJFBQsWjNUxNm7cqOXLlxsTmK9atUotWrTQr7/+KulVuz958sRsm9fbPq4KFSqkixcvKm/evMbPixcvNG7cOLO5wyK6c+eORo0apefPn6tp06aaNGmSNm7cqFu3bunIkSOR1j979qx+//13ubu7a9CgQfryyy/16aef6urVq298P2xtbXXjxg3Z2NgYtX388ceaMmWKjh49GuU2n332mfz8/MzuVtq+fbucnZ0VEhISY3ssXLhQTk5OmjFjhjp27KhKlSoZ7RBdrTY2NsqdO7dOnjxptvz13+PC3t5efn5+ZnfkRRxGGJXXP1d2dnb6448/zJb5+/vr8ePHRp90dnbWX3/9pe3btxvhcMWKFXXo0CGz+Z/27dunM2fOyNPTU3369FH9+vWVPn163blz543vob29vf766y+zz0VUw8YiKlSokC5fvmzWJ2/evKmJEydG6v+xWT/8XCN+dl+8eCFnZ2dt2bIlVtejiGxsbJQ9e/ZI14I+ffpEO7TQ2tpa9erV07Zt27R582Y1atTICIULFSqkgIAA5cqVy6g/Q4YMGjt2bKQhqrER07UqogIFCihFihS6ceOGWfvt2bNHHh4eSpYsWYzXJQAAAPz3EEDhjSpUqCBfX19ZWVlFGqJSpUoV+fr6qkKFCnH+siS9ugvKy8tLadKkiTQkJ5y3t7fSpk0rFxcXY+6n8J8uXbooNDTUuEOqZMmSWr16tc6ePSs/Pz+5ubmZ3c0RFBSkESNG6ODBg7p+/bq2bt2qGzduGENMrK2t9eDBA2OoSFRy5cql/fv36+LFi7p06ZKmTp2qbdu2vfFJWOFy5sypmzdvas+ePbp+/bq2bdsmNzc3hG4B6wAAYPhJREFUSYrV9lFJmzat2rVrJ3d3d+3cuVNXr17VTz/9pPPnz6tq1apq3bq1njx5om+//Vb+/v76888/1bdvX2XKlCnSsMnohISEaMKECVq/fr2uXbumY8eO6ejRo0a7lSxZUvfv35eHh4euXbumFStW6Pfff3+r8wnn4uIiPz8/jRw5UgEBATpx4oQGDhyowMDAaIcgZciQQbt379awYcN09uxZBQUFacWKFUqZMqWKFSsWaf2sWbMqRYoU8vX1VVBQkE6fPq1+/frp1q1bb3w/vvzyS2XIkEF9+vTRqVOnFBAQoKFDh+r333+PNoht06aN7t27pxEjRiggIEBHjx7VxIkTVb58+WjvaIkoV65cOnfunI4dO6Zr165p7dq1cnd3l/TmvtOlSxd5eXnJ29tbV65ckYeHhxG4vo02bdro4cOHGj58uAICAnTgwAGNHj1aUvQBbvhdYf7+/nry5Im+/vprnTt3TqNHj1ZAQIAOHz6sQYMGqUiRIkbY9Nlnnyl37txavXq1saxChQo6dOiQ7t+/b1wvcubMKelVSHr9+nUdO3ZMPXr00PPnz9/YLq1bt1ZwcLC+++47BQQEaNeuXcZk6dHp0qWLtm7dqpkzZ+ry5cs6ePCgXF1d9ejRoyjvgIpp/fz58xt3IB06dEiXL1/W8OHDFRISonLlyhntdv78eT169OiNtYXr2rWrFi9erA0bNujq1avy9PTUzp07jcAuKk2bNtWuXbt08uRJs38IaNOmjR49eqRBgwbJ399f/v7+6t+/v06fPi1bW9tY1RNRTNeqiGxsbNSqVSu5u7trw4YNCgoKMibFz549u6SYr0sAAAD472EIHt7IyclJz549U7Vq1SINoahcubKWLFkSbXgUk3r16mn06NFq3LhxlMM4QkND5ePjo4YNG0Y5PM/JyUlFixbVqlWr5OLiIjc3N7m5ually5bKnj27+vbtq5s3bxrrjxgxQhMmTNC3336r+/fvK3fu3Bo0aJAaNWok6dVwlFWrVunLL7+Ul5dXlDVPnDhRo0aNUrNmzZQuXTqVKFFCI0eOlJubm27cuPHG+Uc6dOigS5cuGU8uy5cvnwYMGKDp06fr9OnTkb6ExdaAAQOUPHlyjRgxQo8ePZK9vb3mzZtnDF3x8vLSpEmTjKfhVapUSZMmTdJHH30Uq/23aNFC9+/f16xZs/T3338rQ4YMqlOnjgYNGiTp1VxGvXv31sKFCzV9+nRVrVpVffr0kaen51udj/Qq1FqwYIHc3d3VpEkTWVtbq0KFChoyZEi0Q8RSpEih+fPna8KECerYsaOCg4NVuHBhzZs3z2yuqXA5cuTQ+PHjNWPGDC1dulTZsmVT9erV1bFjR7MnqL3OxsZGXl5emjhxovHktqJFi2rhwoXR3lWWI0cOLVy4UJMmTVLjxo2VIUMG1a9f35j/JiZ9+vTR7du3jSGJn332mcaOHatvv/1Wp0+fjva4rVu31oMHDzRt2jTdu3dP5cqVU5MmTSLdgRRbWbJk0YIFCzR27Fg1atRIOXPmVOvWrTVx4sRoh1jZ2tqqWrVq6tevnwYMGGA8pW7atGlq3Lix0qdPr1q1amngwIFm+6hRo4YWL15sDAkrWbKk0qRJIycnJyOccXBwkKurqxYtWqRp06YpR44cql+/vnLlyhXpTpuIcuTIocWLF2vs2LFq0qSJcuXKpe7du5s9lfB1devW1dSpUzV37lzNmTNHGTNmlLOzs/E5eJv1x44dq4kTJ6pv374KDQ1ViRIl5OHhYQwzbdasmSZOnKgrV66odu3a0dYWLnw4oru7u27duqV8+fJp6tSpKleuXLTblClTRtmyZVOWLFnM5hDLkyePvLy8NGXKFLVu3VrJkydXqVKl5OnpaTYMNi7edK26deuW2bqurq7KlCmT3N3d9e+//ypXrlzq06eP8VCImK5LAAAA+O+xMr3t2B8gnoKCgvT555/L19c32rtaALy933//XZ999plZMDp8+HBdvXpVixcvjvP+Ll68qAcPHqh06dLGsuPHj6t169bavXu38SQ64H0SHlZO2nZI567fjGFtAACSNrvcOeU5MPqHnCSkp0+f6uzZsypcuHC0c63izd5FG4b/Xap48eIxrssQPLxzf//9t7Zu3aphw4apSpUqhE+AhWzYsEE9evTQyZMndf36da1fv14bN2407vqLq5s3b6pDhw5av369rl+/rhMnTmjcuHEqV64c4RMAAACAN2IIHt65e/fuaejQocqXL59mzpyZ2OUAH6zhw4dr/Pjx6tmzpx4+fKi8efPqu+++i3bS/5hUrlxZ33//vebOnavhw4fLxsbmjcPQAAAAACAcARTeuSJFisT45CwA8ZcxY0aNHz8+QffZpk0btWnTJkH3CQAAAODDxxA8AAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAolK87YZ79uzRgQMH9O+//2rAgAE6e/asihYtqty5cydkfQAAAAAAAHjPxTmACg4OVs+ePXXgwAGlT59eT548UefOnbV8+XL5+fnJy8tLhQoVskStAAAAAAAAeA/FeQjeTz/9pDNnzmjRokU6dOiQTCaTJGnChAnKkSOH3N3dE7xIAAAAAAAAvL/iHED5+vpqwIABKl++vKysrIzl2bNnV/fu3fXHH38kaIEAAAAAAAB4v8U5gHr48GG08zxlyJBBT58+jXdRAAAAAAAA+HDEOYAqVKiQfHx8onztt99+Y/4nAAAAAAAAmInzJOTdu3dXr169dP/+fdWoUUNWVlY6evSovL29tWLFCk2ZMsUSdQIAAAAAAOA9FecAqlatWpo0aZKmTJmiPXv2SJLGjx+vLFmyyM3NTXXr1k3wIgEAAAAAAPD+inMAJUkNGzZUw4YNdenSJd2/f18fffSRChQooGTJ4jyiDwAAAAAAAB+4twqgwhUoUCCh6gAAAAAAAMAHKlYBlL29vaysrGK1QysrK/n5+cWrKAAAAAAAAHw4YhVA9ezZM9YBFAAAAAAAABBRrAKo3r17G3++ceOGsmbNqlSpUkVaLyQkRGfOnEm46gAAAAAAAPDei/Os4TVr1pS/v3+Ur/3555/6+uuv410UAAAAAAAAPhyxugNqwoQJun//viTJZDJp1qxZypQpU6T1zp49KxsbmwQtEAAAAAAAAO+3WAVQBQoU0OzZsyW9mmT8r7/+ijQEL3ny5LKxsZGrq2vCVwkAAAAAAID3VqwCqBYtWqhFixaSJGdnZ/38888qXLiwRQsDAAAAAADAhyFWAVREv/32myXqAAAAAAAAwAcqVgFUhw4dNGLECBUsWFAdOnR447pWVlZavHhxghQHAAAAAACA91+sAiiTyRTln2NaFwAAAAAAAIhVANWsWTNlzpxZkrRkyRKLFgQAAAAAAIAPS7LYrOTq6qqgoCBL1wIAAAAAAIAPUKwCKIbVAQAAAAAA4G3FKoACAAAAAAAA3las5oCSpDVr1uj333+PcT0rKyv17NkzXkUBAAAAAADgwxHrAGrVqlWxWo8ACgAAAAAAABHFKYBycHCwZC0AAACJIl+OrIldAgAA/3n8/xLxEesACgAA4EM1ql2TxC4BAID3wsuwMCVPxnTSiDt6DQAASNJCQ0MVHByc2GW814KDg+Xn50c7xgNtmDBox/ijDePvQ29Dwie8LXoOAABI8kwmU2KX8F4zmUwKDg6mHeOBNkwYtGP80YbxRxsCUYvVEDx/f39L1wEAAAAAAIAPFHdAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWFSsJiGPSkBAgPbv369///1X7du3V1BQkOzt7ZU+ffqErA8AAAAAAADvuTgHUGFhYfrhhx+0du1amUwmWVlZqV69epo1a5auXr0qLy8v5cyZ0xK1AgAAAAAA4D0U5yF4s2bNko+Pj3788Uft379fJpNJkvTtt98qLCxMU6dOTfAiAQAAAAAA8P6KcwC1du1a9enTR82aNVPGjBmN5YULF1afPn20f//+hKwPAAAAAAAA77k4B1C3b99W4cKFo3wtR44cevjwYbyLAgAAAAAAwIcjzgFU3rx5tWfPnihfO3LkiPLmzRvvogAAAAAAAPDhiPMk5P/73//0ww8/6Pnz56pRo4asrKx05coVHT58WAsXLtTQoUMtUScAAAAAAADeU3EOoFq0aKG7d+9q9uzZWr58uUwmkwYMGKCUKVOqc+fOat26tSXqBAAAAAAAwHsqzgGUJHXr1k1t27bV8ePH9eDBA3300UcqUaKE2aTkAAAAAAAAgPSWAZQkpU+fXlWrVk3IWgAAAAAAAPABilUA5ezsLCsrq1jt0MrKSjt27IhXUQAAAAAAAPhwxCqAKleuXKwDKAAAAAAAACCiWAVQ48ePj7Ts5cuXSp48uSQpODhYL168kI2NTcJWBwAAAAAAgPdesrhu8OLFC40YMUItW7Y0lp04cUIVKlTQhAkTFBYWlqAFAgAAAAAA4P0W5wBq+vTp2rhxo7744gtjWZEiRTRo0CCtWrVKCxYsSNACAQAAAAAA8H6L81PwfHx8NGTIELVq1cpYljFjRnXs2FEpUqSQp6enunbtmqBFAgAAAAAA4P0V5zug7t27pzx58kT5WoECBXTz5s14FwUAAPAu8bCV+LGyslLatGlpx3igDRMG7Rh/tGH80YYJg3b88MQ5gCpQoIC2bt0a5Wu//fab8ubNG++iAAAA3pVUqVIpbdq0iV3Gey1t2rQqUqQI7RgPtGHCoB3jjzaMP9owYdCOb+/lf3Ru7jgPwevQoYOGDh2q+/fvq1atWsqSJYvu3r2rXbt2ydfXV+PGjbNEnQAAABYzbOdqXb53K7HLAAAAiJf8mbLpx5otEruMKMU5gGrcuLGePHmiWbNmadu2bcbyTJkyafjw4WrcuHFC1gcAAGBxl+/d0rnbfyd2GQAAAB+sOAdQktS2bVu1adNGly9f1v379/XRRx+pQIECSpYsziP6AAAAAAAA8IF7qwBKejUhWIECBRKyFgAAAAAAAHyAYhVAFS5cWCtXrpSDg4Ps7e3fOAu9lZWV/Pz8EqxAAAAAAAAAvN9iFUD17NlTOXLkMP7MYxABAAAAAAAQW7EKoHr16mX8uXfv3m9c9+bNm/GrCAAAAAAAAB+UOM8aXrhwYf35559Rvnbs2DHVq1cv3kUBAAAAAADgwxGrO6AWLlyop0+fSpJMJpNWr16t33//PdJ6J06cUKpUqRK2QgAAAAAAALzXYhVAhYSEaObMmZJeTTK+evXqSOskS5ZMNjY26t69e8JWCAAAAAAAgPdarAKo7t27G8GSvb29Vq1aJQcHB4sWBgAAAAAAgA9DnOeAqlixop48eWKJWgAAAAAAAPABinMAdeLECVlZWVmiFgAAAAAAAHyA4hxAValSRRs3btTz588tUQ8AAAAAAAA+MLGaAyqi1KlTa+PGjfL19VXBggVlbW0daR1PT88EKQ4AAAAAAADvvzgHUDdv3pSjo6Pxu8lkMnv99d8BAAAAAACQtMU5gFqyZEmUy//55x+tXr1aa9asiXdRAAAAAAAA+HDEOYB63d69e7VixQrt2bNHL168UJ48eRKiLgAAAAAAAHwg3iqAunv3rtasWaNVq1bp+vXrSp8+vZo0aaJGjRqpTJkyCV0jAAAAAAAA3mNxCqAOHTqklStXaseOHXr58qVKly6t69ev6+eff1a5cuUsVSMAAAAAAADeY7EKoBYtWqSVK1fq8uXLyps3r3r06KEmTZrI2tpa5cqVk5WVlaXrBAAAAAAAwHsqVgHU+PHjZWdnJ09PT7M7nR49emSxwgAAAAAAAPBhSBablb744gtduXJF3bp1U48ePbR9+3a9ePHC0rUBAAAAAADgAxCrO6CmTJmix48fy8fHR97e3urdu7cyZcqkWrVqycrKiiF4AAAAAAAAiFas7oCSpPTp06t169ZavXq1fHx81KhRI/32228ymUz67rvv5O7urosXL1qyVgAAAAAAALyHYh1ARVSoUCENHTpUe/bs0YwZM1SgQAHNnz9fDRs21JdffpnQNQIAAAAAAOA9FqsheNFunCKFateurdq1a+v27dtat26d1q1bl1C1AQAAAAAA4APwVndARSVr1qzq0qWLfv3114TaJQAAAAAAAD4ACRZAAQAAAAAAAFEhgAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFxEP79u1lZ2cX7c/du3fl6uqqihUr6uXLl1HuY/bs2SpTpoyePXsW5+Pfv39fHTt2VPHixdW8efP4ns5bCQ0NVZ8+feTg4KDKlSsrLCwsxm3u3bun1atXv4Pq4qZ9+/YaOnRogu3j8OHDsrOz07Vr1xKivP+UhGiruJgxY4acnZ2N3y9cuKDdu3e/9f4+lPfG2dlZM2bMSOwyYvTHH3/o2LFjsV5/6NChat++vQUrAgAAwLuWIrELAN539erV0/fffx/la5kyZVKzZs3k7e2t/fv3q2rVqpHWWb9+vRo0aKA0adLE+dgbN27UsWPHtGzZMuXIkSPO2yeEvXv3auvWrZo7d67s7OyULFnMufbEiRN17do1tWjR4h1UiA+Bi4uL2rZta/zerVs3NWnSRNWrV3+r/Tk6Omrfvn3KnDlzAlWYONasWaPUqVMndhkxatOmjcaNG6cyZcokdikAAABIJARQQDylSZNG2bJli/b1MmXKKF++fPLx8YkUQJ08eVKBgYGaMmXKWx374cOHypYtmxwcHN5q+4Tw8OFDSVK1atVkZWUVq21MJpMlS8IHKF26dEqXLl2C7S9VqlRv/Ny+L973AA0AAABJB0PwgHegWbNm2rFjh4KDg82Wr1u3Tvb29ipWrJgkKTAwUJ06dVLp0qXl6OioTp066dy5c1Huc+jQoZoxY4Zu3LghOzs7eXt7KywsTHPnzlWdOnVUrFgxlSpVSp07d9bVq1eN7Z48eaLRo0ercuXKcnR0VLt27fTXX38Zrx8/flxt27aVg4ODqlevrpEjR+rx48dR1jBjxgxjGJa9vb1mzJghb29v2dnZma0XcdnQoUO1bt06HTlyxFgW1XCu14eyFSlSRPPmzZOTk5OaNm2qsLAw/fPPP+rfv7/KlCkjJycnffPNNwoMDHzje/Hnn3+qY8eOcnR0VMWKFTVixAiz9+XJkydydXVVmTJlVLp0aQ0dOlRPnz41Xt+xY4datGihkiVLqnjx4mratKn27t37xmOGM5lMmj9/vmrWrKkSJUqoUaNG2rhxo/F6+Hnu2bNHDRo0ULFixVS3bl3t2LHDWOfly5eaOnWqKleurJIlS6pPnz4aM2aM2XClgIAAdenSRY6OjqpcubIGDhyoW7duGa/HpZ9Jr4ZZjh07VhUqVFDp0qU1adKkSEMt43tMOzs7LV26VC1btlTx4sXVsGFD7dy503g94hA8Z2dnXb9+XTNnzjTO+9GjRxo+fLjKly+v0qVLq0OHDjp9+nS05/T6EDxnZ2d5eHiod+/ecnR0lJOTk3788Ue9ePHC2OZNfad9+/YaPny4WrRooTJlyhjv69q1a1WvXj05ODioXr16Wrx4sVnbHTt2TB06dFCpUqVUrFgx1atXTxs2bDBev3Pnjvr06SMnJyc5ODioVatWOnLkiPF6xCF4M2bMUMeOHTVv3jxVrVpVxYsXV7t27RQQEGCsf/fuXbPPzOTJk9WhQ4doh/FFNVTx9WXt27fXmDFjNGDAAJUoUUJVq1bVvHnzjKA5/HPu6upqfKZjOu/XjRkzRmXLltWff/4pKe7vNwAAABIfARTwDjRu3FghISFmX6hDQ0Pl6+trNgxtwIABypEjh9auXavVq1crWbJk6tWrV5T7/P777+Xi4qKcOXNq3759ql+/vjw9PeXh4aGhQ4dq69at+vnnnxUYGKjx48cb2/Xr10+///67xo0bp/Xr1ytPnjxycXHRgwcP5O/vr6+//lpVqlTRxo0bNXnyZJ05c0YuLi5R3rXk4uKi7777TpK0b98+ubi4xNgW33//verVq2cMgYqtly9fas+ePVq5cqXGjBmjZ8+eGeGDl5eXlixZokyZMqlly5b6559/otxHUFCQ/ve//yl79uxauXKlZsyYof3792vkyJHGOtu2bVP27Nnl7e2tiRMn6tdff9X8+fMlSX/99Zd69+6tL774Qj4+Plq1apUyZ86swYMHKzQ0NMZzmDp1qpYvX67hw4fLx8dHHTp0kJubm5YuXWp2npMmTdL333+vTZs2ydbWVkOGDNGTJ08kSZMnT9bKlSs1YsQIrV27VtmyZdOSJUuM7f/55x+1adNGefPm1Zo1azRnzhw9fvxYX331lRGkxaWfSdKPP/6oX3/9VePHj9eKFSt08+ZNs/l8EuqYkydPVqNGjbRhwwZVq1ZNvXr10vHjxyPVs2bNGuXMmVMuLi6aMWOGTCaTunTpoqCgIM2dO1erVq1SyZIl1bp1a/n5+cX4voRzd3dX2bJltXHjRg0ePFheXl7atGmTpNj1ndWrV6tDhw5atmyZqlSpopUrV2rixInq1auXNm/erH79+mn+/PmaPHmy0W6dOnVS8eLFtW7dOq1fv14ODg76/vvvdfv2bUmSm5ubQkJC5OXlJR8fH+XPn189evQwC0UjOnbsmP744w/NmzdPy5Yt0507d4waw8LC1K1bN125ckULFizQwoULdfLkSbNA620tX75cNjY28vb2Vv/+/fXzzz8bn5vwz/l3332n77//PlbnHdHEiRO1YcMG/fLLL3JwcEiw9xsAAADvFkPwgHjy8fHR1q1bIy2vVauWJk2aJEnKnj27qlatKh8fHzVo0ECS9Ntvv+nZs2dq2LChsc3Vq1dVsWJF5c6dWylTptTYsWN16dIlhYWFRZpbycbGRtbW1kqePLkxlOjTTz/VhAkTVKNGDUlS7ty5VbduXW3ZskWSdOnSJf3+++/y8PBQ5cqVJb36gvvRRx/p3r178vDwUKVKlfTNN99IkvLly6cpU6aoVq1aOnLkiJycnMxqSJcunWxsbCQp1sOZbGxslCZNGqVMmTLOQ6BcXFyUL18+Sa++7D98+FCTJk1SihSvLmVjxozR4cOHtWrVKvXu3TvS9qtWrVLGjBk1duxYY5sff/xRJ06cMNZxcHBQ//79Jb1qz0qVKhl3iCVPnlzDhw9XmzZtjPU7dOigLl266M6dO8qVK1e0tT99+lSLFi3STz/9ZMxb9Omnn+r69evy8PAwm9+oX79+qlChgiSpR48e2rp1q86fPy97e3stW7ZMrq6uql27tiRp2LBhZvUvX75cOXPm1LBhw4xl06ZNU/ny5bVlyxY1bdo0Tv3s8ePH8vb21ogRI1StWjVJ0tixY3Xo0KEEP2bTpk2Ndhg0aJCOHDkiLy8vlSpVyqymzJkzK3ny5LK2tlbGjBl18OBBnTx5UocOHVLGjBklvQq8jh8/Lk9PT7MA9k0qV66sDh06SJLy5MmjJUuW6Pjx42rcuHGs+k7hwoXNPs+zZs1S9+7d9cUXXxj7fPz4sUaOHKm+ffsqJCREvXv3VqdOnYzhq127dtX69esVGBiorFmz6urVq7K1tVWePHmUJk0aff/992rYsKGSJ08e5Tm8ePFCEydOVIYMGSRJrVq1Mq5DR44c0Z9//ilfX18VKFDAeJ8iTu7+tvLnzy83NzdZWVmpYMGCCggIkKenp7p06WJ8zm1sbGRjY6N79+7FeN7hpk6dqrVr12rRokUqUqSIJOnQoUMJ8n4DAADg3SKAAuLJ2dlZgwYNirTc2tra7PfmzZurb9++unv3rjJnzqz169erdu3axhdFSerfv7/Gjh2rZcuWqVy5cqpSpYoaNGgQq4m9w2s5deqU3N3ddfnyZV2+fFkXL140Jig/f/68JKlkyZLGNqlTp5arq6skyc/PT1euXJGjo2OkfQcEBEQKoN618PBJelXrgwcPVLZsWbN1QkJCzIYcRXT+/HkVLVrUCBAkqXz58ipfvnyUx5CkDBky6Pr165JeBQwZMmTQvHnzdOnSJV25ckX+/v6SFO1TDsNdvHhRISEhGjhwoNn7+eLFC4WGhpo9BTE8HJCk9OnTS5KeP3+ugIAAPXv2zOz9s7KyUunSpY06/Pz8dOHChUjvYcR2iUs/u3z5sp4/f67ixYsby1KnTm2EAQl5zNf7l6Ojo/bv3x9Vc5o5c+aMTCaTEbyGCw0NVUhISIzbhytYsKDZ7zY2Nnr+/Lmk2PWdvHnzGn++e/eubt68qZ9++knu7u7G8rCwMIWEhOjatWsqWLCgmjZtKk9PT50/f15Xr16N1J969eqlb7/9Vlu3blXp0qVVuXJlNWjQINqJx7NmzWp2TYl4Dn5+fsqQIYNZ/8qaNavy588f6zaKjpOTk9kccI6Ojpo/f77u3bsXaZ6qTz/9NMbzll7NkXf06FFlzpzZLNxNqPcbAAAA7xYBFBBP6dKlM/viGZ3q1asrY8aM8vX1Vb169bR3714tWLDAbJ22bduqbt262rNnjw4ePKjp06dr9uzZWr9+vdldAdGZN2+efv75ZzVp0kQVKlRQx44dtXPnTm3evFmSzL48RyUsLEwNGzY07oCKKD6THccUzkQl4tw74SJ+6Q4LC1P+/Pk1e/bsSOu9Hv6Fi+n8JUV7Z4n06g6STp06qXr16ipdurQaNmyo4OBg9ezZM8b9hg9hnDZtmlkAEC5VqlRR/jni9uH1v2kS97CwMJUvX14jRoyI9Fr43Wpx6WfhocLrx4zYlgl1zNffn5cvX8YqfA0LC1P69Onl7e0d6bWo2jI60bV7VLVFJeKTLMPneXJ1dVXFihUjrZsrVy5dvHhRbdq0UdGiRVWxYkV9/vnnypQpk9mw3Nq1a2vv3r3au3evDhw4oF9++UUzZ87UqlWrVKhQoVidQ7jkyZNHmrvrbUT1eX69fcKPE9XnKTbnLb36HM+ZM0cDBw7Ujz/+aDysIaHebwAAALxbzAEFvCMpUqTQl19+KV9fX23ZskU5c+Y0u3vizp07GjVqlJ4/f66mTZtq0qRJ2rhxo27duhXrOVrmzJmjnj17ys3NTV999ZVKliypwMBA40t0+B0eESfrffHihZydnbVlyxYVKlRIFy9eVN68eY2fFy9eaNy4cfr7779jVUPKlCklyWzi8tcnBn/9aXkpU6Y0Wz8sLExBQUFvPI6tra1u3LghGxsbo9aPP/5YU6ZM0dGjR6Pc5rPPPpOfn5/ZF+jt27fL2dk5VndOLFy4UE5OTsZkz5UqVTLaJaYn+xUoUEApUqTQjRs3zNp3z5498vDwiFXQkjdvXqVJk0YnT540W37q1Cnjz4UKFVJAQIBy5cplHCNDhgwaO3aszp8/H+d+lj9/fqVOndpsLqYXL14Yd6wk5DFfn0T6xIkTKlq0aIztYmtrq8ePH+v58+dmbTt//nyzedfiI659J0uWLMqcObOCgoLMajpz5oymTZsmSVqxYoWyZMmiX375RV26dFG1atWMOZBMJpNCQ0M1btw4BQUFqX79+vrxxx+1Y8cOJUuWTLt3747zOdjb2+vRo0dmdwjeu3dPV65ciXab2Hyepcjv3fHjx/XJJ5+Y3Y0VLqbzDmdraytHR0e5ublp06ZNxmT87+L9BgAAQMIjgALi6dmzZ7p161aUP69PTN28eXMdP35cq1evVrNmzcyCmAwZMmj37t0aNmyYzp49q6CgIK1YsUIpU6Y0npIXk1y5cmn//v26ePGiLl26pKlTp2rbtm1GHfnz59fnn3+ukSNH6tChQ7p8+bKGDx+ukJAQlStXTi4uLvLz89PIkSMVEBCgEydOaODAgQoMDIw0NC06JUuWlJWVlWbMmKFr167J19dX69atM1vH2tpa//77rxEylSxZUvv379fvv/+uK1euaPTo0Xr48OEbj/Pll18qQ4YM6tOnj06dOqWAgAANHTpUv//+e6Sn8IVr06aN7t27pxEjRiggIEBHjx7VxIkTVb58+WiHNEWUK1cunTt3TseOHdO1a9e0du1aY3hVTJOQ29jYqFWrVnJ3d9eGDRsUFBSkNWvWaNKkScqePXuMx5aktGnTqn379po+fbp27Nihy5cva8KECWYBVJs2bfTo0SMNGjRI/v7+8vf3V//+/XX69GnZ2trGuZ+lS5dO7dq10/Tp07Vt2zYFBARoxIgRZhO9J9QxFy9eLB8fH+O8zp07p//9739RtkW6dOkUGBio27dvq0qVKipcuLD69++vQ4cO6cqVKxo3bpy8vb0jDat7W3HtO1ZWVurSpYuWLFkiLy8vXb16Vdu3b5ebm5vSpEmjVKlSKWfOnLp586b27Nmj69eva9u2bXJzc5P0qj+lSpVKp0+f1vDhw3Xy5Eldu3ZN3t7eevr0aZTDZGPi5OSkEiVKaPDgwTp58qT8/f01aNAgBQcHRwqFw9na2sra2lrz5s3T1atXtXfvXv3yyy+R1jt27JimT5+uwMBArVmzRkuXLlXnzp2N162trRUQEKB79+7FeN6vq1q1qho0aCA3Nzc9ePDgnbzfAAAASHgMwQPiydfXV76+vlG+5u7urrp16xq/FyxYUA4ODjp16lSkoWMpUqTQ/PnzNWHCBHXs2FHBwcEqXLiw5s2bp08//TRWtUycOFGjRo1Ss2bNlC5dOpUoUUIjR46Um5ubbty4oY8//lhjx47VxIkT1bdvX4WGhqpEiRLy8PBQ5syZlTlzZi1YsEDu7u5q0qSJrK2tVaFCBQ0ZMiTWQ1vy5MmjkSNHau7cuVq2bJlKly6twYMHa8iQIcY6jRs31vbt29WgQQNt27ZNLi4uunr1qvr27atUqVKpefPm+uKLL954V5GNjY28vLw0ceJEderUSS9fvlTRokW1cOHCaL+E5siRQwsXLtSkSZPUuHFjZciQQfXr19eAAQNidW59+vTR7du3jSGKn332mcaOHatvv/1Wp0+fjvHLr6urqzJlyiR3d3f9+++/ypUrl/r06WP2RT0mffv21fPnzzVs2DAFBwerRo0aqlmzpnEXTp48eeTl5aUpU6aodevWSp48uUqVKiVPT09jGGVc+9nAgQOVOnVqjRo1Sk+ePFG9evXMJq5OqGO2atVKixYtMiZc9/DwkL29fZQ1tW/fXhMmTNCFCxe0ceNG433t16+fgoODVbBgQc2cOdOYzD2+3qbvuLi4KHXq1FqyZInGjx+vrFmzqmXLlurTp4+kVxPYX7p0yXiKYr58+TRgwABNnz5dp0+fVtWqVTV16lSNGzdO3bt316NHj1SgQAFNnjxZZcqUeavzmDFjhkaNGqWOHTsqderUatOmjS5dumTc6fS69OnTa9KkSZo8ebLq168ve3t7DRkyJNKw05o1ayogIEBffvmlsmfPLldXV7Vu3dqsLRYsWKCAgABNnz49xvN+XfjTM3/88UdNmjTJ4u83AAAAEp6VKaZxIwCA/4zt27erdOnSZnNyubi4KGfOnBo7dmwiVhY/dnZ2GjdunJo2bZrYpXyw7t69q1OnTqly5cpG4BQaGionJyeNGDFCjRs3fqv9tm/fXrlz535vnz4XPnxw/Lm9Onc7dkONAQAA/qvssubS0uY9JL16EvfZs2dVuHDhaOfJja/wv0tFfGhRdLgDCgDeIx4eHlq2bJkGDx6s9OnTa+fOnTp06JAWLlyY2KXhPy5FihTq37+/WrVqpdatW+v58+fy8PBQqlSporzrCAAAAEhIzAEFAO+RyZMnK126dOrYsaMaNGggHx8fubu7m01oD0Tlo48+0pw5c3Ty5Ek1btxYX331lW7fvm02VBIAAACwFO6AAoD3yCeffKKZM2cmdhkJ7ty5c4ldQpJQvnx5rVixIkH3uWTJkgTdHwAAAD5M3AEFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABaVIrELAAAASGz5M2VL7BIAAADi7b/8dxoCKAAAkOT9WLNFYpcAAACQIF6GhSl5sv/egLf/XkUAAADvUGhoqIKDgxO7jPdacHCw/Pz8aMd4oA0TBu0Yf7Rh/NGGCYN2fHv/xfBJIoACAACQyWRK7BLeayaTScHBwbRjPNCGCYN2jD/aMP5ow4RBO354CKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAASZ6VlVVil/Bes7KyUtq0aWnHeKANEwbtGH+0YfzRhgmDdvzwWJlMJlNiFwEAAJAYTp8+LUkqXrx4IlcCAADeVpgpTMmsuL/mdU+fPtXZs2dVuHBhWVtbW+QYcfm7VAqLVAAAAPAe8fafp1tPbyR2GQAAII6yWX+spvZdE7sMxAIBFAAASPJuPb2hm4+vJnYZAAAAHyzuUQMAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiknQA1b59e9nZ2UX7c/fuXbm6uqpixYp6+fJllPuYPXu2ypQpo2fPnr3V8YcOHRrf09DUqVNlZ2enxYsXx3tfUblw4YJ2794dr314e3vLzs7O+N3Z2VkzZsyIZ2X/5/Dhw5HeP3t7e5UqVUqtWrXSwYMHE+xY8fH06VMtXbrU4sfZtWuXLl68KOn/2ubatWuSEq7fJZZr167Jzs5Ohw8fTuxS4u1Nn4P39Txf/6zjw/P8+XMtWrTI+H3GjBlydnZOvIIkmUwmrVu3Tnfu3EnUOgAAABC9JB1ASVK9evW0b9++KH8yZcqkZs2a6c6dO9q/f3+U269fv14NGjRQmjRp4nzsGTNm6Pvvv49X/WFhYVq/fr3y58+vlStXxmtf0enWrZtOnz6doPtcs2aNXFxcEnSfkrR69Wrj/duzZ48WLFigFClSqFu3brp+/XqCHy+uFi5cKA8PD4se4/r16/rmm2+i/SKWEP0OlpcrVy7t27dPjo6OiV1KnNSvX1/79u1L7DJgQZs2bdK4ceOM311cXLRmzZpErEg6evSohg4dquDg4EStAwAAANFL8gFUmjRplC1btih/rKysVKZMGeXLl08+Pj6Rtj158qQCAwPVvHnztzp2xowZZWNjE6/69+3bp5s3b+rbb79VQECAjh49Gq/9vSuZM2dWunTpLLLf8PcvR44cKlWqlCZOnKiQkBDt3LkzwY8XVyaTKdGPkRD9DpaXPHlyZcuWTalSpUrsUuIk/JqKD9fr15h06dIpc+bMiVTNK+/i2goAAID4SfIBVGw0a9ZMO3bsiPQvq+vWrZO9vb2KFSsmSQoMDFSnTp1UunRpOTo6qlOnTjp37ly0+404FMrb21u1a9c2/lusWDE1bdpUf/zxxxtr8/b2lq2trZydnZUrVy6tWLEi0uuvD4d5fdmff/6pNm3ayNHRUWXLllXv3r1148YNSa+GCF2/fl0zZ85U+/btJUl2dnaaPn26atSoocqVKyswMFA3btxQ//79VaFCBRUtWlRVq1bVpEmTFBYWFmXdEYcehYWFae7cuapTp46KFSumUqVKqXPnzrp69aqx/tChQ996iEfq1KklSSlSpDCWHT9+XG3btpWDg4OqV6+ukSNH6vHjx2b1zZo1S506dZKDg4Nq166t1atXm+33xIkT6tChg0qXLi0nJye5urrq3r17ZvuYMGGC6tevLycnJ7Vv314zZ87U9evXzYbEvS42+3192Fb4smvXrqlmzZqSpA4dOkQ5vCuu/S40NFSTJk1SlSpV5OjoqJYtW5rd4fLy5UtNmjRJ1apVU7FixVS3bl0tX748mncj5vVDQ0M1YcIEOTs7q1ixYipXrpz69u2ru3fvRrvPtWvXql69enJwcFC9evW0ePFis763fv16ffHFFypevLiqVKmiMWPGKDQ0NNr9vS6m/h2bdnz06JGGDBmiMmXKqHz58vrll1/eeMzXh+C1b99eEyZM0KBBg+To6KjKlStr+fLl+uOPP9SoUSOVKFFCrVq1UmBgoNn24XdpOjg4qGXLlmY1DR06VH369JGLi4tKlSql+fPnS5J2796tli1bGscZN26cMcx46NChatGihVmt169fl729vQ4cOBDp+mJnZ6c1a9aoY8eOcnBwUOXKlTVz5kyz7X18fFSvXj0VL15cLVq0kKen5xuH8ZlMJi1evFh16tSRg4ODvvjiC23atMl4/e+//9agQYNUqVIllSxZUp06dZK/v7/ZeQ8dOlQTJkxQhQoVVKJECXXr1k3//POPsc6b+kxsrqvOzs6aN2+eunbtqhIlSsjZ2Vk7duzQjh07VKdOHaOuiHcqBgQEqEuXLka7Dxw4ULdu3TJeb9++vYYPH64WLVqoTJky2rhxY6S2ic3n8U2fl/B+s3XrVrVo0ULFihWTs7OzcYett7e3XF1djff28OHDZkPwwrffvHmzGjdurOLFi6tp06YKCAjQzz//rIoVK6pcuXIaOXKkWWi0a9cuNW3a1LjeTps2zewz+qZ+dPjwYXXo0EGSVLNmTXl7e0dqFwAAACQ+AqhYaNy4caQ7aEJDQ+Xr62v2RWzAgAHKkSOH1q5dq9WrVytZsmTq1atXrI/z999/a8WKFZo0aZLWrVuntGnTaujQodH+y+79+/e1c+dO1a1bV1ZWVqpXr562bt36xi/qr3v58qW6deumsmXLauPGjVq0aJFu3Lih7777TtKroXI5c+aUi4uLWZixbNkyTZ8+XTNnzlS+fPnUvXt3PXr0SL/88ou2bNkiFxcXLViwQL/99luMNXh6esrDw0NDhw7V1q1b9fPPPyswMFDjx4831vn+++/faojHrVu3NGrUKKVPn94IZvz9/fX111+rSpUq2rhxoyZPnqwzZ87IxcXFrK1nzZolR0dHrV+/Xm3bttUPP/ygX3/9VdKr0K59+/YqVKiQVq1aJXd3d506dUqdOnUymy/My8tLw4YN04IFCzRr1iy5uLgoZ86c2rdvn3LlyhWp3tjuNzq5cuUygrIZM2bEaphjTP3O1dVV+/fv1+TJk7Vu3TrVq1dP33zzjTEv2LJly7RlyxZNnTpVW7duVbt27eTm5qZjx45FebyY1p84caK2bdum8ePHa+vWrRo/frwOHTqk2bNnR7m/lStXauLEierVq5c2b96sfv36af78+Zo8ebKkV+/3sGHD1Lt3b23dulVjx47Vhg0btGDBghjbJlxs+ndM7divXz/9+eefmjNnjn755Rft3r07zsNClyxZosKFC2vjxo2qWbOmfvzxR7m5uem7776Tl5eX/v33X02ZMsVsm/Hjx+ubb77RunXrVKBAAbm4uCgoKMh4fevWrapYsaLWrl2rBg0aaPv27erevbuqV68ub29vjRw5Ur/++qsGDBggSWratKn+/PNPs4DYx8dHOXPmVPny5aOse8KECWrSpIk2b96sdu3aacaMGcbdmrt27dKQIUPUvHlzbdy4UU2bNjXeu+gsWLBAU6dOVefOnbVp0ya1atVKgwcP1qFDh/T48WO1bt1a//zzj2bPnq0VK1YoTZo0ateunVl7b9q0Sffv35eXl5fmz5+vM2fOaNq0aZISps9Ir64h9evXl4+Pj+zt7TV48GDNmTNHkyZN0pw5c3T69Gkj9Pvnn3/Upk0b5c2bV2vWrNGcOXP0+PFjffXVV3r69Kmxz9WrV6tDhw5atmyZqlSpEumYMX2+Yvq8hBs3bpy++eYb+fr6qnr16nJzc1NQUJDq169v/P/hTUNEp06dqu+++06rV6/Ww4cP1bp1awUGBmrJkiXq37+/li1bpl27dkmSfv/9d/Xr108tW7bUpk2bNGLECPn6+urbb78122d0/cjR0dH4/9Pq1atVv379OL1PAAAAeDdSxLzKh83Hx0dbt26NtLxWrVqaNGmSJCl79uyqWrWqfHx81KBBA0nSb7/9pmfPnqlhw4bGNlevXlXFihWVO3dupUyZUmPHjtWlS5cUFhamZMlizvqeP3+ukSNHqnDhwpKkr7/+Wj179tStW7eUPXv2SOtv2rRJoaGh+uKLLyRJX3zxhRYuXChvb2917tw5Vuf/+PFj3bt3T9mzZ1fu3LmVJ08eTZs2zfhX+cyZMyt58uSytrZWxowZje0aNWqk4sWLS5KePXumRo0aqV69ekao0rFjR82fP1/nzp1TrVq13ljDp59+qgkTJqhGjRqSpNy5c6tu3brasmWLsU5sh4w1aNBAVlZWkmQENmXLltXSpUuVI0cOSZKHh4cqVaqkb775RpKUL18+TZkyRbVq1dKRI0fk5OQkSapcubIRIBYoUECnTp3S4sWLVb9+fS1cuFB2dnYaPny4JKlgwYL66aef1KhRI+3bt0/VqlWTJFWrVk0VK1Y06rO2tjaGVkUltvuNTvLkyY2hMBkyZIjVMMc39bvg4GBt2rRJ69evN3vd399fHh4eql69uq5evSpra2t98sknyp49u9q1a6cCBQoof/78UR4vpvWLFy+uunXrqkyZMpJe9YeKFSvq/PnzUe5v1qxZ6t69u/E5yJMnjx4/fqyRI0eqb9++unbtmqysrJQ7d259/PHH+vjjj+Xh4aH06dPH2DZS7Pv3m9rx8ePH2rdvnxYtWmSc15QpU4w+H1uFCxdWp06dJEnt2rXTihUr1L59e6PP1qtXTzt27DDbpmvXrsZ1a/To0Tp06JBWrVqlgQMHSnrVTyJeL/r06aPatWurR48ekqT8+fPLZDKpZ8+eunjxosqWLas8efJo48aNxufDx8dHjRo1ivY617hxYzVq1EiS9M0338jDw0PHjx9X2bJl5eHhobp16xrnlT9/fgUGBppNch1R+N1PHTp0MP4BoH379nr27JlevHihjRs36t69e/L29jY+C+Gf76VLl2rw4MGSXl1TRo0apZQpU6pgwYKqX7++9uzZI0nx7jPhqlevrsaNG0uSWrZsqZ07d6p///5ycHCQJFWsWFEXLlyQJC1fvlw5c+bUsGHDjO2nTZum8uXLa8uWLWratKmkV30g4v93XhfT5yumz0u4jh07GqF9//79tXTpUp06dUoNGjQwrsdvGmrp4uKicuXKSZJq166tJUuWaNSoUUqbNq0KFiyoGTNm6MKFC3J2dtacOXPUsmVLtWrVStKr/yeMHDlS//vf/3Tt2jV98sknkt7cjzJkyCDp1f+z3mZORgAAAFhekg+gnJ2dNWjQoEjLra2tzX5v3ry5MQwoc+bMWr9+vWrXrm38pVd69Zf0sWPHatmyZSpXrpyqVKmiBg0axCp8ClewYEHjz+F/yX/+/HmU665du1ZFixZVvnz5JEnFihVTvnz5tGrVKnXq1MkIYt4k/Mvn6NGjNX36dJUvX17VqlVTvXr13rhd3rx5jT+H312wZcsW/fnnn7py5YrOnTun27dvRzsELyJnZ2edOnVK7u7uunz5si5fvqyLFy8agVFczJs3Tzly5NDjx481b948nTp1Sj169JC9vb2xjp+fn65cuRLlv9wHBAQYX+bD/xvO0dHRuOvn/PnzqlSpktnr9vb2srGx0blz54ygKGI7xUZs95vQout3fn5+kqQ2bdqYrf/8+XN99NFHkqS2bdtqx44dqlatmgoXLqxKlSrpiy++UJYsWaI8VkzrN2rUSAcOHNDkyZMVGBioS5cu6fLly0ZwE9Hdu3d18+ZN/fTTT3J3dzeWh4WFKSQkRNeuXTOGDjZv3lyffPKJKlWqpJo1axpDZ2MSl/4dXTuGh2fhoa0kZc2aVXny5IlVDeE+/fRT489p06aVJLN9pEmTJtL1ImI/TpkypYoVK2YW5r3eR8+fP2+EE+HCg4Tz58/rs88+U+PGjeXj46NevXrJz89PFy9e1KxZs6KtO2K7SK/aJrzOM2fO6PPPPzd7vWzZstEGUPfu3dOtW7dUokQJs+VdunSRJLm5uSlfvnxmcxKlSZNGDg4OZuf96aefKmXKlFHWFN8+Ey5i24a/XxHfwzRp0hhhv5+fny5cuBDpuhQSEqKAgIAo9xmVN32+YvN5CR+yHJf/F8V07tbW1sqaNavRBuHnHj7Ezs/PT3/++afZXa7hdw4GBAQYAdSb+hEAAAD++5J8AJUuXbpYhQTVq1dXxowZ5evrq3r16mnv3r2RhmO0bdtWdevW1Z49e3Tw4EFNnz5ds2fP1vr165U1a9ZY1RPVhMNRDcHz9/eXn5+frKysVKRIEWN5WFiYTCaTDhw4ECnICPf6UK5BgwapTZs2Rt2jR4/WggULtH79+mgnQI74L8xPnz5Vu3bt9OzZM9WtW1dNmjSRg4OD2rZtG6tznjdvnn7++Wc1adJEFSpUUMeOHbVz505t3rw5VttH9PHHHxtfVn766Sd17txZXbt2lbe3t/E+h4WFqWHDhsYdUBFF/NIacc6o8O3Cw8TohkWaTCazL7Vx/Zf42O73dS9evIjTcV4XXb8Lr2fp0qWR7qYKb4t8+fJp27ZtOnLkiPbv36/du3dr/vz5GjdunJo0aRJpvzGt/8MPP2jr1q1q3LixnJ2d1bNnT3l4eJjNzxMuPABydXU1u9MsXK5cuZQqVSp5enrKz8/PeELiN998o8aNG5s9ySs6cenf0bVjeBj8emD1eh+LSVR9IKaA+/VjvHz50myb1/toVH0wvO7wfTVp0kQzZ87U6dOn9euvv6pUqVJvvI6+6bqWIkWKWAXV4d70OYiufunVOURsizdN7p46deo495mohshG9f5G9w8DYWFhKl++vEaMGBHptYh3gMZ0TXnT5yt8yN6bPi///vuvpNj/vyg6r5/7m/ppWFiYOnfuHOX1IuJdVvGtCQAAAImLOaBiKUWKFPryyy/l6+urLVu2RJrv5M6dOxo1apSeP3+upk2batKkSdq4caNu3bqlI0eOJHg9a9asUcqUKbVs2TKtX7/e+Fm+fLlSpkxpTBgb/mUt4gTb4ZMUS9KlS5c0YsQIZcmSRa1bt9b06dO1YMECBQQEmE3a+yb79u3TmTNn5OnpqT59+qh+/fpKnz697ty5E6svB3PmzFHPnj3l5uamr776SiVLllRgYGC8v1gkT55c48ePV7JkyTRkyBDjS26hQoV08eJF5c2b1/h58eKFxo0bp7///tvY/vTp02b7O378uBH22dnZRZog3t/fX48fP470r/QRxXRXWmz2mzJlSrP38/Hjx2YTGcfmzrfYKlSokKRXc2lFbC9vb29jol9PT09t27ZNlSpV0uDBg+Xj46MKFSoY82W97k3r37t3TytXrtSIESPk6uqqpk2bqnDhwrp06VKU/SFLlizKnDmzgoKCzOqLOJ/Pnj17NHPmTBUpUkRdu3Y1+ml09b0uvv1bkjEs7/jx48ayhw8fms2jZCkR+3FoaKjOnDmjokWLRru+nZ2dWZ2SjPmDwvtg7ty55eTkpK1bt8rX19cYHvY27O3tderUKbNlJ06ciHZ9GxsbZc+ePdLns0+fPho3bpzs7OwUGBho9pkICQnRX3/9pc8++yxWNcXUZ2K6rr6NQoUKKSAgQLly5TL6cYYMGTR27Nhoh59G5U2fr9h8XmIjIa8x0qtzv3z5sllNN2/e1MSJE/XkyZNEqQkAAAAJL8kHUM+ePdOtW7ei/Hn9KVnNmzfX8ePHtXr1ajVr1szsL7wZMmTQ7t27NWzYMJ09e1ZBQUFasWKFMeQlIYWGhsrHx0d16tRRqVKlZGtra/w4OjqqQYMG2rlzp27duqWSJUvKysrKeEKar6+v1q1bZ+wrU6ZM2rx5s3744QcFBATo8uXLWrdunTJkyKACBQpIenWXWGBgoG7fvh1lPTlz5pQkbdy4UdevX9exY8fUo0cPPX/+PFZPGsuVK5f279+vixcv6tKlS5o6daq2bdtmtu2jR4/iNLl6uBw5cmjw4ME6ceKEli5dKunV3CR+fn4aOXKkAgICdOLECQ0cOFCBgYHGcEZJ2rx5s5YuXarAwEAtWLBA27dvN+bK+frrr3Xu3DmNHj1aAQEBOnz4sAYNGqQiRYqoQoUK0dZjbW2tBw8e6PLly1EOHYnNfkuWLKlff/1Vx48f18WLF/Xdd98pefLkZseQXg2XevToUZzbLKJChQqpRo0aGjFihH777TcFBQVp/vz5mjt3rjGU6O7duxo1apR27typ69eva+/evTp79my0kxO/af306dPLxsZGO3fuNIa6DR8+XGfOnImyL1lZWalLly5asmSJvLy8dPXqVW3fvl1ubm5KkyaNUqVKpZQpU+rnn3/WokWLFBQUpL/++ku7d+82q+/WrVvRftGNb/+WXg27qlu3rkaNGqUDBw7o/PnzGjx4cJyexPe2pk2bpt27dxt9JTg4WC1btox2/c6dO2vbtm2aNWuWLl++rF27dmn06NGqUaOGWbjapEkTLVu2TPfv349xyO6bdOnSRVu2bNEvv/yiwMBArV27Vl5eXm/cpmvXrlq8eLE2bNigq1evytPTUzt37lTNmjXVsGFDZcyY0Zj03d/fX4MGDdLTp0/11VdfxaqmmPpMTNfVt9GmTRs9evRIgwYNkr+/v/z9/dW/f3+dPn1atra2sd7Pmz5fsfm8xEb4Neavv/4yno4YH126dNHWrVs1c+ZMXb58WQcPHpSrq6sePXr0xnmmoqrJ398/1qEVAAAA3q0kPwTP19dXvr6+Ub7m7u6uunXrGr8XLFhQDg4OOnXqVKQncqVIkULz58/XhAkT1LFjRwUHB6tw4cKaN2+e2ZwfCWHXrl26f/9+tEPcOnbsqHXr1mn16tXq0aOHRo4cqblz52rZsmUqXbq0Bg8erCFDhkh6FUDNnz9fU6ZMUcuWLfXy5UuVLFlSv/zyizHhbvjj3y9cuBDlY78dHBzk6uqqRYsWadq0acqRI4fq16+vXLlyRbpLISoTJ07UqFGj1KxZM6VLl04lSpTQyJEj5ebmphs3bujjjz/WmDFjdOTIkVg9Ve91LVq00KZNm/TTTz+pZs2aKlmypBYsWCB3d3c1adJE1tbWqlChgoYMGWL2BaxJkybavn27xo8fr3z58mnatGnGHEwlSpTQggULNG3aNDVu3Fjp06dXrVq1NHDgwDcOEfr888+1atUqffnll/Ly8oo0j01s9jtgwADdv39fX3/9tWxsbOTi4qKHDx8a+8iUKZOaNWumiRMn6sqVK6pdu3ac2yyiqVOnaurUqfrhhx/04MEDffrppxozZowxXKZXr156/vy5fvzxR926dUvZsmVT69at1a1btyj396b1kydPLnd3d40fP14NGzZUhgwZ5OTkpAEDBmju3LkKDg6OtD8XFxelTp1aS5Ys0fjx45U1a1a1bNlSffr0kfRqoucxY8Zo4cKFmjp1qtKkSaNq1app6NChxj7CJ5zv3bt3pP3Ht3+HmzBhgiZMmKD+/fsrLCxMX3311VuFqnHVunVrTZgwQTdu3FCJEiW0ZMmSKB9qEK5OnTr66aefNHv2bM2aNUuZM2dWgwYNjPaMuN6oUaNUq1atOE/OHVHVqlU1atQozZ07V1OmTFGxYsXUunXrN4ZQ4UMi3d3ddevWLeXLl09Tp0415qry8vLS+PHj1bFjR0lS6dKltXz58ljPuRVTn8mTJ88br6tvI0+ePPLy8tKUKVPUunVrJU+eXKVKlZKnp6fZ0OCYxPR5jOnzEhvly5dXiRIl1KpVK+NhHfFRt25dTZ06VXPnztWcOXOUMWPGaOdnjI6tra2qVaumfv36acCAAbF6AigAAADeLSsTEygAkTg7O6tJkyZRBhL48Pj6+iooKEhdu3ZN7FISzLVr11SzZk15enpGmlD/v+TIkSPKmjWrccel9GpY7po1ayI90Q+whPAg+cDztbr52PLDYgEAQMLKmf5TdSvllthl/Cc9ffpUZ8+eVeHChSM9aC2hhP9dKuIDl6KT5IfgAUjawsLCtHjx4njfKYa3s2/fPnXq1EmHDh3SjRs3tHPnTi1evFiNGjVK7NIAAAAAJKAkPwQPQNKWLFkyeXp6xnr+GySsXr166enTpxo8eLDu3r2rXLlyqWPHjsZ8awAAAAA+DARQQBTeZq4pvL8+xPDpk08+0blz5xK7jBilSpVKw4YN07BhwxK7FAAAAAAWxBA8AAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALCoFIldAAAAQGLLZv1xYpcAAADeAv8Pf38QQAEAgCSvqX3XxC4BAAC8pTBTmJJZMcDrv453CAAAJGmhoaEKDg5O7DLea8HBwfLz86Md44E2TBi0Y/zRhvFHGyaMuLQj4dP7gXcJAAAkeSaTKbFLeK+ZTCYFBwfTjvFAGyYM2jH+aMP4ow0TBu344SGAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIuyMplMpsQuAgAAIDEcP35cJpNJKVOmlJWVVWKX894ymUx6/vw57RgPtGHCoB3jjzaMP9owYdCO8fcu2jA0NFRWVlYqVapUjOumsEgFAAAA74Hwv4zxF9v4sbKyUqpUqRK7jPcabZgwaMf4ow3jjzZMGLRj/L2LNrSysor136O4AwoAAAAAAAAWxRxQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAfDDCwsI0ffp0ValSRSVLllSXLl0UFBQU7fr37t3TwIEDVbZsWZUrV04jR45UcHCw2Tq+vr6qX7++HBwc1LhxYx08eNDSp5HoLNGOn3/+uezs7Mx+hg4daulTSTRxbcOI23Xu3FkzZsyI9FpS64uWaMOk1g+luLfjhQsX1LVrVzk5OalChQrq06ePbty4YbbO0qVLVbNmTTk4OKhNmzby8/Oz9GkkqoRuw5cvX8rBwSFSX4yqz34o4tqGZ86c0f/+9z85OjqqfPny+uGHH/To0SOzdZLaNVGyTDu+0+uiCQAA4AMxY8YMk5OTk2nXrl2ms2fPmlxcXEyff/65KSQkJMr127VrZ2rWrJnpr7/+Mh04cMBUo0YN0+DBg43XDx48aCpatKhp8eLFposXL5rGjx9vKlasmOnixYvv6pQSRUK345MnT0z29vamXbt2mf7991/j5+HDh+/qlN65uLahyWQyhYSEmIYMGWKytbU1TZ8+3ey1pNgXE7oNk2I/NJni1o537941VapUydS7d2/TuXPnTKdPnza1bdvWVK9ePdOzZ89MJpPJ5O3tbXJwcDBt2LDBdOHCBdO3335rKleunOnOnTvv+tTemYRuw4sXL5psbW1NZ8+eNeuLjx8/ften9s7EpQ1v3bplKlu2rMnV1dV06dIl0x9//GGqX7++qUePHsY6SfGaaDIlfDu+6+siARQAAPgghISEmBwdHU1Lly41lj148MDk4OBg8vHxibT+8ePHTba2tmZ/Wd27d6/Jzs7OdPPmTZPJZDK5uLiY+vbta7bdV199ZRo+fLhlTuI/wBLteOrUKZOtra3p/v37lj+B/4C4tqHJZDL98ccfpi+++MJUs2ZNU5kyZSKFJ0mtL1qiDZNaPzSZ4t6Oq1atMjk6OpqCg4ONZTdu3DDZ2tqaDhw4YDKZTKbPP//cNHHiROP158+fm6pVq2aaM2eOBc8k8ViiDTdv3mwqVaqU5Yv/j4hrG548edLUv39/0/Pnz41lixYtMpUoUcL4PaldE00my7Tju74uMgQPAAB8EPz9/fXkyRNVqFDBWPbRRx+pSJEiOnr0aKT1jx07pmzZsqlgwYLGsnLlysnKykp//PGHwsLCdPz4cbP9SZKTk1OU+/tQJHQ7StK5c+eUNWtWZciQwfIn8B8Q1zaUpD179qhKlSpav369bGxszF5Lin0xodtQSnr9UIp7O1aoUEGzZs1SmjRpjGXJkr36yvjw4UPduXNHgYGBZvtLkSKFypQpQ1/8/2JqQ+lVX4x4zfzQxbUNS5QooZ9++kkpUqSQJAUEBGjDhg2qVKmSpKR5TZQSvh2ld39dTPFOjgIAAGBhN2/elCTlypXLbHn27NmN1yL6559/Iq2bKlUqZcyYUX///bcePnyop0+fKmfOnLHa34ciodtRevUXXGtra/Xp00fHjx9XpkyZ1KxZM3Xo0MH4YvYhiWsbSlL//v2j3V9S7IsJ3YZS0uuHUtzb8ZNPPtEnn3xitmzevHlKkyaNypYta3ymo9qfv79/Qpb+n5HQbShJ58+f14sXL9SpUyf5+/srR44c+t///qdGjRpZ6CwS19t8nsPVqVNHgYGByp07t2bOnCkpaV4TpYRvR+ndXxc/zCstAABIcsInvU6VKpXZ8tSpUyskJCTK9V9fN+L6z549i9P+PhQJ3Y7Sqwl5Hz58qDp16sjDw0OtW7eWu7v7BzvhblzbMCZJsS8mdBtKSa8fSvFvxyVLlsjLy0uDBg1S5syZLfK+/NcldBtKr/ri/fv31b59e3l4eKhOnTpydXXVmjVrEv4E/gPi04aTJ0/WkiVLlCVLFnXo0EFPnjxJktdEKeHbUXr310XugAIAAB+E8OEOoaGhZkMfQkJClDZt2ijXDw0NjbQ8JCRE1tbWSp06tbG/11+Pan8fioRuR0maP3++QkJCjGFRdnZ2evz4sWbPnq3evXt/cHefxLUNY5IU+2JCt6GU9Pqh9PbtaDKZ5O7urtmzZ6t79+5q3759pP1FRF+MLLo2lKRNmzbp5cuXSpcunSTJ3t5eN27ckIeHh5o3b26hM0k88fk8Fy9eXJI0c+ZMVatWTdu3b1e1atWM/UX0IfdDKeHbsXHjxu/8uvjhXWUBAECSFH5L+r///mu2/N9//1WOHDkirZ8zZ85I64aGhur+/fvKnj27MmbMKGtr61jv70OR0O0ovfrX2tfn5LG1tdXTp0/14MGDhCz/PyGubRiTpNgXE7oNpaTXD6W3a8fnz5/r22+/1Zw5c+Tq6qp+/frFa3/vu4RuQ+lVkBAePoWztbX9YIePxbUNL126pN27d5sty5EjhzJmzKh//vknSV4TpYRvR+ndXxcJoAAAwAfB3t5e6dOn1+HDh41lDx8+lJ+fnzHvRkRly5bVzZs3deXKFWPZkSNHJEmlS5eWlZWVSpUqZSwLd/jwYZUpU8ZCZ5H4ErodTSaTatWqZTbnhCSdPn1a2bJlU6ZMmSx0Joknrm0Yk6TYFxO6DZNiP5Terh0HDx6sLVu2aMqUKerYsaPZa1myZFH+/PnN9vfixQsdO3bsrd6X90FCt+HDhw9Vrlw5eXt7my0/ffq0ChUqlOD1/xfEtQ0PHDigPn36GJO2S9LVq1d17949FSxYMEleE6WEb8fEuC4yBA8AAHwQUqVKpXbt2mny5MnKnDmzcufOrUmTJilnzpz6/PPP9fLlS929e1c2NjZKkyaNSpQooVKlSql///5yc3PT06dP9cMPP6hx48bGvyR+/fXX6tq1q4oUKaKqVatq7dq1Onv2rMaMGZPIZ2s5lmjH2rVry8PDQwUKFFCxYsV08OBBLViwQN9//30in61lxLUNYyOp9cWEbkMrK6sk1w+luLejt7e3fv31Vw0ePFjlypXTrVu3jH2Fr+Pi4qIxY8Yob968Kl68uObNm6dnz559kEPHpIRvw48++kjly5fX1KlTlSVLFuXNm1fbtm3Txo0bNXfu3EQ8U8uJaxs2aNBA8+bN07fffqtBgwbpwYMH+vHHH+Xg4KAaNWpISnrXRCnh2zFRrosmAACAD8SLFy9MEydONJUvX95UsmRJU5cuXUxBQUEmk8lkCgoKMtna2prWrl1rrH/79m1T7969TSVLljQ5OTmZRowYYXr27JnZPtetW2eqXbu2qXjx4qYmTZqYDhw48E7PKTEkdDs+f/7cNHPmTFPNmjVNRYsWNdWpU8e0cuXKd35e71Jc2zCiGjVqmKZPnx5peVLriwndhkmxH5pMcWvHr7/+2mRraxvlT8S2XrBggalq1aomBwcHU5s2bUx+fn6Jcm7vSkK34aNHj0xjx441VatWzVSsWDFTo0aNTNu3b0+083sX4vp5vnTpkqlr166m0qVLm8qVK2dydXU1PXjwwGyfSe2aaDIlfDu+6+uilclkMlkm2gIAAAAAAACYAwoAAAAAAAAWRgAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAfABMJtN7sU8ASRMBFAAAAIAk7fz58+rfv78qVaqkYsWKqXLlyurXr5/8/f3jtJ8ZM2bIzs7ujescPnxYdnZ2Onz4cHxKjmT16tWaMGGC8bu3t7fs7Ox07dq1WG3/el03b95U165ddf369QStE0DSRQAFAAAAIMm6cOGCvvrqK92/f1/Dhg3TwoULNXjwYN24cUMtW7bUyZMnE/R4RYsW1cqVK1W0aNEE3e/s2bN1//594/fq1atr5cqVyp49+1vVdeDAAe3ZsydBawSQtKVI7AIAAAAAILH88ssvypQpk+bPn68UKf7v61GtWrVUt25dzZo1S/PmzUuw46VPn14lS5ZMsP1FJ3PmzMqcOXOs139XdQFIurgDCgAAAECSdfv2bZlMJoWFhZktt7a21nfffad69epJkpydnTV06FCzdaIb5rZjxw7VqVNHxYsXV4sWLXTw4EHjtaiG4J0/f17dunVTqVKlVKpUKfXs2VNBQUFm+/z33381ZMgQVahQQY6OjmrXrp1OnDhh1Hb9+nWtW7fOqCdibT4+PrKzs9P58+cj1WlnZyc/Pz+zury9veXq6ipJqlmzpoYOHaoJEybIwcFBjx49MtvHrFmzVLp0aQUHB8e6zQEkTQRQAAAAAJKs6tWr68aNG2rVqpWWLl2qgIAAY+LtunXrqkmTJnHe5/fff68OHTpoxowZSpcunbp06aLTp09Hue7ly5fVqlUr3blzRxMmTNCYMWMUFBSk1q1b686dO5KkJ0+eqHXr1jp8+LC+/fZbzZw5U6lTp5aLi4sCAwM1c+ZMZcuWTdWqVYty2F2tWrVkbW2tzZs3my3ftGmTChUqpCJFikRqk+7du0uSZs6cqR49eqh58+YKCQnRli1bzNbdsGGD6tevr7Rp08a5nQAkLQRQAAAAAJKsNm3aqEePHrp48aJGjRql+vXrq0KFCho0aJD+/PPPt9rnyJEj1bZtW1WvXl1z585VxowZNX/+/CjXnTlzptKmTatFixapdu3aqlevnjw9PfXs2TMtWLBAkrRu3Tpdv35ds2fPVtOmTVWpUiXNnDlT2bNn19GjR1WkSBGlSpVKmTNnVsmSJZUqVSqzY6RNm1Z16tTRr7/+aix78uSJdu3apS+//DJSTZkzZ9ann34qSSpcuLA+/fRTFSxYUI6OjtqwYYOx3vHjxxUYGKimTZu+VTsBSFoIoAAAAAAkaX379tXevXs1ZcoUNW/eXOnTp5ePj49atmwpT0/POO0rZcqU+vzzz43fU6dOrapVq+ro0aNRrn/o0CGVK1dOadKk0YsXL/TixQulT59eZcqU0YEDByRJf/zxhz755BMVLlzY2C5t2rTaunWrWrRoEau6GjVqpKtXrxqh2s6dOxUaGhplABWdZs2a6dixY8aT8datW6f8+fPL0dEx1vsAkHQRQAEAAABI8jJkyKAGDRpozJgx2rFjh9atW6eCBQtq0qRJunfvXqz3kylTJiVLZv41K0uWLHr48GGU69+/f1+//vqrihYtavaza9cu/fvvv8Y6WbJkefuTk+Tk5KQcOXIYw/A2b96scuXKKWfOnLHeR/hQuw0bNigkJES+vr7c/QQg1ngKHgAAAIAk6Z9//lGzZs3Ut2/fSHcSFSlSRP379zebEPzly5dm6zx9+jTSPh89eiSTySQrKytj2e3bt6N9Ip2NjY0qVqyor7/+OtJr4U/ls7GxiTTRufRqCFyGDBlUsGDBGM5USpYsmRo2bKhNmzbpm2++0f79+zVq1KgYt4soXbp0qlu3rnx9fWVra6unT5+qUaNGcdoHgKSLO6AAAAAAJElZs2ZVihQptGzZMoWEhER6/dKlS0qdOrXy5s2r9OnT6+bNm2av//HHH5G2CQ4O1qFDh4zfnzx5ot27d8vJySnKGsqVK6eLFy+qcOHCKl68uIoXL65ixYpp0aJF2r59uySpTJkyCgoK0oULF4ztQkJC1Lt3b61Zs0aSIt11FZVGjRrp5s2b+vnnn5U8eXKzoYKvi25/zZs31/nz57V48WJVrFhROXLkiPG4ACARQAEAAABIopInTy43NzedP39ezZo10/Lly3XkyBHt2bNHY8eOlbu7u3r16qUMGTKoRo0aOnr0qObOnatDhw5p7NixZkFTuJQpU+q7776Tj4+Pdu3apc6dO+vZs2fq0aNHlDX06NFDV69eVbdu3bRjxw7t3btXvXv31ubNm2Vvby9Jatq0qfLkyaPu3btr48aN2rt3r3r16qXnz5+rTZs2kqSPPvpIfn5+OnLkiJ49exblsWxtbVW4cGEtW7ZMtWrVUvr06aNtm48++kiStH37dgUEBBjLS5curfz58+vIkSMMvwMQJwRQAAAAAJKs6tWra9WqVbK1tdWcOXPUqVMnDRgwQGfPntXUqVPVtWtXSVK3bt3UokULeXh4qHv37rp165bGjBkTaX+ZM2fWwIEDNXXqVPXp00fJkyeXl5eXChQoEOXx7e3ttXTpUllZWWnw4MHq06ePbt26pZ9//tm4Qyl9+vTy8vJSiRIlNHr0aPXr109hYWHy9PRUnjx5JEkuLi66ffu2OnXqpL/++iva823UqJFevnwZ4+TjTk5OqlixoqZMmaIJEyZEarMMGTKoVq1ab9wHAERkZTKZTIldBAAAAAAkBb///ru6dOmi1atXy8HBIbHLiTOTyaQvvvhClStX1nfffZfY5QB4jzAJOQAAAAC8A9u3b5ePj4+SJ0+uTz75JLHLiZPHjx9r0aJFOn36tIKCgtS+ffvELgnAe4YACgAAAAAsLDQ0VG5ubgoLC9OAAQOifSref1WaNGm0YsUKhYWFaezYscbQPwCILYbgAQAAAAAAwKKYhBwAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFvX/AAK6vhlLeRh7AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Set plot style\n", + "sns.set(style=\"whitegrid\")\n", + "\n", + "# Create a figure and axes\n", + "fig, ax = plt.subplots(2, 1, figsize=(12, 12)) # Increase figure height\n", + "\n", + "# Plot polarity (horizontal bars)\n", + "sns.barplot(x='polarity', y='title', data=sentiment_df, ax=ax[0], palette='viridis', hue='title', legend=False)\n", + "ax[0].set_title('Sentiment Polarity of Articles')\n", + "ax[0].set_xlabel('Polarity')\n", + "ax[0].set_ylabel('Article Title')\n", + "\n", + "# Plot subjectivity (horizontal bars)\n", + "sns.barplot(x='subjectivity', y='title', data=sentiment_df, ax=ax[1], palette='viridis', hue='title', legend=False)\n", + "ax[1].set_title('Sentiment Subjectivity of Articles')\n", + "ax[1].set_xlabel('Subjectivity')\n", + "ax[1].set_ylabel('Article Title')\n", + "\n", + "# Adjust layout\n", + "plt.tight_layout()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "2d6748a7-f128-40f2-b7ed-b11f6ddd8a60", + "metadata": {}, + "source": [ + "The overall goal of this code is to analyze sentiment scores (polarity and subjectivity) of articles and aggregate these scores by the year of publication. \n", + "It defines a dictionary data with sample data, including article titles, authors, publication dates, content, polarity, and subjectivity scores and converts the **data** dictionary into a pandas DataFrame named **sentiment_df**.\n", + "It defines a function **parse_date()** that attempts to parse date strings into datetime objects using dateutil.parser.parse with the fuzzy=True option to handle various date formats. It applies the **parse_date()** function to the **publication_date** column in the DataFrame to convert date strings to datetime objects. Then it extracts the year from the parsed **publication_date** column and stores it in a new column named **year**. Then, it prints the **publication_date** and **year** columns to check for any missing values in the year column. After printing the polarity and subjectivity columns, it groups the DataFrame by the year column and calculates the mean polarity and subjectivity scores for each year.\n", + "\n", + "Finally, it prints the stored **yearly_sentiment** DataFrame to display the average polarity and subjectivity scores for each year." + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "id": "a493e974-a1d9-4eb9-88d8-bb6fd1d39e54", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " publication_date year\n", + "0 2024-02-23 00:00:00 2024\n", + "1 2022-07-27 00:00:00 2022\n", + "2 2024-04-10 00:00:00 2024\n", + "3 2020-08-19 13:56:00 2020\n", + " polarity subjectivity\n", + "0 0.002210 0.187689\n", + "1 0.102000 0.283466\n", + "2 0.181563 0.347917\n", + "3 0.011245 0.306212\n", + " year polarity subjectivity\n", + "0 2020 0.011245 0.306212\n", + "1 2022 0.102000 0.283466\n", + "2 2024 0.091886 0.267803\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "from dateutil import parser\n", + "\n", + "# Sample data as a dictionary\n", + "data = {\n", + " 'title': [\n", + " 'Most Australians think there are too few publi...',\n", + " 'Why Australian consumers are charging toward e...',\n", + " 'EVs face future challenges despite increasing ...',\n", + " 'EVs in Australia: Report outlines sales, and i...'\n", + " ],\n", + " 'author': [\n", + " 'Jennifer Dudley-Nicholson',\n", + " 'Neal Johnston, Glenn Maris, Damien Smith, Neal...',\n", + " 'Harrison Vesey',\n", + " 'Mike Costello'\n", + " ],\n", + " 'publication_date': [\n", + " 'February 23, 2024',\n", + " '27 Jul. 2022',\n", + " '10 April 2024',\n", + " '19 August 2020, 1:56pm'\n", + " ],\n", + " 'content': [\n", + " 'australian think nation public charg station s...',\n", + " 'ceo imper strategi set takeoff clever govern c...',\n", + " 'professor david hensher one three australian c...',\n", + " 'guest user australia electricvehicl penetr wel...'\n", + " ],\n", + " 'polarity': [0.002210, 0.102000, 0.181563, 0.011245],\n", + " 'subjectivity': [0.187689, 0.283466, 0.347917, 0.306212]\n", + "}\n", + "\n", + "# Create a DataFrame\n", + "sentiment_df = pd.DataFrame(data)\n", + "\n", + "# Define a function to parse dates with different formats\n", + "def parse_date(date_str):\n", + " try:\n", + " return parser.parse(date_str, fuzzy=True)\n", + " except ValueError:\n", + " return pd.NaT\n", + "\n", + "# Apply the parsing function\n", + "sentiment_df['publication_date'] = sentiment_df['publication_date'].apply(parse_date)\n", + "\n", + "# Extract year from publication_date\n", + "sentiment_df['year'] = sentiment_df['publication_date'].dt.year\n", + "\n", + "# Check for missing values in 'year'\n", + "print(sentiment_df[['publication_date', 'year']])\n", + "\n", + "# Check for missing values in sentiment scores\n", + "print(sentiment_df[['polarity', 'subjectivity']])\n", + "\n", + "# Aggregate sentiment scores by year\n", + "yearly_sentiment = sentiment_df.groupby('year').agg({'polarity': 'mean', 'subjectivity': 'mean'}).reset_index()\n", + "\n", + "# Display the aggregated sentiment scores\n", + "print(yearly_sentiment)\n" + ] + }, + { + "cell_type": "markdown", + "id": "c0c41a73-9458-46c3-9f0e-816db6f65144", + "metadata": {}, + "source": [ + "This code generates a line plot to visualize the average sentiment scores (polarity and subjectivity) of articles over time. It uses the **yearly_sentiment** DataFrame, which contains the aggregated sentiment scores by year, and plots these scores with markers for each year. The plot includes a title, axis labels, a legend to differentiate between polarity and subjectivity, and a grid for better readability. Finally, it displays the plot, allowing for a clear visual comparison of how sentiment has evolved over the years." + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "id": "abc62267-805b-4255-bf29-5c054cb5b4c6", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1oAAAImCAYAAABKNfuQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTB0lEQVR4nOzdd3xUVf7/8ffMJJNeSIBQEroh9JKEItKLrrKK4Lqui6IIrouKFYWvrqtrAUFFAbFQ7P5cUUCsixhAlGYAFWlK01BCIJAE0iYzc39/hAwZEkISZpgEXs/Hg0eYc8uce4xh3jn3fo7JMAxDAAAAAACPMfu6AwAAAABwoSFoAQAAAICHEbQAAAAAwMMIWgAAAADgYQQtAAAAAPAwghYAAAAAeBhBCwAAAAA8jKAFAAAAAB5G0AIA1CqGYfi6C2dVG/oIAPAughYAnIMHHnhArVu31vz5833dlfPObrfrzTff1LXXXqvOnTurS5cuuvbaazV//nzZbDavvOeGDRt0++23u17v27dPrVu31sKFC73yftXxzTff6OGHHz7rfseOHdPkyZM1aNAgtW/fXt26ddOoUaP09ddfn4deete6devUunVrrVu3zmPnPHr0qHr27KnBgweroKCg3H3uv/9+tW/fXtu3b/fY+wJAdRG0AKCajh8/rmXLlik+Pl7//e9/L7pZjH/961+aOXOmrrjiCr388suaMWOG+vTpoxdffFH33XefV95zwYIF2rVrl+t1/fr19d///lf9+vXzyvtVx5tvvqmDBw9WuE9BQYH+/ve/a8WKFbr99ts1b948PfPMM6pbt67uuusuvfXWW+ept7VHVFSU/vWvf+mPP/7QSy+9VGb7N998o88//1zjx49XQkKCD3oIAO78fN0BAKitPvvsM0nSI488olGjRmnt2rXq2bOnj3t1fhw4cECLFi3Sf/7zH11//fWu9t69eysqKkrPPPOMfv75Z3Xs2NGr/bBarercubNX38MbvvrqK+3atUv/+9//1KxZM1f7oEGDVFBQoBkzZmjkyJGyWCy+62QNdOWVV+rLL7/UW2+9pauuukrt27eXVPxLj8cff1xdunTRmDFjfNxLACjGjBYAVNPHH3+snj17qkePHmratKk++OAD17bRo0dr+PDhZY4ZN26crr76atfr1NRUjRw5Up06dVK3bt308MMP6+jRo67tCxcuVNu2bbVgwQL16tVL3bp1086dO+VwOPT6669r6NCh6tixozp37qwbbrhBa9eudXu/FStWaPjw4erYsaMuv/xyffbZZxo8eLBmzpzp2icrK0uPPfaYLr30UnXo0EHXX3+91qxZU+G1HzlyRIZhyOl0ltn25z//Wffff7/Cw8Or9B6tW7fWe++9p0ceeUTdunVTly5ddM899+jIkSOSpIkTJ2rRokXav3+/63bB028dXLhwoTp06KDU1FSNGDFCHTp00OWXX66UlBTt3r1bo0aNUqdOnTR48GB9/vnnbu9/4MAB3X///erWrZs6deqkUaNGaevWra7tJe/15Zdfavz48erSpYu6deumRx99VHl5eZKkm266SevXr9f69esrvHWu5JrKG79//OMfGjdunNvtlz/++KNGjx6trl27qkePHrr//vt16NAh1/aMjAxNmjRJffv2VceOHXXdddfpm2++KTO+s2bNcn0/zJo1q1LXLRX/UuHqq69Wx44d1aNHDz344INu738mO3fu1I033qgOHTpo8ODBeuedd1zbxo8frz59+pQZg0ceeUSXX375Gc/573//W2FhYXrkkUfkcDgkSdOmTdOJEyc0depUmc3FH22WLVum4cOHq0OHDurVq5eeeuop13+nEsuWLdONN96oLl26qH379rriiiv03nvvubaX3AL5wQcfqH///uratau+//77s143AEiSDABAlf36669GfHy88eWXXxqGYRgvv/yy0a5dO+Pw4cOGYRjGokWLjPj4eGPv3r2uY7Kzs4127doZc+fONQzDMNavX2+0a9fOuO2224yUlBRj0aJFRr9+/YyrrrrKyM/PNwzDMD7++GMjPj7euOKKK4zly5cbCxcuNJxOpzFlyhSjU6dOxttvv22sW7fOWLJkiXH55Zcb3bp1M/Ly8gzDMIw1a9YYbdq0McaNG2esWLHCeOutt4yuXbsa7dq1M2bMmGEYhmEUFBQYV199tXHppZcaH374obFixQrj7rvvNtq2bWusXr36jNdfWFho9O3b1+jYsaPx+OOPGytXrjSOHz9e7r6VfY/4+HgjMTHRmDhxorFq1Srj/fffNzp06GDcd999hmEYxu+//26MHTvW6NWrl7Fp0yYjMzPTSEtLM+Lj442PP/7YNV4JCQlGnz59jA8//NBYtWqVcc011xhdunQxBg8ebMyfP99YvXq1ceONNxrt2rUzDh48aBiGYWRmZhq9e/c2hgwZYixZssT4+uuvjZEjRxqdO3c2du7caRiG4Xqv5ORkY8qUKcbq1auNV1991WjdurXx3HPPGYZhGL/99psxbNgwY9iwYcamTZvOOCbbt2832rZta1x22WXGzJkzjU2bNhk2m63cfbds2WK0a9fOuPHGG42vv/7a+Oqrr4zBgwcbV111lVFUVGQcPnzY6N27tzFo0CBj0aJFxooVK4zx48cbrVu3Nj755BO38W3Xrp0xf/58Y/ny5cavv/5aqetOTU012rRpY8ycOdNYu3atsXjxYqNXr17G3//+9zN+f6xdu9b1fs8++6yxatUq44knnjDi4+ONN9980zAMw1i5cqURHx/v9j2Qn59vdO3a1XjllVfOeG7DMIwlS5YY8fHxxttvv21s2rTJaN26tfHee++V2f7AAw8YK1euNN5//30jOTnZGDVqlOF0Og3DMIzly5cb8fHxxlNPPWWsXr3aSElJMcaMGWPEx8cbP/74o9t19OrVy/jyyy+NRYsWGbm5uRX2DQBKELQAoBomT55sdOvWzSgsLDQMwzAOHDhgJCQkuD4g5ubmGp07dzZmzZrlOmbBggVGQkKCkZ6ebhiGYfz1r381hg4datjtdtc+u3fvNtq0aWO8++67hmGcClqLFy92e//777/f9YG1xP/+9z8jPj7e2LRpk2EYhnHjjTcaV199teuDpWEYxmeffWbEx8e7gtZ///tftw+WhmEYTqfT+Pvf/24MHz68wjHYsWOHcc011xjx8fFGfHy8kZCQYIwYMcKYO3euKyhW5T3i4+ONv/3tb27vMXHiRKNz586u1w8//LDRv39/1+vyglZ8fLzx/vvvu/b5/PPPjfj4eOPFF190tW3evNmIj483vv76a8MwDOOFF14wOnToYOzbt8+1T2FhoTFw4EDj7rvvdnuvBx980K2PN910kzF06FDX65EjRxojR46scOwMo/i/16WXXuoav44dOxqjR482vvjiC7f97r77bqNXr15GQUGBq23jxo1G//79ja1btxpTp0412rVr59Z3wzCMUaNGGb169TIcDodhGMXjO2rUKLd9KnPdr732mtGlSxfX97phGMaKFSuMmTNnun1vlVYSUJ544gm39nHjxhk9e/Y0HA6H4XA4jD59+hgPPfSQa/uSJUuMhIQEVwCuyB133GEkJycbQ4cONUaPHu1qdzqdRp8+fYzbbrvNbf/Vq1cb8fHxxvLlyw3DMIw5c+YYDz/8sNs+x44dM+Lj443XXnvN7Tpefvnls/YHAE7HrYMAUEVFRUVasmSJ63manJwchYSEKDExUR9++KGcTqeCg4M1aNAgffHFF67jPv/8c/Xs2VMxMTHKz8/XTz/9pL59+8owDNntdtntdsXFxally5Zlbk9q06aN2+vnn39eo0aN0tGjR5WamqqPP/5YS5YskSTZbDbZbDZt2rRJQ4YMkclkch13xRVXyM/v1OO5a9asUb169dSuXTtXHxwOh/r3769ffvlF2dnZZxyH+Ph4LV68WB999JHuvfdede/eXb/99pumTp2qa6+91nULZFXe4/TnrRo0aKD8/PxK/pc5pUuXLq6/R0dHS5I6derkaouMjJQk5eTkuPrYpk0bxcTEuPpoNpvVp08frV692u3c5fXx9FvSKmPIkCFasWKF5s6dq9GjR6tly5ZavXq17r33Xo0fP95VXGXDhg3q06ePAgIC3K4vJSVFbdq00fr169WlSxc1btzY7fxXX321Dh8+rN27d7vaTv8+qsx1JycnKz8/X0OHDtXzzz+v1NRUXXbZZbrrrrvcvrfKc+WVV7q9Hjx4sDIzM7V7926ZzWZde+21Wrp0qeu/8aJFi3TppZeqQYMGZx2/J554QoZhKD09Xc8884yrfffu3UpPT9eAAQNc12S325WcnKzQ0FDX/1tjxozRlClTlJubq19++UVffPGFXnvtNUkqUzXz9HEDgMqgGAYAVNGKFSuUmZmpjz76SB999FGZ7atWrVLfvn11zTXXaMmSJdq+fbvq1q2rdevWuT4Q5uTkyOl0as6cOZozZ06Zc5T+UC1JwcHBbq83b96sJ554Qps3b1ZQUJBatWqlRo0aSSpewykrK0sOh8MVMkpYLBZXyJCKn506fPiw2rVrV+61Hj58WBERERWOR4cOHdShQwf985//VH5+vubPn68ZM2Zozpw5evjhh6v0HkFBQW7bzGZztao5hoaGlmk7/dylZWVl6ffffz9jH0uHPU/1UZL8/f3Vu3dv9e7dW5J06NAhPfXUU/rf//6nFStWqH///srKyirz37G07OxsxcXFlWmvW7eupFNhUir7fVSZ6+7SpYtef/11vfnmm3rjjTf0+uuvq27durrjjjt00003VXh9JX0oUXIdJeF6xIgRevXVV7V06VL16NFDa9as0XPPPVfhOUvUr1/fVV0wJibG7Zqk4iD2xBNPlDkuIyNDUnG5+H//+99atmyZTCaTmjZtqqSkJEll10E7fdwAoDIIWgBQRR9//LHi4uL09NNPu7UbhqG77rpLH3zwgfr27auePXuqXr16+vLLL1WvXj0FBARoyJAhkqSQkBCZTCbdcsstuuqqq8q8R0Wh4MSJExozZoxat26tzz//XC1atJDZbNbKlSv1v//9T1LxB1p/f39X0YUSTqfT9UFUksLCwtSsWbMzfriNjY0tt/3ZZ5/V8uXL9dVXX5Xp95133qmlS5dq586d5/Qe51NYWJi6deumhx56qNztVqvVo+93ww03qHnz5po8ebJbe0xMjJ5++mnX+PXv319hYWFuBVJKrFy5Um3atFFERIQOHz5cZntJW506dc7Yj8ped0kYzM/P19q1a/X222/rqaeeUqdOnSqsLHn6jGjJ92NJ4IqLi1O3bt305ZdfKisrS6GhoRo0aNAZz1cZJUVYHnroIXXr1q3M9pJQ/+CDD2r37t1688031aVLF1mtVuXn5+vDDz88p/cHgBLcOggAVXD48GGtWrVKV111lbp37+72p0ePHrriiiu0cuVKHTp0SBaLRX/+859dgWTQoEGu34yHhoaqbdu22r17t2tGqEOHDrrkkks0c+bMChd63b17t7KysnTzzTerVatWripr3377raTiMGWxWNS1a9cyledSUlJkt9tdr7t166aDBw8qOjrarR/ff/+95s6de8by4s2bN9eePXvcbo0skZubq4yMDMXHx5/Te5Sn5Fo9rVu3btqzZ4+aN2/u1sdPPvlEH330kcf72LhxY3311VdKS0srs23Pnj2S5Bq/pKQkff/99263s23dulW33367tmzZouTkZG3atEn79+93O8+SJUtUr149NW3a9Iz9qMx1P/vssxoxYoQMw1BQUJD69+/vWpD5wIEDFV7nihUr3F5//vnnatiwoVufrrvuOq1evVqfffaZrrzyyjKzuVXVokULRUdHa9++fW7XFBMTo+eff95VUXHDhg0aMmSIunfv7gqUpf8fAoBzxYwWAFTB4sWLZbfby52FkqRhw4ZpwYIF+vDDD3X33Xfrmmuu0fz582U2m8vcInj//ffr9ttv1wMPPKCrr75aDodD8+fP108//aRx48adsQ/NmzdXaGioXn31Vfn5+cnPz0//+9//XLcxltzmNn78eN10000aP368rrvuOh04cMC10GvJszXDhw/Xu+++q1tvvVV33HGHGjZsqNWrV2vOnDkaOXKk/P39z3idn376qR566CGtW7dOffv2VXh4uPbu3au3335bgYGBGj169Dm9R3nCw8N15MgR12yOp9xyyy365JNPdMstt2j06NGqU6eOvvjiC3344YeaNGlSlc4VHh6uTZs2ac2aNWrbtm25t17ed999Wrduna677jrdfPPN6tKli8xmszZv3qz58+erT58+6tOnj6TiJQH++te/6h//+IduvvlmFRQU6MUXX1THjh3Vq1cvtW/fXkuWLNEtt9yiu+66S5GRkVq8eLHWrl2rZ555psLgV5nr7tGjh9544w1NnDhRV199tYqKijR37lxFRkaqR48eFY7FO++8o5CQELVt21aff/65Vq1apalTp7o923X55ZfrySef1M8//6x//etfVRrr8lgsFt1333167LHHZLFY1L9/f+Xk5Gj27Nk6dOiQ6zbJjh076tNPP1W7du3UoEEDbdy4Ua+//rpMJlO1ngsEgNMRtACgChYuXKhLLrnENdtwusTERMXGxmrBggUaN26cEhISFB8fr2PHjpVZzPiyyy7TvHnzNGvWLI0fP17+/v5q166d3njjjQoX4Q0LC9Ps2bM1depU3XPPPQoJCVGbNm307rvvauzYsUpNTdWAAQOUlJSkmTNn6qWXXtK4cePUuHFj/etf/9J9992nkJAQScXPnrz33nt6/vnnNW3aNB0/flyNGzfWAw884ApK5bFarZo3b57efvttffXVV/r8889VUFCg+vXra8CAAfrnP//puj2suu9RnuHDh2vlypW68847NX78+DLFFqorJiZGH3zwgZ5//nk9/vjjKiwsVLNmzfT000/ruuuuq9K5/v73v+uXX37R2LFjNXnyZP35z38us09sbKwWLVqk1157TZ9++qnmzJkjwzDUtGlT3Xbbbbr55ptdYaRt27Z655139Pzzz+vee+9VaGio+vbtqwcffFBWq1X16tXT//t//0/PP/+8nnrqKRUVFSkhIUGzZ8/WwIEDz/m6+/btq+eee07z5893FcBITEzU22+/7fa8X3meeuopzZ07Vy+++KLi4uL0wgsvlPklRUBAgHr06KHdu3d7bIHrv/zlLwoJCdHcuXP13//+V8HBweratauee+451/NsU6ZM0ZNPPqknn3xSktSsWTM98cQTWrJkiVJTUz3SDwAXN5NR3Sd4AQA12jfffKMGDRq4FTr47bffNHTo0Ep9CAfOh4KCAvXt21fjxo3TqFGjfN0dAPAYZrQA4AL13Xff6YsvvtCDDz6o5s2b69ChQ3rllVfUokULXXbZZb7uHi5y+/fv16JFi7R69WqZTCaNGDHC110CAI8iaAHABerhhx9WYGCgXnnlFWVkZCgyMlK9e/fWAw88cM4FB4BzZTabXc9wTZ8+vdyS/ABQm3HrIAAAAAB4GOXdAQAAAMDDCFoAAAAA4GEELQAAAADwMIphVMKmTZtkGEaVFtUEAAAAcOEpKiqSyWRSly5dKtyPGa1KMAxDNaVmiGEYstlsNaY/FxrG17sYX+9ifL2L8fUuxte7GF/vYny9q6aNb2WzATNalVAyk9WhQwcf90TKy8vTtm3b1KpVKwUHB/u6Oxccxte7GF/vYny9i/H1LsbXuxhf72J8vaumje/mzZsrtR8zWgAAAADgYQQtAAAAAPAwghYAAAAAeBhBCwAAAAA8jKAFAAAAAB5G1UEAAADgJIfDoaKioiodU1hY6PpqNjOP4Wnnc3z9/f1lsVg8ci6CFgAAAC56hmEoPT1dWVlZVT7W6XTKz89PBw4cIGh5wfke38jISDVo0EAmk+mczkPQAgAAwEWvJGTVr19fwcHBVfqQ7XA4VFhYqICAAI/NhuCU8zW+hmEoLy9PGRkZkqSGDRue0/kIWgAAALioORwOV8iKjo6u1vGSFBgYSNDygvM5vkFBQZKkjIwM1a9f/5zej7lNAAAAXNRKnskKDg72cU9QE5R8H1T1Wb3TEbQAAAAA6ZyfycGFwVPfBwQtAAAAAPAwghYAAABwgRgwYIBat27t+pOQkKCuXbtq5MiR+uGHHyp1joULF6p169bn1I9169apdevW2rdvnyTp2LFjWrBgwTmds7YhaAEAAAAe5HAa2rzziFZu3KfNO4/I4TTO6/uPHj1a3333nb777jt9++23+uCDDxQaGqoxY8bowIED56UPXbp00Xfffeeq3Dd16lQtWbLkvLx3TUHVwVrEcDh0fOs2ObZs0XFDCurSWSYq2wAAANQYq38+oNcXb1ZmdoGrLToiULcP66BLOzY6L30IDg5WvXr1XK/r16+vJ554Qn369NHXX3+tUaNGeb0PVqvVrQ+GcX7DZk3AjFYtkblmrVLH/lM7n3xGRQs/0c4nn1Hq2H8qc81aX3cNAAAAktZsPqjJb/3gFrIkKTO7QJPf+kGrfz4/s0nl8fMrnl+xWq0qKCjQiy++qIEDB6pDhw665ppr9L///e+Mxx44cED33XefevbsqXbt2qlPnz6aNm2anE6npOJbDQcPHqynnnpKiYmJGjdunNutgxMnTtSiRYu0fv16tW7dWsuWLVNCQoL279/v9j5//etf9eyzz3pvEM4zZrRqgcw1a7V9yrQy7bbMTG2fMk0JEycoumcPH/QMAADgwmUYhgptjrPu53A6lFdg15xPfqlwv9cXb1anS+rJYq5cVbsAq8UjFfAOHTqkZ555RsHBwerbt6/uv/9+bd26VY8//riaNm2qzz77TPfcc49mzZqlQYMGlTn+n//8p+rVq6c33nhDISEh+uabbzR58mR16dLFtf8ff/yhjIwMLV68WAUFBTp69Kjr+EceeUQFBQVKT0/XzJkzVadOHUVFRemTTz7RuHHjJEl79uzRjz/+qKeffvqcr7emIGjVcIbDod1z5le4z+658xXVLZnbCAEAADzEMAw9POs7bdt79Ow7V1JmdoFuePSLSu/fplmUnr3rsiqHrddee03z5xd/frTb7bLZbGrZsqVefPFF5efn65tvvtGrr76qfv36SZLuvvtubd++Xa+++mqZoFVQUKBrrrlGf/rTn1zPW91yyy2aM2eOduzY4bb/uHHjFBcXJ6m4GEaJsLAwBQYGyt/f33U74TXXXOMWtBYvXqwOHTqoVatWVbrWmoygVcPlbN0mW2ZmhfvYjmTqwJLPFNmlk/wj68g/LJTQBQAAcJG64YYbdNNNN0mSzGazIiMjFRYWJkn64ovioJeYmOh2THJysl544YUy5woMDNTIkSP11Vdf6eeff9bvv/+uHTt26MiRI65bB0s0a9as0n0cMWKE5s+fr59++kkdO3bUkiVLNHbs2KpcZo1H0KrhbMeOVWq/vW++Lb158oXZLP+IcFkj68g/MkLWOpHyjyz+Y42MlH+dSFkjI+QfWUd+YaEszgcAAHAak8mkZ++6rNK3Dm7anq5n3/3xrPs+PqaH2rWIrlQfqnvrYEREhJo2bVqlYwzDcD3HVVpeXp5GjhypgoICXXHFFbr22mvVsWNH/f3vfy+zb2BgYKXfr1WrVurUqZOWLFmigoICHTlyREOHDq1Sn2s6glYNZ61Tp1L7BdSvJ0dBoew5OZLTqaJjWSo6lnXW40wWi/xPhi5rZMTJEFYqmNWJLA5rkXVkCQkmlAEAgIuGyWRSYMDZPy47HCZ1ahWt6IjAMoUwSqsbGaTOretX+hktbyhZH2vDhg3q37+/qz01NbXc2/a+++47bdmyRd9//73q1q0rScrKylJmZmaVKgmW9xlyxIgRmj17tpxOpwYNGqTw8PCqXk6NRtCq4cLbtpE1OrrC2wetdaOV+OrLMlksctrtKsrOUVFWlmzHjqkoK7v471nFwcuWlaWirCwVZWXLfuKEDIdDtsyjsmUeVe5Z+mLy9z85E3b67Jh7KPOPrCNLUCChDAAAXDTMZpPGXN1Oz76z4Yz7jL2mvU9DliS1bNlS/fv31xNPPCGTyaSmTZvq888/1zfffKMXX3yxzP4NGjSQJC1ZskSXX365Dh48qBdeeEFFRUWy2WyVft/g4GBlZGQoLS3N9RzXVVddpcmTJ2vhwoWaOXOmR66vJiFo1XAmi0Utxo4ut+pgiRZjRrueyTL7+SkgOkoB0VFnPbezqEhFWdmu8GU7VhLCTv3ddjKUOfLyZBQVqfDwERUePnLWc5ut1gpnx07dvhgpSxWmmQEAAGqqnh0aatKo5DLraNWNDNLYa9qft3W0zuaFF17QCy+8oEceeUQ5OTmKj4/XzJkzNXjw4DL7duzYUZMmTdKbb76pF198UTExMbryyivVsGFDbd68udLvOWzYMH399dcaOnSoli5dqpiYGIWGhmrQoEFav369evXq5clLrBFMho9XD3M6nZo1a5YWLFig48ePKzk5WY899pgr6Z5uy5Ytmjp1qn7++WcFBARoyJAhmjBhgusBP0n68ssvNXPmTO3bt08tWrTQww8/rJ49e1a7jyXfRB06dKj2Oc5V5pq12j1nvtvMlrVutFqMGX1eSrs7CgsrmB0rFcyOZclZWFilc5sDA13PkZU3O1b6lkaz1eqlKyyWl5enbdu2qU2bNgoODvbqe12MGF/vYny9i/H1LsbXuxjfihUUFGjPnj1q3rx5lZ4zKuFwOFRQUKDAwEBZLBY5nIa27s7U0ZwCRYUHqm2LaJ/PZNVUN910k7p27ar77rvvjPucPr7edrbvh8pmA5/PaM2ePVvvv/++pkyZogYNGmjatGkaM2aMPv30U1lP+1B95MgR3XrrrRo0aJAef/xxHTt2TP/61780ceJEvfzyy5KktWvXasKECXrooYfUq1cvffTRR7r99tu1ePFitWzZ0heX6BHRPXsoqluyMjb9qN+3bFHTdu1Uv0vn81Zd0BIQIEtMfQXG1D/rvo78fNlOhrKys2Mlr4u3O202OQsKVHAwXQUH08/ej5Bg91my0sU96tSRf0SErHXqyD8iXGZ/f09cOgAAQJVYzCZ1aFXX192o0ZYtW6Zt27bpxx9/1NSpU33dHa/wadCy2WyaP3++HnzwQVcd/+nTp6t3795aunRpmcoj+/fv12WXXab//Oc/8vPzU/PmzXX99ddr+vTprn3mzJmjQYMG6eabb5YkPfzww9q0aZPeeust/ec//zlv1+YNJotFYW3byGKSwtq0qbEl3C1BQQoKClJQwwYV7mcYhhz5+Sdnx4qfJys9M1aUXTJzVhzKDLtdjtw85efmKX//2VdW9wsLlX/EydmxOpGn/h55MoyV3MYYEV5jxxIAAOBCNHfuXO3Zs0dPPvmka32uC41Pg9b27duVm5vrdltfeHi42rZtqx9++KFM0OrUqZNbff9du3bpk08+cd3T6XQ6tXHjRk2cONHtuO7du2vp0qVevBJUh8lkkl9wsPyCgxXUuOJ7lg3DkCM31z2IlbqNsSj71EyZLStLcjplP35C9uMnlL9v39k6Iv/wsOLnxcLCZDNJ+zdsUnC9em6hjDXKAAAAPOODDz7wdRe8zqdBKz29+Fax01Ns/fr1XdvO5PLLL9fevXvVuHFjzZo1S5KUk5OjvLw8V3WUqpzvbAzDUF5e3jmdwxPy8/Pdvl5UzGYpOkr+0VGq6KZAw+mU40SuirKzZD9ZgdHta3a27NnZxZUXc3Ikwyiu1Jid4zpHxuYt5Z/cZJJfRLj8IyLkFxFR/DXytK8REfKPjJAlJEQms9mzY1DLXdTfv+cB4+tdjK93Mb7exfhWrLCwUE6nUw6HQw7H2dfNOl1JyQPDMKp1PCp2vsfX4XDI6XQqPz+/zKLMJf2oTHVtnwatkv/ZT38WKyAgQNnZ2RUe+9xzzyk/P1/Tpk3TzTffrE8++UQFBQVnPF9hFQs0nK6oqEjbtm07p3N40t69e33dhdrBUhzOVE4VRj9JFqdTysuTcSJXRm6udPKrceJEmdfKy5cMQ/asbNmzKv7+lFQcDENCZAoNkenkV4WEyhQaLFNoqNs2BV5c5fD5/vUuxte7GF/vYny9i/E9Mz8/v3P+vHiux6Ni52t8CwsLZbfbtXv37jPuc3reKI9Pg1ZJFQ+bzeZW0aOwsFBBQUEVHltS5WPWrFnq27evvv76a/Xt29d1vtIqc76z8ff3L3cRt/MtPz9fe/fuVbNmzc75mlBWReNr2O2y5xxXUXZ28axY1mlfS82UOXJzJadTOn5cxvHjOltpT5Ofn/uM2JlmyiIiZK7Fa5Tx/etdjK93Mb7exfh6F+NbscLCQh04cEABAQHVqjpoGIYKCwsVEBBQa/+Nrsl8Mb5+fn5q0qSJAgICymzbuXNn5c7h6U5VRcktgxkZGWrSpImrPSMjw7VqdWm7d+/WH3/84SqcIUkxMTGKjIzUoUOHFBkZ6VoMrbSMjAzFxMScU19NJlONKocaFBRUo/pzoTnj+IaHS7GNz3p8hWuUZbkX+XDk5cmw21V0JFNFR868MHUJs9VaqgR+OWuURUa4ttXUNcr4/vUuxte7GF/vYny9i/Etn9lsltlslsViqVb58JLb2Uwm03kpP36xOd/ja7FYZDabFRQUVG7wrmzY82nQSkhIUGhoqNatW+cKWjk5Odq6datGjhxZZv/Vq1dr6tSp+u677xQeHi5J+uOPP3Ts2DG1bNlSJpNJXbt21fr16/WXv/zFddy6deuUlJR0fi4KkGT291dAvboKqHf20q5l1ihzK4F/zK3Ih7OgQE6bTYUZGSo87RcK5fYjMNC9BL5bEDu/a5QBAABcTHwatKxWq0aOHKnnnntOUVFRaty4saZNm6YGDRpoyJAhcjgcOnr0qMLCwhQYGKihQ4fq9ddf14QJE/Tggw8qOztbTz31lDp27Kj+/ftLkm699Vbdfvvtatu2rfr06aOPP/5Y27Zt09NPP+3LSwXO6JzWKHObHXMvke9aoyw9XQWVKAZjCQl2L4FfOpSxRhkAAECV+HzB4vHjx8tut+vRRx9VQUGBkpOTNW/ePPn7+2vfvn0aOHCgJk+erOHDhysyMlJvvfWWpkyZor/97W+yWCwaOHCgJk6c6JpGvOyyy/TMM89o9uzZmj59ulq1aqVXX321Vi9WDJSo3hplWactHp1dZt2ykjXKHLl5KjhQxTXKTs6UlZ4dc61bFhlBOXwAAHBR8nnQslgsmjBhgiZMmFBmW2xsrHbs2OHW1rx5c7322msVnnPYsGEaNmyYJ7sJ1CrVWqOsZHbstHXJirKOFc+YHctSUXa2DIejWmuU+UdGyhwaqiKHQ4d27lZI/Xruz5qFhRHKAAAXBMPhUM7WbbIdOyZrnToKb9vmvP8bt2TJEr377rv69ddfZTKZ1KJFC/3lL3/RDTfcUKnjFy5cqEmTJpX5LF7agAEDdO211+ruu+/2SJ+XL1+uuLg4tWrVSuvWrdPNN9+sb7755qwLGpfeNzY2VseOHdOyZcvcHiXyBZ8HLQC+ZTKZ5BcaKr/QUCk2tsJ9DadT9hMnKpwdc23LyZGczlNrlP3+h+s8B9auK3tys1n+4eGVKvLhFxrKGmUAgBopc81a7Z4zX7bMUwWurNHRajF2tKJ79jgvffjoo4/09NNP65FHHlFiYqIMw9D333+vp556SkeOHNFdd93lsfcprypfdezfv1933HGH3n77bbVq1UpdunTRd999p6ioskv0nO70fadOnap9+/YRtADUHqaTYcg/PFzBpSqFlsdwOFR0/Lhb1cXcjMM6tHuPwi0WOU8GtqKsLBXlHC8OZSdfn7UfFov8IyIqVeTDEhJCqV0AwHlxdO06/Tr1+TLttsxMbZ8yTQkTJ5yXsPX+++9rxIgRuu6661xtLVq00KFDh/T22297LGhVJgRVVsmixCWsVqvq1asnSWddpLj0vuWdy1cIWgC8wmSxyBpZHHZCmhW35eXl6ei2bWrWpo1beWGn3X5y5ivr1HNl5RX5yM6S/fgJGQ6HbEePynb0qHLP1g8/vwpmx04rhx8URCgDALgYhiFnJRbJdTgcsufla8/cNyrcb/eceYro1LHSd2WYq7lulNls1qZNm5Sdna2IiAhX++23364RI0ZIKv+2v/LaPvzwQ82cOVM5OTnq2bOn/vWvf6lx48bl7r98+XLNnDlTO3fuVExMjK666iqNGzfOtbhvbm6uXnjhBf3vf/9Tbm6u2rVrp4kTJyoyMlIDBw6UJN18882666671K1bN9ftgB9//LE+/PBDrVixwlWXIT8/X5deeqn+7//+T02aNHHtO2vWLC1atEiS1Lp1a7388su666679M0337j6LUl//etf1bVrVz388MNVHt/KImgB8Dmzn58CoqMUEH3234w5i4pUlJ0j27FjxYtHHztW/m2M2Vly5BavUWY7ckS2I0fO3g+3NcrKKfJR6pbGmrpGGQDAMwzD0OaJj+j49jM/o1RVtsyjWve3myq9f1ibBHWY/FSVw9aYMWN03333qU+fPurevbuSkpLUo0cPdejQwbVEUmW98847eumll2S1WvXkk0/qzjvv1KJFi8r06dtvv9W9996rSZMm6dJLL9Uff/yhJ598Unv27NFLL70kSbr33nu1d+9eTZ48WU2aNNGrr76q0aNH63//+58WLFigv/zlL5o5c6Z69eqlX375xXXuYcOG6ZVXXtG6det02WWXSZKWLVsmwzD0pz/9SVu2bHHt+8gjj6igoEDp6emaOXOm6tSpo6ioKH3yyScaN26cJGnPnj368ccfvV6VnKAFoFYx+/sroG60AupGn3Vfp81WQQn8U0U+PL9GWelgFiGLh+5fBwCcZ7X0LocrrrhCDRo00Ntvv63vv/9eK1eulCQ1a9ZMzzzzjBITEyt9rmnTpikhIUGS9Oyzz+ryyy/XmjVrdOmll7rt9+qrr+r66693Fdto0qSJnnjiCY0aNUr79u2TzWbTt99+q3nz5rnC0uOPP67w8HBlZ2e7bkOMiIhQSEiI27ljY2OVmJiozz77zHXsp59+qkGDBik0NNRt35Jlofz9/V23E15zzTVuQWvx4sXq0KGDWrVqVelxqA6CFoALltlqVWD9+gqsX4k1ygoKzl7k42Roq/IaZcHBFRb3OBXMIlijDABqCJPJpA6Tn6r0rYNHfvxZe6Y+d9Z92zz2iCLata1UH6p766Akde7cWZ07d5bT6dT27du1cuVKvfvuuxo7dqy+/vrrSp0jJCTEFbKk4qAWERGhX3/9tUzQ2rp1q37++Wd99NFHrraSZ6V27dql/Px8V79KBAQEaNKkSZKkfWepZHz11Vdr6tSpeuKJJ5Sbm6vvv/9ec+bMqdR1jBgxQvPnz9dPP/2kjh07asmSJRo7dmyljj0XBC0AkGQJDJSlQQMFNqjkGmVZ5ZfAP33dMsNulyMvT468Sq5RFhrqmglzmx1jjTIAOO9MJlPlbhV3OBTesb2s0dFu1QZPZ60brTqdO3n153d6erpee+01/eMf/1CDBg1kNpvVtm1btW3bVoMGDdLQoUP1ww8/lHus3W53e20pp59Op9P1zNXp7WPGjNG1115bZlu9evW0evXqal5RsYEDB2rKlClavny5jhw5onr16qlHj8oVFmnVqpU6deqkJUuWqKCgQEeOHNHQoUPPqT+VQdACgCpwW6OsUWXWKMsrnh0r9/bF0sHs5BplJ07IfqJya5T5hYUVh7GICFnr1JFCQmS3FSrzcKYKY+qzRhkAnEcms1nNbrul3KqDJVqMGe31n8dWq1ULFixQw4YNdfvtt7ttK3k+q27duvL399eJEydc206cOKHM00JiTk6O/vjjDzU5WWl4x44dOn78uOLj48u87yWXXKI9e/aoadOmrrZ169bp7bff1uOPP66WLVtKkjZv3qyePXtKKg52Q4YM0UMPPaQOHTpUeF1BQUG64oortHTpUh08eFDXXHONzGcoKlLeLOCIESM0e/ZsOZ1ODRo0qMrPqlUHQQsAvKR4jbIQ+YWGVHKNstxyZ8fK3L6YXbxGmT0nR/acnDLn+mNZintD6TXKIiLkX+dUkQ//iFOLRlvrsEYZAJyLqB7dlTBxQtl1tOpGq8WY87OOVlRUlMaMGaOXXnpJubm5uuKKKxQaGqqdO3dq9uzZruIYnTt31hdffKHLL79c4eHhmjFjRpkZLLPZrHvvvVePPfaYJOnf//63unXrpqSkpDLvO3bsWN17772aNWuWrrrqKqWnp+uRRx5RbGys6tWrp3r16mnIkCF64okn9PjjjysmJkavv/66CgsL1a1bN1c4+vXXX9W2bfm3Vg4bNkx33HGHCgoKNGXKlDOOQXBwsDIyMpSWlqa4uDhJ0lVXXaXJkydr4cKFmjlzZrXGtqoIWgBQAxSvURYm//AwBVe8RNnJNcpOlJodK/6ad/iwjvyRphDDkOPkGmYeXaPstFDGGmUAUFZ0zx6K6pasnK3bZDt2TNY6dRTets15vbPg3nvvVbNmzfThhx/qvffeU0FBgRo1aqQ//elP+sc//iFJuv/++5WVlaVbb71VYWFhGj16tHJO++VdVFSUrrnmGo0bN075+fnq37+/Hn300XLf84orrtD06dP12muv6dVXX1VkZKQGDBigBx980LXPM888o6lTp+qee+6RzWZTp06dNG/ePFchjBEjRmjq1Kn6/fffNXjw4DLvkZSUpHr16ik6Otpt5ux0w4YN09dff62hQ4dq6dKliomJUWhoqAYNGqT169erV69eVR7T6jAZNWVFrxps8+bNknTWKc3zIS8vT9u2bVOb09Yhgmcwvt7F+HpXeeNrOBzF5fBPC2UlJfBLz5zZj584yzu4c61R5iqBf4YiH3UujDXK+P71LsbXuxjfihUUFGjPnj1q3ry5AquxfIfD4VBBQYECAwPLfa7pQtWnTx/deOONuuOOO7z6Pp4a35tuukldu3bVfffdV+F+Z/t+qGw2YEYLAC5gJotF1qg6skbVOeu+JWuUnaqweIYiH1nVX6PsjEU+WKMMAGqNo0ePaufOncrMzFSDsxSRqgmWLVumbdu26ccff9TUqVPP2/sStAAAkqq5Rtnps2OnFfmwHTuHNcrOMDvmizXKDIdDx7duk2PLFh03pKAunSkwAuCitWTJEr344ovq2bOnBg0a5OvunNXcuXO1Z88ePfnkk2rYsOF5e1+CFgCgyqq1RtkZSuC71i07lzXKXLcvus+OeWKNssw1a90ebN+58BP9ER2tFmPPz4PtAFDT3HLLLbrlllt83Y1K++CDD3zyvgQtAIBXVW2NsoIzlsA/fd0yo6jIM2uUlQpl/pGR8o8Il9mv+J/HzDVrtX3KtDLnsmVmavuUaUqYOIGwBQAoF0ELAFAjFK9RFiS/4KCqrVFWKpSder7Mfd2yKq1RJskvPFz+EeEqSD9U4X67Xpur8Hbt5BcaQll8AIAbghYAoNap3hplZ1ibrPTti2dZo+x0RceOaf1Nt0gmkyzBwfILCZFfSIgsIcHyCw09+TpYlpPtfqEl20Nc+/qFhsgcGFjrqzICFwKKcUPy3PcBQQsAcEFzX6MsrsJ9T61RlqUjq77Tvo8WVu5NDEOO3Fw5cnNVWJ1Oms2lQtqpQFY2tJ18HRLiarOEBMtstRLUgHPgf/IZzry8PAUFBfm4N/C1vLw8Sae+L6qLoAUAwEkmi0XWyAhZIyNkP368UkGr7eP/UkjzZrKfOCFHbp7submyn8iV/WTwspf8OeH+2nGyzXA4imfRjh+X/fjx6vXbz881O1Z6tqxsaCueYTsV0opfV7dQCHChsFgsioyMVMbJyqjBwcFV+uWFw+FQYWGh61zwrPM1voZhKC8vTxkZGYqMjDzn9yJoAQBQjvC2bWSNjnZVGyyPtW60Ijt2OBnQIqv8HoZhyGmznQxpubKXCmqO3BNnfH0qsOVJTqcMu11F2dkqys6u1rWaAwLcZ8tOzpiVfl1+aCsOapS6x4WgZD2ojEosQ3E6p9Mpu90uPz8/mXle0+PO9/hGRkZ6ZH0wghYAAOUwWSxqMXZ0uVUHS7QYM/qcQobJZJIlIKB4PbDos69fdjrD6ZSjoKCCmbO8UiGt+LWj9H4nb49xFhbKVlgoHT1areuwBAWdcbbsbKHNEhREIRHUCCaTSQ0bNlT9+vVVVFRUpWPz8/O1e/duNWnShFsPveB8jq+/v7/HZs0IWgAAnEF0zx5KmDjBbR0tqXgmq8UY36+jZTKb5RccLL/gYAXUq1fl4w2HQ478/Crc7phXXL3xZGhzFhRIkhz5+XLk58t2pDoXUVxIxBIcpCKLRb9FRckaHl5O8ZDSoe3UbBqFROBpFoulyh+0nU6nJCkgIECBgYHe6NZFrbaOL0ELAIAKRPfsoahuycrY9KN+37JFTdu1U/0unS+I2+VMFkvxDFRoqBRT9eOddrsceSXhK6/CkFZeaHPabG6FRCTpxFlK6pd3DaWD2NkqPJap+Gi1Vv3CAaASCFoAAJyFyWJRWNs2spiksDZtLoiQ5QlmPz+Zw8PlHx5ereOdNpsreOVmHtWe7dvVKCpaFnvRqcIiubnuhUZOKyRiOByVLsdfHpO/v3sZ/tDQyoe2YAqJADgzghYAAPAJs9Uqq9Uqa506UlSULPYiRbVpo+Dg4LMeaxiGnIWFbsHLLYiVus3RvdDIqdAmw5BRVORaU61a13CykEjZio9nWkst9NTrYAqJABcyghYAAKh1TCaTLIGBsgQGnnshkTIhrZxn1k64h7jTC4nYzqGQSHm3NJ45tJ2qDkkhEaBmI2gBAICLjicKidjz8txmyxwnZ8zKlOEvU2ikbCERHa5GJZGT1+Belr/8tdQcfn5yHj6s/NBQWerWlV9IiMwBARQSAbyIoAUAAFBFJotF/mFh8g8Lq9bxzqKi4kIipW5zLB3EToW2smX57SdOyLDbixe6PnFC9hMnVFjJ991+2jWULctf+bXUKCQCVIygBQAAcJ6Z/f1ljoiQf0REtY4vXUik4jL8xa9tOTnKz8qSpai4UqTHComUWcS6orXU3KtDmv34GIoLG9/hAAAAtYxbIZFKyMvL07Zt29SmTRsFBQUVFxKp1Npppz/DdlohkWNZKjqWVb1rCAx0r/BYJrSVV/GxOMhZgoIoJIIaj6AFAABwESldSCSgbjULiZxc6NpRqpqj2+sKQpsjP1+S5CwokK2gQLbMahYSCQ4+c1n+s5TptwQF8XwavI6gBQAAgEozmc2umafqKFNI5Cxl+E+fWXMWFj+R5sg7Wf3xHAqJuBcPKR3aKijLTyERVBJBCwAAAOeNxwqJVKYsv1uhkbxyC4lU6xr8/NyClykwUDaHQ380XKPAiIhShUVCS82knXpejYWuLw4ELQAAANQaHikkcnpIq0Jok9Mpw25XUXaOirLdC4lkbt1WuWuwWktVdAyVX2hwuWX5y3ttCQ6mkEgtwX8lAAAAXDTMVqusUVZZoypXSKQ0wzDkLCgos3Za3rFj2r97t+qFhctUKsiVKTSSlycZhpw2m5w227kXEilTlv9kSf4zhDTXQte1qJCI4XDo+NZtcmzZouOGFNSlc63pP0ELAAAAqASTySRLUJAsQUFuhUQC8/J0qG60GrRpo+Dg4DMeX7qQSMVl+UuvnXbC9dojhURMJlmCg8qW5Q8JLRXKSgqJFM+2ndo3VJagwPP2fFrmmrXaPWe+bJmZkqSdCz/RH9HRajF2tKJ79jgvfTgXBC0AAADgPHArJFK/6seXFBI5PaRVZi01VyERw5AjN0+O3DwV6nDVO2E2l63oeJbbHYufZyt+Xs1stVYqqGWuWavtU6aVabdlZmr7lGlKmDihxoctghYAAABQC3iikIjbbFml1k4rp5DI8ROyHz/XQiKnVXcsFdLMQUFKe/+DCs+ze+58RXVLrtG3ERK0AAAAgIuA2d9f1sgIKbLqhUSMk8+WVbx22pnL8ttzcyssJFJVtiOZytm6TREd2p/TebyJoAUAAACgQiaTSZaAAFkCAs69kIjb2mlly/Dn/v67cnfuOus5bceOVedSzhuCFgAAAACvOlMhkfJkb/5Fvzz677Oe01qn6oHvfDL7ugMAAAAAUCK8bRtZoysOY9a60Qpv2+Y89ah6CFoAAAAAagyTxaIWY0dXuE+LMaNrdCEMiaAFAAAAoIaJ7tlDCRMnlJnZstaNrhWl3SWe0QIAAABQA0X37KGobsnK2PSjft+yRU3btVP9Lp1r/ExWCYIWAAAAgBrJZLEorG0bWUxSWJs2tSZkSdw6CAAAAAAeR9ACAAAAAA8jaAEAAACAhxG0AAAAAMDDCFoAAAAA4GEELQAAAADwMIIWAAAAAHgYQQsAAAAAPIygBQAAAAAeRtACAAAAAA8jaAEAAACAhxG0AAAAAMDDCFoAAAAA4GE+D1pOp1MzZsxQ79691blzZ40dO1ZpaWln3P+3337T7bffru7du6tnz54aP368Dhw44NrucDjUsWNHtW7d2u3PzJkzz8flAAAAAIDvg9bs2bP1/vvv68knn9QHH3wgp9OpMWPGyGazldn32LFjuvXWWxUYGKh33nlHc+bM0dGjRzVmzBgVFhZKkvbu3avCwkJ98skn+u6771x/Ro8efb4vDQAAAMBFyqdBy2azaf78+Ro/frz69eunhIQETZ8+Xenp6Vq6dGmZ/ZctW6a8vDxNnTpV8fHxat++vaZNm6Zdu3Zp48aNkqQdO3YoNDRUCQkJqlevnutPSEjI+b48AAAAABcpnwat7du3Kzc3Vz179nS1hYeHq23btvrhhx/K7N+zZ0/Nnj1bgYGBrjazufgScnJyJBUHrZYtW3q55wAAAABwZn6+fPP09HRJUsOGDd3a69ev79pWWmxsrGJjY93aXn/9dQUGBio5OVmS9Ouvv8put+u2227T9u3bFRMTo1GjRumaa645p74ahqG8vLxzOocn5Ofnu32FZzG+3sX4ehfj612Mr3cxvt7F+HoX4+tdNW18DcOQyWQ6634+DVolg2W1Wt3aAwIClJ2dfdbj33nnHb377rt69NFHFRUVJam4WIbT6dT48ePVoEEDrVy5UpMmTVJRUZGuu+66ave1qKhI27Ztq/bxnrZ3715fd+GCxvh6F+PrXYyvdzG+3sX4ehfj612Mr3fVpPE9Pb+Ux6dBq+QWQJvN5nY7YGFhoYKCgs54nGEYeumll/TKK6/on//8p2666SbXts8++0wOh8P1TFZCQoIOHDigefPmnVPQ8vf3V6tWrap9vKfk5+dr7969atasWYVjhOphfL2L8fUuxte7GF/vYny9i/H1LsbXu2ra+O7cubNS+/k0aJXcMpiRkaEmTZq42jMyMtS6detyjykqKtKkSZP02WefadKkSbrlllvctpcObCXi4+O1ZMmSc+qryWRScHDwOZ3Dk4KCgmpUfy40jK93Mb7exfh6F+PrXYyvdzG+3sX4eldNGd/K3DYo+bgYRkJCgkJDQ7Vu3TpXW05OjrZu3ep65up0Dz30kL766is9//zzZUJWTk6OunXrpoULF7q1b968WZdcconH+w8AAAAA5fHpjJbVatXIkSP13HPPKSoqSo0bN9a0adPUoEEDDRkyRA6HQ0ePHlVYWJgCAwO1cOFCffHFF3rooYfUrVs3HT582HWusLAwhYeHq0ePHpo+fbqio6PVtGlTLV26VEuWLNFrr73mwysFAAAAcDHxadCSpPHjx8tut+vRRx9VQUGBkpOTNW/ePPn7+2vfvn0aOHCgJk+erOHDh+uzzz6TJE2dOlVTp051O0/JPs8884xmzpypf//738rMzFTLli01Y8YM9e7d2xeXBwAAAOAi5POgZbFYNGHCBE2YMKHMttjYWO3YscP1ev78+Wc9X2hoqCZNmqRJkyZ5tJ8AAAAAUFk+fUYLAAAAAC5EBC0AAAAA8DCCFgAAAAB4GEELAAAAADyMoAUAAAAAHkbQAgAAAAAPI2gBAAAAgIcRtAAAAADAwwhaAAAAAOBhBC0AAAAA8DCCFgAAAAB4GEELAAAAADyMoAUAAAAAHkbQAgAAAAAPI2gBAAAAgIcRtAAAAADAwwhaAAAAAOBhBC0AAAAA8DCCFgAAAAB4GEELAAAAADyMoAUAAAAAHkbQAgAAAAAPI2gBAAAAgIcRtAAAAADAwwhaAAAAAOBhBC0AAAAA8DCCFgAAAAB4GEELAAAAADyMoAUAAAAAHkbQAgAAAAAPI2gBAAAAgIcRtAAAAADAwwhaAAAAAOBhBC0AAAAA8DCCFgAAAAB4GEELAAAAADyMoAUAAAAAHkbQAgAAAAAPI2gBAAAAgIcRtAAAAADAwwhaAAAAAOBhBC0AAAAA8DCCFgAAAAB4GEELAAAAADyMoAUAAAAAHkbQAgAAAAAPI2gBAAAAgIcRtAAAAADAwwhaAAAAAOBhBC0AAAAA8DCCFgAAAAB4GEELAAAAADyMoAUAAAAAHkbQAgAAAAAPI2gBAAAAgIcRtAAAAADAwwhaAAAAAOBhBC0AAAAA8DCCFgAAAAB4mM+DltPp1IwZM9S7d2917txZY8eOVVpa2hn3/+2333T77bere/fu6tmzp8aPH68DBw647fPee+9p4MCB6tixo2688UZt3brV25cBAAAAAC4+D1qzZ8/W+++/ryeffFIffPCBnE6nxowZI5vNVmbfY8eO6dZbb1VgYKDeeecdzZkzR0ePHtWYMWNUWFgoSVq0aJGmTp2qe+65RwsXLlRsbKxuvfVWHT169HxfGgAAAICLlE+Dls1m0/z58zV+/Hj169dPCQkJmj59utLT07V06dIy+y9btkx5eXmaOnWq4uPj1b59e02bNk27du3Sxo0bJUmvvvqqRo4cqauvvlqtWrXSM888o6CgIC1YsOB8Xx4AAACAi5RPg9b27duVm5urnj17utrCw8PVtm1b/fDDD2X279mzp2bPnq3AwEBXm9lcfAk5OTnKzMzU3r173c7n5+enpKSkcs8HAAAAAN7g58s3T09PlyQ1bNjQrb1+/fqubaXFxsYqNjbWre31119XYGCgkpOTdfDgwTOeb/v27efUV8MwlJeXd07n8IT8/Hy3r/Asxte7GF/vYny9i/H1LsbXuxhf72J8vaumja9hGDKZTGfdz6dBq2SwrFarW3tAQICys7PPevw777yjd999V48++qiioqK0e/fuM56v5Bmu6ioqKtK2bdvO6RyetHfvXl934YLG+HoX4+tdjK93Mb7exfh6F+PrXYyvd9Wk8T09b5THp0Gr5BZAm83mdjtgYWGhgoKCznicYRh66aWX9Morr+if//ynbrrppjLnK+1s56sMf39/tWrV6pzO4Qn5+fnau3evmjVrds7XhLIYX+9ifL2L8fUuxte7GF/vYny9i/H1rpo2vjt37qzUfj4NWiW3+GVkZKhJkyau9oyMDLVu3brcY4qKijRp0iR99tlnmjRpkm655ZZyz9eyZUu388XExJxTX00mk4KDg8/pHJ4UFBRUo/pzoWF8vYvx9S7G17sYX+9ifL2L8fUuxte7asr4Vua2QcnHxTASEhIUGhqqdevWudpycnK0detWJScnl3vMQw89pK+++krPP/+8W8iSpOjoaDVv3tztfHa7XampqWc8HwAAAAB4mk9ntKxWq0aOHKnnnntOUVFRaty4saZNm6YGDRpoyJAhcjgcOnr0qMLCwhQYGKiFCxfqiy++0EMPPaRu3brp8OHDrnOV7DN69Gg9/fTTatq0qTp06KDXX39dBQUFuu6663x4pQAAAAAuJtUOWk6nU7/++qsyMjLUtWtX2e12RUZGVvk848ePl91u16OPPqqCggIlJydr3rx58vf31759+zRw4EBNnjxZw4cP12effSZJmjp1qqZOnep2npJ9rr/+eh0/flwvvviisrKy1L59e73xxhuKioqq7qUCAAAAQJVUK2h98sknev7555WRkSGz2awFCxZo5syZ8vf31/PPP1+pKhwlLBaLJkyYoAkTJpTZFhsbqx07drhez58/v1LnvO2223TbbbdVug8AAAAA4ElVfkbriy++0MMPP6wePXpo+vTpcjqdkqTBgwdr5cqVmj17tsc7CQAAAAC1SZVntF599VXdcMMNevzxx+VwOFztI0aM0NGjR/Xhhx/q3nvv9WQfAQAAAKBWqfKM1p49ezR48OByt3Xq1EmHDh06504BAAAAQG1W5aAVHR2tXbt2lbtt165dio6OPudOAQAAAEBtVuWgdeWVV2rGjBn66quvZLPZJBUv2vXLL79o9uzZuuKKKzzeSQAAAACoTar8jNa9996rX3/9Vffee6/M5uKcdtNNNykvL09JSUm65557PN5JAAAAAKhNqhy0rFar5s6dq++//15r165VVlaWwsLC1K1bN/Xt21cmk8kb/QQAAACAWqPKQeu2227TmDFj1KtXL/Xq1csbfQIAAACAWq3Kz2ht3LiRWSsAAAAAqECVg1bv3r21ZMkSFRUVeaM/AAAAAFDrVfnWwYCAAC1ZskRffvmlWrZsqeDgYLftJpNJb731lsc6CAAAAAC1TZWDVnp6urp06eJ6bRiG2/bTXwMAAADAxabKQeudd97xRj8AAAAA4IJR5aBVYteuXVq/fr2OHz+uOnXqKDExUS1atPBk3wAAAACgVqpy0DIMQ//+97+1YMECt9sETSaTrr32Wj3zzDMe7SAAAAAA1DZVDlpz587Vxx9/rPHjx+vqq69WvXr1lJGRoU8++USvvPKK4uPjdcstt3ihqwAAAABQO1Q5aH300UcaM2aM/vnPf7raYmNjdeedd6qoqEgffvghQQsAAADARa3K62gdPHhQPXr0KHdb9+7dtW/fvnPuFAAAAADUZlUOWo0bN9aOHTvK3bZ9+3ZFRUWdc6cAAAAAoDarctAaOnSoZs6cqS+//NJVDMMwDH3xxReaNWuWrrzySo93EgAAAABqkyo/ozV27Filpqbqvvvu04QJE1SnTh0dO3ZMdrtd3bt31z333OONfgIAAABArVHloGW1WvXGG2/o22+/1fr165Wdna2IiAglJyerb9++3ugjAAAAANQq1Vqw+I8//lBGRoYefPBBScWLF3/88ce65JJL1KhRI492EAAAAABqmyo/o/Xjjz9q2LBhmjdvnqstJydHS5Ys0bXXXqtff/3Vox0EAAAAgNqmykHr+eefV9euXbVo0SJXW5cuXfTNN9+oY8eOmjp1qkc7CAAAAAC1TZWD1pYtW3TbbbcpMDDQrT0gIECjRo3STz/95LHOAQAAAEBtVOWgFRgYqEOHDpW77dixYzKbq3xKAAAAALigVDkV9e7dWzNmzCizaPGuXbs0c+ZM9enTx2OdAwAAAIDaqMpVBx988EHdcMMNuvbaaxUbG6uoqCgdO3ZMaWlpio2N1UMPPeSNfgIAAABArVHloFWvXj19+umnWrhwoTZu3KisrCzFxMRo5MiRGj58uEJCQrzRTwAAAACoNaq1jlZwcLBGjhypkSNHero/AAAAAFDrVSlo/fLLLwoPD1eTJk0kFRe/mDNnjnbt2qXWrVvrlltuUVRUlFc6CgAAAAC1RaWKYRQVFemuu+7SX/7yF3311VeSpMLCQv3973/XG2+8oUOHDumjjz7SX/7yFx09etSrHQYAAACAmq5SQevdd9/VqlWrNGnSJF133XWSpPfee0+7d+/W+PHjtXjxYn399dcKDQ3Vq6++6tUOAwAAAEBNV6mg9emnn2r06NG6+eabXbcGfvnllwoKCtLo0aMlSSEhIbrpppuUkpLivd4CAAAAQC1QqaC1d+9eJSUluV6fOHFCW7ZsUZcuXRQQEOBqb9as2RkXMwYAAACAi0WlgpZhGDKbT+26adMmOZ1Ode/e3W2/48ePKygoyLM9BAAAAIBaplJBq3nz5vrll19cr5cvXy6TyaTLLrvMbb+VK1eqWbNmHu0gAAAAANQ2lSrvfvXVV+vll19WnTp15HQ6tXDhQrVp00bt2rVz7fPll1/q448/1n333ee1zgIAAABAbVCpoHXTTTdpx44d+te//iXDMNSwYUNNnTrVtf1Pf/qT6zmum266yWudBQAAAIDaoFJBy2KxaPLkyRo/fryOHDmihIQE+fv7u7b369dPLVq00LBhw9zaAQAAAOBiVKmgVaJhw4Zq2LBhmfaHH37YYx0CAAAAgNquUsUwAAAAAACVR9ACAAAAAA8jaAEAAACAhxG0AAAAAMDDziloHT9+XLt27ZLNZpPD4fBUnwAAAACgVqtW0Fq3bp3+8pe/qFu3bvrzn/+s3377TQ888ICmTJni6f4BAAAAQK1T5aC1Zs0a3XbbbQoMDNSDDz4owzAkSQkJCXr77bf1xhtveLyTAAAAAFCbVDlovfjiixo4cKDeeecdjRo1yhW07rjjDo0ZM0YLFizweCcBAAAAoDapctDatm2bRowYIUkymUxu23r16qX9+/d7pmcAAAAAUEtVOWiFhYXp8OHD5W47ePCgwsLCzrlTAAAAAFCbVTloDRw4UNOnT9fmzZtdbSaTSenp6Xr11VfVr18/T/YPAAAAAGodv6oe8MADD+inn37S9ddfr7p160qS7r//fqWnp6thw4a6//77Pd5JAAAAAKhNqhy0IiIitGDBAi1evFhr165VVlaWwsLCdNNNN2n48OEKCgryRj8BAAAAoNaoctCSJKvVquuvv17XX3+9p/sDAAAAALVelYPWrFmzzrjNbDYrODhYTZs2Va9evWS1Ws+pcwAAAABQG1U5aC1ZskTp6emy2Wzy8/NTZGSksrKyZLfbZTKZXOtqtWrVSm+//baioqI83mkAAAAAqMmqXHXwnnvukdVq1QsvvKCff/5Z3333nTZv3qxZs2apTp06evHFF/Xpp5/KZDLphRde8EafAQAAAKBGq3LQmjlzpu69915deeWVMpuLDzeZTBo0aJDGjx+vl156SZdcconuuOMOrVy58qznczqdmjFjhnr37q3OnTtr7NixSktLq9RxY8aM0cyZM8tsGzJkiFq3bu32Z+LEiVW9VAAAAAColirfOnjw4EE1bdq03G2NGzfW/v37JUkxMTHKzs4+6/lmz56t999/X1OmTFGDBg00bdo0jRkzRp9++ukZn/Gy2Wx67LHHtGrVKnXq1MltW15entLS0vTaa6+pXbt2rvbAwMDKXiIAAAAAnJMqz2i1atVKCxYsKHfbRx99pObNm0uS9u7dq/r161d4LpvNpvnz52v8+PHq16+fEhISNH36dKWnp2vp0qXlHrNx40YNHz5cqampCg8PL7N9586dcjqd6tKli+rVq+f6ExYWVsUrBQAAAIDqqfKM1t13360777xT1157rYYMGaLo6GgdOXJEy5Yt044dOzRjxgxt3bpV06ZN04gRIyo81/bt25Wbm6uePXu62sLDw9W2bVv98MMPGjp0aJljVq5cqd69e+vOO+/U1VdfXWb7jh07VLduXUVERFT10gAAAADAI6octPr166d58+Zp5syZmjVrlhwOh/z8/JSYmKi33npLSUlJSklJ0VVXXaV77723wnOlp6dLkho2bOjWXr9+fde20913330VnnPHjh0KDg7W+PHjtXHjRtWpU0cjRozQzTff7HqmDAAAAAC8qVoLFvfo0UM9evSQzWZTdna2oqOj3ULMgAEDNGDAgLOeJz8/X5LKPIsVEBBQqee7yvPbb78pJydHl19+ue68805t2LBB06ZNU3Z2tu65555qnVOSDMNQXl5etY/3lJIxK/kKz2J8vYvx9S7G17sYX+9ifL2L8fUuxte7atr4GoYhk8l01v2qFbQKCwu1Y8cO2Ww2GYahvXv3yul0Kj8/X6mpqXrwwQcrdZ6SAhU2m82tWEVhYaGCgoKq0zXNmTNHhYWFrmeyWrdurRMnTuiVV17R3XffXe1ZraKiIm3btq1ax3rD3r17fd2FCxrj612Mr3cxvt7F+HoX4+tdjK93Mb7eVZPG90xF+0qrctBat26d7rnnnjPOOIWEhFQ6aJXcMpiRkaEmTZq42jMyMtS6deuqdk1S8UWffuHx8fHKy8tTdna26tSpU63z+vv7q1WrVtU61pPy8/O1d+9eNWvWrNphFGfG+HoX4+tdjK93Mb7exfh6F+PrXYyvd9W08d25c2el9qty0Jo+fbrq1KmjJ598UkuWLJHZbNbw4cP17bff6v/9v/+nOXPmVPpcCQkJCg0N1bp161xBKycnR1u3btXIkSOr2jUZhqHBgwdr2LBhuuuuu1ztmzdvVr169aodsqTitcKCg4OrfbynBQUF1aj+XGgYX+9ifL2L8fUuxte7GF/vYny9i/H1rpoyvpW5bVCqRtDasWOHnnrqKQ0ePFjHjx/XBx98oL59+6pv374qKirSK6+8otdff71S57JarRo5cqSee+45RUVFqXHjxpo2bZoaNGigIUOGyOFw6OjRowoLC6vUOlgmk0mDBw/WvHnz1KJFC7Vv315r1qzR3Llz9cgjj1T1UgEAAACgWqoctJxOp2JiYiRJTZs21W+//ebadvnll+vhhx+u0vnGjx8vu92uRx99VAUFBUpOTta8efPk7++vffv2aeDAgZo8ebKGDx9eqfM98MADCg0N1QsvvKD09HTFxsbqkUce0fXXX1+lfgEAAABAdVU5aDVp0kQ7duxQUlKSmjdvrvz8fO3evVstWrSQ3W5Xbm5ulc5nsVg0YcIETZgwocy22NhY7dix44zHpqSklGnz8/PTnXfeqTvvvLNK/QAAAAAAT6lyCb4///nPeu655/Tuu+8qKipK7du315NPPqmUlBS9/PLLNaJgBAAAAAD4UpWD1pgxY3TDDTfop59+kiT9+9//1rZt2zRu3Djt3r1bDz30kMc7CQAAAAC1SZVvHdyzZ4/bc1gdOnTQsmXLXLcPhoaGerSDAAAAAFDbVHlG68Ybb9TixYvd2kJDQ9WxY0dCFgAAAACoGkHL39//nNajAgAAAIALXZVvHbznnns0depUHT9+XAkJCeUuGtaoUSOPdA4AAAAAaqMqB63HH39cDoej3HLsJbZt23ZOnQIAAACA2qzKQeupp57yRj8AAAAA4IJR5aB17bXXeqMfAAAAAHDBqHLQkiSbzaaPPvpIq1ev1uHDh/XMM89o/fr1ateunTp27OjpPgIAAABArVLlqoNHjx7ViBEj9PTTT+v333/Xzz//rIKCAq1YsUI33XSTNm3a5I1+AgAAAECtUeWgNXXqVOXm5uqLL77QokWLZBiGJGnGjBnq0KGDZsyY4fFOAgAAAEBtUuWgtXz5ct1zzz1q2rSpTCaTqz0gIECjR4/Wli1bPNpBAAAAAKhtqhy0CgsLFRkZWe42i8WioqKic+0TAAAAANRqVQ5aHTp00Pvvv1/utk8//VTt27c/504BAAAAQG1W5aqD99xzj2655RZdc8016tu3r0wmkz777DPNnDlT3333nebOneuNfgIAAABArVHlGa2kpCS98cYbCgoK0ty5c2UYht58800dPnxYr732mnr06OGNfgIAAABArVGtdbSSk5P1wQcfqKCgQNnZ2QoNDVVISIin+wYAAAAAtVKVZ7SGDRumN998U0eOHFFgYKBiYmIIWQAAAABQSpWDVqNGjfT888+rb9++uu222/Tpp5+qoKDAG30DAAAAgFqpykFr9uzZWr16tZ544gkZhqGJEyfq0ksv1cMPP6zVq1e7FjAGAAAAgItVtZ7RCgsL03XXXafrrrtOmZmZ+uqrr/TVV19p7Nixqlu3rlauXOnpfgIAAABArVHlGa3TZWZm6siRI8rJyZHD4VBERIQn+gUAAAAAtVa1ZrTS0tL02Wef6YsvvtDOnTtVt25dDR06VM8++6wSEhI83UcAAAAAqFWqHLRGjBihrVu3KjAwUIMHD9bEiRPVs2dPmc3Fk2OGYchkMnm8owAAAABQW1Q5aEVGRmrKlCkaMmSIgoKCXO0ZGRn68MMP9fHHH2v58uUe7SQAAAAA1CZVDlrz5s1ze71q1Sp98MEHWrlypex2u2JjYz3WOQAAAACojar1jNbRo0f10Ucf6cMPP9T+/fsVGhqqa6+9Vtdcc42SkpI83UcAAAAAqFWqFLTWrl2r//73v1q2bJkcDocSExO1f/9+vfzyy+rWrZu3+ggAAAAAtUqlgtabb76p//73v9qzZ4+aNm2qcePG6dprr1VwcLC6detG8QsAAAAAKKVSQWvKlClq3bq13n77bbeZq+PHj3utYwAAAABQW1VqweKrrrpKv//+u/7xj39o3Lhx+vrrr2W3273dNwAAAAColSo1o/X888/rxIkT+vTTT7Vw4ULdfffdqlOnjgYNGiSTycStgwAAAABQSqVmtCQpNDRUf/vb37RgwQJ9+umnuuaaa5SSkiLDMPR///d/eumll7Rz505v9hUAAAAAaoVKB63SLrnkEk2cOFErV67UzJkz1aJFC82ZM0d//vOfdfXVV3u6jwAAAABQq1RrHS3XwX5+Gjx4sAYPHqwjR45o0aJFWrRokaf6BgAAAAC1UrVmtMpTt25djR07Vl988YWnTgkAAAAAtZLHghYAAAAAoBhBCwAAAAA8jKAFAAAAAB5G0AIAAAAADyNoAQAAAICHEbQAAAAAwMMIWgAAAADgYQQtAAAAAPAwghYAAAAAeBhBCwAAAAA8jKAFAAAAAB5G0AIAAAAADyNoAQAAAICHEbQAAAAAwMMIWgAAAADgYQQtAAAAAPAwghYAAAAAeBhBCwAAAAA8jKAFAAAAAB5G0AIAAAAADyNoAQBwFg6noS17jmrz3jxt2XNUDqfh6y4BAGo4P193AACAmmz1zwf0+uLNyswukCR9vPqooiO26PZhHXRpx0Y+7h0AoKZiRgsAgDNY/fMBTX7rB1fIKpGZXaDJb/2g1T8f8FHPAAA1nc+DltPp1IwZM9S7d2917txZY8eOVVpaWqWOGzNmjGbOnFlm25dffqkrr7xSHTt21LBhw7RmzRpvdB0AcAFzOA29vnhzhfvM+eQXbiMEAJTL57cOzp49W++//76mTJmiBg0aaNq0aRozZow+/fRTWa3Wco+x2Wx67LHHtGrVKnXq1Mlt29q1azVhwgQ99NBD6tWrlz766CPdfvvtWrx4sVq2bHk+LgkAcAHYujuzzEzW6Y5k5Wvcs9+oTnigAqwWBVotCvC3KNDqpwCrpfhP6df+J/exnnkfP4vPfwcKAPAAnwYtm82m+fPn68EHH1S/fv0kSdOnT1fv3r21dOlSDR06tMwxGzdu1GOPPaaCggKFh4eX2T5nzhwNGjRIN998syTp4Ycf1qZNm/TWW2/pP//5j1evBwBwYTh2vEBfr/+9UvseOJKrA0dyPfbefhaTAvwtCjgZvErCmyucnfx76bB2ap+zHxPgb5HJZPJYfwEA5fNp0Nq+fbtyc3PVs2dPV1t4eLjatm2rH374odygtXLlSvXu3Vt33nmnrr76ardtTqdTGzdu1MSJE93au3fvrqVLl3rnIgAAFwRbkUPrtqQrJTVNG3dkyFnJWwJvvrKNGtYNUaHNoQKbQ4U2hwptdhUWnXpdcPJ14WmvS+9f8nZ2hyG7w67cArvXrrWq4azkdeBprwMCyp+xszArBwC+DVrp6emSpIYNG7q1169f37XtdPfdd98Zz5eTk6O8vDw1aNCg0uerLMMwlJeXd07n8IT8/Hy3r/Asxte7GF/vYnyrzjAM7fgjS9/+eFBrfjmkvFLhpmXjcB3MzHNrO110RID+1L2xzOZzmyEyDEN2h3EqjLm+OlVY5JDN5lBBkUO2k+HMdrK93H1d+7i3F9mdrvcrCXzeYrGYFOhvkfVk8LL6m11BzPXHalGAv1nWk383y6kTOSe0//jvCgsJdN//5L4lbf5+ZmblqoifD97F+HpXTRtfwzAq9TPIp0GrZLBOfxYrICBA2dnZVT5fQUHBGc9XWFhYzV4WKyoq0rZt287pHJ60d+9eX3fhgsb4ehfj612M79llHrfr5z25+mlPnrJyTwWOiGCLOjYPVqfmwaob7q+taf76cFXmGc8zsGOoduzY7tW+WiVZTVKo9eSLkNP3MKky/5w7nYaKHIaK7MVfbfaSvztVZD/5umS73ZDN7nTb332fssfY7KdmAB0OQ7nVnpXLqtRe/n4m+VtMsvqZXH/39zPJ6md2/b34dck2c6l9TKft436Mv8UkyzmG55qKnw/exfh6V00a3zPVkijNp0ErMDBQUvGzWiV/l6TCwkIFBQVV+XwBAQGu85VW3fOV5u/vr1atWp3TOTwhPz9fe/fuVbNmzc75mlAW4+tdjK93Mb4VO5FfpDW/HNK3Px7Qr3+c+mVeoNWiHu1j1KdzQ7VpWsdtdqpNGym28SG9+cUOHc059Qu76IgAjfpTa3VvF3Ner6EmM4ziAGYrchbPvpWahSsscp42+1b81bVvkUO5+TZlZR+XxT9QdodK7VNyHqfbrFxJIMw7t9+jnpGfxVRmFs5qNbtm6gKsp822lW7zP20Wr5x9z/esHD8fvIvx9a6aNr47d+6s1H4+DVoltwxmZGSoSZMmrvaMjAy1bt26yueLjIxUcHCwMjIy3NozMjIUE3Nu/xiaTCYFBwef0zk8KSgoqEb150LD+HoX4+tdjO8pdodTG7dnKCU1Teu2pMvuKP6gbjZJnePrq39SnHq0b6BA65n/Oeyf3Fx9Eptp47b92rJ9j9olNFfXNo0v2BkPX8nLy9O2bdvUpk2bM37/Ohzut0wWnHy+raAkvBU6VFhkP/W8XHn7lPOcnM1WfFyBzSGj9LNy+Xbl5nvnWTmzSSeDl1+pZ+HcX596Ls6vVEXLkmfnyhZCKf2cXYDVr9zvUX4+eBfj6101ZXwr+0sSnwathIQEhYaGat26da6glZOTo61bt2rkyJFVPp/JZFLXrl21fv16/eUvf3G1r1u3TklJSR7rNwCg5jIMQzv3ZWn5hn1auXGfcnJP3eXQrGG4BiTFqW/XWEWFB1ZwFncWs0ntmkfJXHBIbZpHEbJ8xGIxK9hiVnCgv1fOXzIrV5UiJiXbK3tMSdh3GlJ+oUP5hd57Vs7fz+wKZ/5+ZhnOIkV8d0LBgf6ukBcYUDqclS18ElBeIRSelQMqxadBy2q1auTIkXruuecUFRWlxo0ba9q0aWrQoIGGDBkih8Oho0ePKiwszO3Wworceuutuv3229W2bVv16dNHH3/8sbZt26ann37ay1cDAPClw8fytWJjmpZvSFPaoROu9siwAPXrGqsBSXFq3ijChz1ETWcymWQ9eWtg2WfhPKP0rNypWTe7K5iVF85OD2+ljzk1U2d3bSuZlSt+ls6pE/lFrvdPP5blsWtxzcqVE8asp4czf0uZGTjX6zNUurT6W/ilBmo1ny9YPH78eNntdj366KMqKChQcnKy5s2bJ39/f+3bt08DBw7U5MmTNXz48Eqd77LLLtMzzzyj2bNna/r06WrVqpVeffVVFisGgAtQfqFdazYfUEpqmn7eecT1AdPqZ1aP9g3VPylOXeLrUW4cNcb5mJWz2Z0qKHQPZ9nHc/Xbrr2KadBIhsnPLZy5Al9h5QKd3VH8P9r5mJWz+pV+1s39dsnAgIqXIajomJJ9/CzMysF7fB60LBaLJkyYoAkTJpTZFhsbqx07dpzx2JSUlHLbhw0bpmHDhnmqiwCAGsThNLR552GlpKZp9eaDbmXK27eMVv/EOPXq2EghQd75IAvUZCaTyVWQo7S8PKuUn642bWLO+RkXu8NZJoidPht3xhm7s8zGlczilbDZnbLZnTquogp6VH1ms6lMOHPdHnna6zPNxgX4WyTDrgNHbAo9dEIR4YbbLZbnuvzDxc7hNLRlz1Ft2ZsnZ+BRdW0TVGtmOn0etAAAqIzf03O0PDVNKzbuU2Z2gau9Ud0QDUiKU7/EOMVE+f4haeBC52cxyy/I7LVfZhiGUelbJUsXOalsoCuwOeQ4uUK402kov9Cu/EIPFT1ZmlGmqXhWruJbJc8a6E4LgKX38bOYLthZudU/H9Drize7fuZ/vPqooiO26PZhHXRpx0Y+7t3ZEbQAADVW1vFCfbtpn5ZvSNPOfadKsocG+at3l8YakBSn1k3qXLAfMoCLkclkUqDVr8JqoOeqZFau3OIlFc7GnSqCUrooSn6hXSdyC+SUWYVFTtmKTp+Vs+l4nneuxWw2lRvG3F6XV+Ak4EzHuFextPpoVm71zwc0+a0fyrRnZhdo8ls/aNKo5BoftghaAIAaxVbk0Pqt6UpJTdOG7RlynvzNs8VsUlKbGA1IilNy2xj5+1nOciYAKJ+nZ+VOX57A6TROriF3pnB2akmBU1Ury95CWXqf0q8LbA7Xz0an01BegV15BXZJ3llYzupvOS2cnZpxKy+cnQpufqVm8cqrdFm83e+052gdTkOvL95cYZ/mfPKLurdvWKNvIyRoAQB8zjAMbdt7VCmpafrux/3KLTh1G88lcZEakBSn3p0bKyI0wIe9BIDKMZtNCgzwU2CAn7xV67TI7ix7G2W5z8nZS83YVfzcXHFRlOKvbrNyJ197a1bOYja5hTGnYbjdIl6eI1n52ro7Ux1a1fVOpzyAoAUA8JmDR3K1YkOaUjakKT3z1L/gdSOD1D8xVv0T4xQXE+bDHgJAzeTvZ5a/n1mhXnpWrmRWrlJFTc7w7FzFx9h1clJOjmrOyh3NqTiM+RpBCwBwXp3IL9J3P+5XSmqatu096moPCrDo0o6NNCApTu1b1KVSFwD4UOlZOW8wDEN2h1HmtsoCm13b9x7VG59tPes5qrLwvC8QtAAAXmd3OLVxR4ZSUtO0fku6iuxOScULnna6pJ4GJMWpR/uGXvsHHQBQs5hMJvn7meTvZ1XoadtaN43SklW7K7x9sG5kkNq2iPZuJ88R/6IBALzCMAzt2p+t5alpWrlpn7JP2FzbmjYI04CkOPXtGqvoiCAf9hIAUNNYzCbdPqxDuVUHS4y9pn2NLoQhEbQAAB6WmZ2vFRv2KWVDmv5IP+5qjwwNUN+usRqQFKfmjcIpyQ4AOKNLOzbSpFHJbutoScUzWWOvaV/jS7tLBC0AgAfkF9q1ZvNBLU9N0087D8s4+YCzv59ZPdo31ICkOHWOr1emhC8AAGdyacdG6t6+oTZu268t2/eoXUJzdW3TuMbPZJUgaAEAqsXhNPTLziNK2ZCm1T8fUIHtVCngdi2i1T8xTr06NfJaRSwAwIXPYjapXfMomQsOqU3zqFoTsiSCFgCgiv5Iz9HyDfu0YkOajpS6naNhdIj6J8Wpf2KsGkSH+LCHAAD4HkELAHBW2ScK9e2m/UrZkKadaVmu9pAgf/Xp3Fj9E+OU0KwOz10BAHASQQsAUK4iu0Prtx7S8tQ0pW47JMfJlSUtZpOS2sSof1KcktvEyOpv8XFPAQCoeQhaAAAXwzC0fe8xpWxI06of9ys3v8i1rVVcpAYkxqlPl8aKCA3wYS8BAKj5CFoAAKVn5mr5hn1anpqmg5m5rva6EYHql1j83FWTBuE+7CEAALULQQsALlK5+UX67qcDWr4hTVt2Z7raA60WXdqxkQYkxal9y7q1qsITAAA1BUELAC4idodTm3ZkKCU1Teu2pKvI7pQkmUxSp0vqaUBSnHq2b6jAAP55AADgXPAvKQBc4AzD0O792UrZkKZvN+5X1olC17a4mDANTIpT366xqhsZ5MNeAgBwYSFoAcAFKjM7Xys37lNKapp+Tz/uao8Itapvl1j1T4pTy8YRlGQHAMALCFoAcAGx2Z1a9dNBff/zIf3022GdrMgufz+zurdroAFJcerSur78LGbfdhQAgAscQQsAajmn09Avu49o6dq9WrP5oGz2A65tbZtHaUBSnHp1aqzQIH8f9hIAgIsLQQsAaqm0Q8e1fEOalm/YpyNZ+a72mDpBGpjcRP0S49SwbogPewgAwMWLoAUAtUj2iUKt+nG/UlLT9Ftalqs9JMhfPdvXV5NIm4b07qSQEAIWAAC+RNACgBquyO7QD1sPKSU1TanbDslx8sErs9mkpIQYDUiKU3LbGNmLCrVt2zaKWwAAUAMQtACgBjIMQzt+P6aU1DSt+nG/TuQXuba1io1Q/6Q49ekcq8iwAFe7vai8MwEAAF8gaAFADXLoaJ6Wb0hTSmqaDh7JdbVHRwSqX9fikuxNG4T7sIcAAKAyCFoA4GO5+UX6/ucDSklN05bdma72AKtFl3ZoqAFJcerQqp4sZm4JBACgtiBoAYAPOBxObfr1sJanpmntLwdlszslSSaT1KlVPfVPilPPDg0VFMCPaQAAaiP+BQeA82jPgWylpKZpxcZ9yjpe6GqPiwnVgKQm6tc1VnUjg3zYQwAA4AkELQDwsszsfK3cuF/LN6Rp78EcV3t4iFV9u8ZqQGKcWsZGUC0QAIALCEELALygwGbX2l/StTw1TT/+mqGTFdnlZzGre/sGGpAYp64J9eVnMfu2owAAwCsIWgDgIU6noS27M5WSmqbvf96v/EKHa1ubZlEakBSnyzo1Umiw1Ye9BAAA5wNBCwDO0b6M41q+YZ+Wb0jT4WP5rvaYqGANSIpTv8RYNaob6sMeAgCA842gBQDVkJNr06pN+7R8wz7t+OOYqz0k0E+XdW6s/olxats8iueuAAC4SBG0AKCSiuwOpW47pJTUNKVuOyS7o/jBK7PZpK6t62tAUpy6tWugAH+Lj3sKAAB8jaAFABUwDEO//nFMKalpWvXjfh3PK3JtaxkboQGJcerdpbHqhAX6sJcAAKCmIWgBQDkyjuZp+cY0LU9N0/7Dua72qPBA9U+MVf/EODVtGO7DHgIAgJqMoAUAJ+UVFOn7nw4oZUOaftmV6WoPsFrUs0NDDUiMU8dL6sli5rkrAABQMYIWgIuaw+HUj78dVkpqmtZuPiib3SlJMpmkjq3qqn9inHp2aKjgQH8f9xQAANQmBC0AF6U9B7KVkpqmlRv36djxQld7bP3Q4pLsXeNUr06QD3sIAABqM4IWgIvGsZwCrdy0TympadpzIMfVHhZsVd+ujTUgKU6tYiMpyQ4AAM4ZQQvABa3AZte6X9K1fEOaNu3IkLO4Irv8LGZ1axejAYlx6poQI38/s287CgAALigELQAXHKfT0JY9mVqemqbvfjqg/EK7a1tC0zoakBSnyzo3Vliw1Ye9BAAAFzKCFoALxv7DJ7Q8NU3LN6Qp41i+q71+VLAGJMapf2KsGtUL9WEPAQDAxYKgBaBWO55n06of9yslNU07fj/mag8O9NNlnYqfu2rTLEpmSrIDAIDziKAFoNYpsjuVuu2Qlm9I0w9b02V3FD94ZTab1LV1fQ1IjFO39g0U4G/xcU8BAMDFiqAFoFYwDEO/pWUpJTVN327ar+N5Nte2Fo0i1D8pTn27NFad8EAf9hIAAKAYQQtAjZZxLE8rNhSXZN9/+ISrPSo8QH27Fj931bxRhA97CAAAUBZBC0CNk1dQpNU/H9TyDWn6eecRV7vV36JLOzRU/6Q4dbqkniw8dwUAAGooghaAGsHhNPTTr4e1fEOaVm8+KFuRw7WtY6u66p8Yp0s7NlRwoL8PewkAAFA5BC0APrX3YI5SUtO0cmOajuYUutob1wvVgKQ49esaq/pRwT7sIQAAQNURtACcd1nHC7X0h4Nanpqm3QeyXe1hwVb17dJY/ZPidElcpEwmbg0EAAC1E0ELwHlRWOTQ6s3p+uK7I9qVvl9OZ3FJdj+LScltG2hAUpwSE2Lk72f2cU8BAADOHUELgNc4nYa27slUSmqavv/5gPIK7K5trZvW0YCkOF3WqbHCQ6w+7CUAAIDnEbQAeNyBwyeUsiFNyzfsU8bRPFd7vchAtWnsr2sHdVCrJvV82EMAAADvImgB8IjjeTZ99+N+paSmafvvx1ztQQF+uqxTI/VPilPzmCDt2LFdjeqG+LCnAAAA3kfQAlBtRXanNm4/pJQNaVq/5ZDsDqckyWySurSurwFJcerWroECrcU/avLy8io6HQAAwAWDoAWgSgzD0G9pWVqemqZvf9yvnFyba1vzRuEakBSnPl1iFRUe6MNeAgAA+JbPg5bT6dSsWbO0YMECHT9+XMnJyXrssccUFxdX7v7Hjh3TU089pW+//VYmk0lXXXWVHnroIQUFBbn2GTJkiH7//Xe346699lpNmTLFq9cCXMgOH8vXio1pSklN076ME672OmEB6ts1VgOS4tS8UYQPewgAAFBz+DxozZ49W++//76mTJmiBg0aaNq0aRozZow+/fRTWa1lK5GNHz9e+fn5evPNN5WTk6NHHnlEeXl5evbZZyUV35qUlpam1157Te3atXMdFxjIb9eBqsorKNKazQeVkpqmzbuOyCiuyC6rv0U92zfUgKQ4dbqkriwWSrIDAACU5tOgZbPZNH/+fD344IPq16+fJGn69Onq3bu3li5dqqFDh7rtv2nTJq1fv15ffPGFWrZsKUn6z3/+ozFjxuj+++9XTEyMdu7cKafTqS5duigigt+uA1XlcBr66bfDWr4hTWs2H1ShzeHa1qFlXQ1IitWlHRspONDfh70EAACo2XwatLZv367c3Fz17NnT1RYeHq62bdvqhx9+KBO0UlNTVa9ePVfIkqRu3brJZDJpw4YNuvLKK7Vjxw7VrVuXkAVU0e8Hc5SSmqYVG/fpaE6Bq71xvRD1T4pT/65xqh8V7MMeAgAA1B4+DVrp6emSpIYNG7q1169f37WttEOHDpXZ12q1KjIyUgcPHpQk7dixQ8HBwRo/frw2btyoOnXqaMSIEbr55ptlNlf/9ibDMGpExbT8/Hy3r/Csi218s04U6vuf0/Xtjwe19+BxV3tokL8u7RCjPp0bqVVsuEwmk6Rzrxp4sY3v+cb4ehfj612Mr3cxvt7F+HpXTRtfwzBcn40q4tOgVTJYpz+LFRAQoOzs7HL3L++5rYCAABUWFkqSfvvtN+Xk5Ojyyy/XnXfeqQ0bNmjatGnKzs7WPffcU+2+FhUVadu2bdU+3tP27t3r6y5c0C7k8S1yGNqxL18/7cnTzoMFrueuzGYpvlGgOjUP0SWNAuVnkewnDmj79gMe78OFPL41AePrXYyvdzG+3sX4ehfj6101aXzLyySn82nQKilQYbPZ3IpVFBYWulURLL2/zWYr015YWKjg4OJbmubMmaPCwkKFhYVJklq3bq0TJ07olVde0d13313tWS1/f3+1atWqWsd6Un5+vvbu3atmzZqVO0Y4Nxfq+BqGoR1/ZOnbHw9qzS+HlFdgd21rFRuhPp0b6tIOMQoLPvsPjXNxoY5vTcH4ehfj612Mr3cxvt7F+HpXTRvfnTt3Vmo/nwatktsAMzIy1KRJE1d7RkaGWrduXWb/Bg0aaNmyZW5tNptNWVlZql+/vqTidHl6woyPj1deXp6ys7NVp06davXVZDK5wlxNEBQUVKP6c6G5UMb3wJETWp66T8s3pOnQ0VO3/dWrE6T+iXHqnxir2Pph571fF8r41lSMr3cxvt7F+HoX4+tdjK931ZTxrcxtg5KPg1ZCQoJCQ0O1bt06V9DKycnR1q1bNXLkyDL7Jycn67nnntPvv/+upk2bSpLWr18vSUpMTJRhGBo8eLCGDRumu+66y3Xc5s2bVa9evWqHLKA2OZFn06qfDmh5apq27T3qag8KsKhXx8YakBSndi2iZTZX7ocEAAAAqs6nQctqtWrkyJF67rnnFBUVpcaNG2vatGlq0KCBhgwZIofDoaNHjyosLEyBgYHq1KmTunbtqvvuu0+PP/648vLy9Nhjj2nYsGGKiYmRJA0ePFjz5s1TixYt1L59e61Zs0Zz587VI4884stLBbzK7nBq4/YMpaSmad2WdNkdTkmS2SR1bl1fAxLj1L19AwVafb50HgAAwEXB55+6xo8fL7vdrkcffVQFBQVKTk7WvHnz5O/vr3379mngwIGaPHmyhg8fLpPJpFmzZumJJ57QqFGjFBAQoCuuuEKTJk1yne+BBx5QaGioXnjhBaWnpys2NlaPPPKIrr/+eh9eJeB5hmFo175spWxI08qN+5STe+r5xWYNwzUgKU59u8YqKpzFugEAAM43nwcti8WiCRMmaMKECWW2xcbGaseOHW5t0dHRmjFjxhnP5+fnpzvvvFN33nmnx/sK1ARHsvK1YuM+paSmKe3QqZLskWEB6tc1VgOS4tS8EevIAQAA+JLPgxaAs8svtGvN5gNKSU3TzzuPuEqyW/3M6tG+ofonxalLfD1ZLNVfKw4AAACeQ9ACaiiH09DmnYeVkpqm1ZsPqtDmcG1r3zJa/RPj1KtjI4UE+fuwlwAAACgPQQuoYX5Pz9Hy1DSt2LhPmdkFrvZGdUM0IClO/RLjFBPl+9KmAAAAODOCFlADZB0v1Lebite72rkv29UeGuSv3l2KS7K3blKn0us2AAAAwLcIWoCP2IocWr81XSmpadqwPUNOZ/GDVxazSUltYjQgKU7JbWPk72fxcU8BAABQVQQt4DwyDEPb9h5VSmqavvtxv3IL7K5t8U0iNSAxTpd1bqyI0AAf9hIAAADniqAFnAfpmblanpqm5Rv26WBmrqu9bmSQ+ifGqn9inOJiwnzYQwAAAHgSQQvwkhP5Rfr+p/1KSU3T1j1HXe1BARZd2rGRBiTFqX2LujKbee4KAADgQkPQAjzI7nBq444MpaSmaf2WdBXZnZIks0nqdEk9DUiKU4/2DRUYwP96AAAAFzI+7QHnyDAM7dqfreWpaVq5aZ+yT9hc25o2CNOApDj17Rqr6IggH/YSAAAA5xNBC6imzOx8rdiwTykb0vRH+nFXe2RogPp2jdWApDg1bxROSXYAAICLEEELqIL8QrvWbD6o5alp+mnnYRnFFdnl72dWj/YNNSApTl3i68liMfu2owAAAPApghZwFg6noV92HlHKhjSt/vmACmwO17Z2LaLVPzFOvTo1UmiQvw97CQAAgJqEoAWcQdqh40pJTdOKDWk6kl3gam9YN0QDkuLUr2usGkSH+LCHAAAAqKkIWkApObk2rdtxQm+vXKfd+3Nc7SFB/urTubEGJMWpddM6PHcFAACAChG0cNErsju0fushLU9NU+q2Q3I4ix+8sphNSmoTo/5JcerWNkb+fhYf9xQAAAC1BUELFyXDMLR97zGlbEjTqh/3Kze/yLWtUZS/hvRsoUHdmisiNMCHvQQAAEBtRdDCRSU9M1fLN+zT8tQ0HczMdbXXjQhUv8Q49WxXV8cz09SmTRMFBxOyAAAAUD0ELVzwcvOL9N1PB7R8Q5q27M50tQdaLbq0YyMNSIpT+5Z1ZTGblJeXp22ZFZwMAAAAqASCFi5IDodTm349rJTUNK395aCK7E5JkskkdbqkngYkxaln+4YKDOB/AQAAAHgenzJxwTAMQ7v3Z2v5hn1auXGfsk4UurY1aRCmAYlx6pcYq+iIIB/2EgAAABcDghZqvczsfK3cuE8pqWn6Pf24qz0i1Kq+XWM1IDFOLRpHUJIdAAAA5w1BC7VSQaFda385qJTUNP3022GdrMgufz+zurdroAFJcerSur78LGbfdhQAAAAXJYIWag2n09Avu48oJTVNq38+oPxCh2tb2+ZRGpAUp16dGis0yN+HvQQAAAAIWqgF0g4d1/INaVq+YZ+OZOW72htEB5987ipODeuG+LCHAAAAgDuCFmqk7BOFWvXjfqWkpum3tCxXe0iQv3p3bqz+ibFq0yyK564AAABQIxG0UGMU2R36YeshpaSmKXXbITlOPnhlMZuUmBCjAUlxSm4bI6u/xcc9BQAAACpG0IJPGYahHX8cU0pqmlZt2q8T+UWuba1iI9Q/KU59OscqMizAh70EAAAAqoagBZ84dDSv+Lmr1DQdOJLrao+OCFS/rrHqnxSnpg3CfdhDAAAAoPoIWjhvcvOL9P3PB5SSmqYtuzNd7YFWiy7t2EgDEuPUvlVdWcw8dwUAAIDajaAFr3I4nNr062EtT03T2l8OymZ3SpJMJqlTq3rqnxSnnh0aKiiAb0UAAABcOPh0C6/YcyBbKalpWrFxn7KOF7ra42LCNCApTv26xqpuZJAPewgAAAB4D0ELHpOZna+VG/dr+YY07T2Y42oPD7Gqb9dYDUiMU8vYCEqyAwAA4IJH0MI5KbDZtfaXdC1PTdOPv2boZEV2+VnM6t6+gQYkxqlrQn35Wcy+7SgAAABwHhG0UGVOp6EtuzOVkpqm73/er/xCh2tbm2ZRGpAUp8s6NVJosNWHvQQAAAB8h6CFStuXcVzLN+zT8g1pOnws39UeExVc/NxVYqwa1Q31YQ8BAACAmoGghQrl5Nq0atM+Ld+wTzv+OOZqDwn002WdG6t/YpzaNo/iuSsAAACgFIIWyiiyO5S67ZBSUtOUuu2Q7I7iB6/MZpMSE+prQFKcurVtIKu/xcc9BQAAAGomghYkSYZh6Nc/jiklNU2rftyv43lFrm0tYyM0IDFOfbrEKjIswIe9BAAAAGoHgtZFLuNonpZvTNPy1DTtP5zrao8KD1T/xFj1T4xT04bhPuwhAAAAUPsQtC5CeQVF+v6nA0rZkKZfdmW62gOsFvXs0FADEuPU8ZJ6sph57goAAACoDoLWRcLhcOrH3w4rJTVNazcflM3ulCSZTFLHVnXVPzFOPTs0VHCgv497CgAAANR+BK0L3J4D2UpJTdPKjft07Hihqz22fmhxSfaucapXJ8iHPQQAAAAuPAStWsThNLRlz1Ft2ZsnZ+BRdW0TVO7tfcdyCrRy0z6lpKZpz4EcV3t4iFV9ujTWgKQ4tYqNpCQ7AAAA4CUErVpi9c8H9PrizcrMLpAkfbz6qKIjtuj2YR10acdGKrDZte6XdC3fkKZNOzLkLK7ILj+LWd3axWhAYpy6JsTI38/sw6sAAAAALg4ErVpg9c8HNPmtH8q0Z2YXaPJbP6hjq7r6LS1L+YV217Y2zaLUPylOvTs1Umiw9Xx2FwAAALjoEbRqOIfT0OuLN1e4z887j0iS6kcFa0BinPonxqpRvdDz0T0AAAAA5SBo1XBbd2e6bhesyNhh7TW0VwuZKckOAAAA+BwP7NRwR3POHrIkKSIkgJAFAAAA1BAErRouKjzQo/sBAAAA8D6CVg3XtkW0oiMqDlF1I4PUtkX0eeoRAAAAgLMhaNVwFrNJtw/rUOE+Y69pX+56WgAAAAB8g6BVC1zasZEmjUouM7NVNzJIk0Yl69KOjXzUMwAAAADloepgLXFpx0bq3r6hNm7bry3b96hdQnN1bdOYmSwAAACgBiJo1SIWs0ntmkfJXHBIbZpHEbIAAACAGopbBwEAAADAwwhaAAAAAOBhBC0AAAAA8DCCFgAAAAB4mM+DltPp1IwZM9S7d2917txZY8eOVVpa2hn3P3bsmB544AElJyerW7dueuKJJ5Sfn++2z5dffqkrr7xSHTt21LBhw7RmzRpvXwYAAAAAuPg8aM2ePVvvv/++nnzySX3wwQdyOp0aM2aMbDZbufuPHz9ev//+u95880299NJLWrlypR5//HHX9rVr12rChAm64YYbtGjRIvXs2VO33367du3adZ6uCAAAAMDFzqdBy2azaf78+Ro/frz69eunhIQETZ8+Xenp6Vq6dGmZ/Tdt2qT169fr2WefVbt27dSzZ0/95z//0SeffKJDhw5JkubMmaNBgwbp5ptvVsuWLfXwww+rXbt2euutt8735QEAAAC4SPk0aG3fvl25ubnq2bOnqy08PFxt27bVDz/8UGb/1NRU1atXTy1btnS1devWTSaTSRs2bJDT6dTGjRvdzidJ3bt3L/d8AAAAAOANPl2wOD09XZLUsGFDt/b69eu7tpV26NChMvtarVZFRkbq4MGDysnJUV5enho0aFCp81WFYRjKy8s7p3N4QsnzaKc/lwbPYHy9i/H1LsbXuxhf72J8vYvx9S7G17tq2vgahiGTyXTW/XwatEoGy2q1urUHBAQoOzu73P1P37dk/8LCQhUUFJzxfIWFhefU16KiIm3btu2czuFJe/fu9XUXLmiMr3cxvt7F+HoX4+tdjK93Mb7exfh6V00a3/Iyyel8GrQCAwMlFT+rVfJ3SSosLFRQUFC5+5dXJKOwsFDBwcEKCAhwne/07eWdryr8/f3VqlWrczqHJ+Tn52vv3r1q1qzZOV8TymJ8vYvx9S7G17sYX+9ifL2L8fUuxte7atr47ty5s1L7+TRoldwGmJGRoSZNmrjaMzIy1Lp16zL7N2jQQMuWLXNrs9lsysrKUv369RUZGang4GBlZGS47ZORkaGYmJhz6qvJZFJwcPA5ncOTgoKCalR/LjSMr3cxvt7F+HoX4+tdjK93Mb7exfh6V00Z38rcNij5uBhGQkKCQkNDtW7dOldbTk6Otm7dquTk5DL7JycnKz09Xb///rurbf369ZKkxMREmUwmde3a1dVWYt26dUpKSvLSVQAAAACAO5NhGIYvOzB9+nR98MEHeuaZZ9S4cWNNmzZN+/bt02effSaz2ayjR48qLCxMgYGBMgxDN954owoLC/X4448rLy9P//d//6fu3btr8uTJkqTvvvtOt99+uyZMmKA+ffro448/1nvvvaeFCxe6VSusio0bN8owjErdi+lthmGoqKhI/v7+lU7TqDzG17sYX+9ifL2L8fUuxte7GF/vYny9q6aNr81mc03wVMTnQcvhcOiFF17QwoULVVBQoOTkZD322GOKjY3Vvn37NHDgQE2ePFnDhw+XJGVmZuqJJ57QqlWrFBAQoCuuuEKTJk1yPZ8lSYsXL9bs2bOVnp6uVq1aacKECWVKvlfFpk2bZBiG/P39z/l6AQAAANReRUVFMplM6tKlS4X7+TxoAQAAAMCFxqfPaAEAAADAhYigBQAAAAAeRtACAAAAAA8jaAEAAACAhxG0AAAAAMDDCFoAAAAA4GEELQAAAADwMIIWAAAAAHgYQQsAAAAAPIygBQAAAAAeRtACAAAAAA8jaAEAAACAhxG0vCgrK0uPPfaY+vTpo65du+pvf/ubUlNTXdvXrFmj4cOHq1OnTrriiiv0+eefux1/8OBB3X///erVq5eSk5N122236bfffnPb58svv9SVV16pjh07atiwYVqzZk2FfXI6nZoxY4Z69+6tzv+/vfuPibr+4wD+BH+CwqQspObKkfyQH3KECP4iSKwJOFE3U1gKU2dLciNDmFISZihiZQ2NIGfIj81fTJLNyaZppXicDXXmj/MUNQNUxFM8UOD1/cO4PDl/IPerr8/Hxpafu/fn3u8nL993r+68T0AA5s+fj0uXLplu0RZki/nW19fD09Ozy8+OHTtMt3ALsUS+nVQqFby9vZ84J9bvv8yRL+v3X0/Kt6OjA/n5+XjnnXcQEBCAqKgobN269bFzam1tRUZGBkJDQ6FQKPDxxx+jsbHRtAu3EFvMV6VSGa3fqqoq0y7eAsydb3t7O9avX4/w8HD4+/tj2rRp2L9//2PnxP33X+bIl/vvv7rz/Hb37l3ExMQgNTX1sXOyWv0KmU1CQoJER0eLUqkUjUYjGRkZ4u/vL+fOnRO1Wi1+fn6ybt06UavVkp+fLyNGjJDff/9dRERaW1slOjpa4uPj5dixY3LmzBlJSkqS0NBQuX79uoiIHDp0SHx8fGTz5s2iVqslKytLfH19Ra1WP3JO3377rYwePVr27dsnf/75pyQmJsqkSZOktbXVIpmYki3mu3//fvHz85P6+nppaGjQ/+h0OotkYkrmzrdTdXW1BAcHi4eHxxPnxPo1b76s36fPNzc3V4KCgmT37t1SW1srpaWlMmLECNm5c+cj55SamioTJ04UpVIpNTU1MnXqVImLi7NEHCZni/kWFRXJxIkTDWq3oaGB+4ORfHNyciQkJET27dsnFy9elNzcXPH29pbjx48/ck7cf82bL/ff7j+/iYhkZmaKh4eHLF269LFzslb9stEykwsXLoiHh4dUV1frj3V0dMjEiRPl66+/lvT0dJkxY4bBmOTkZElMTBQRkd9++008PDykrq5Of3tLS4uMHDlStm7dKiIiiYmJsnjxYoNzzJw5U9LT043OqbW1VRQKhRQVFemP3bx5U/z9/aW8vLxH67U0W8xXRCQvL09iYmJ6ujyrs0S+9+7dk1WrVomPj4/ExsY+sRFg/Zo3XxHWb3fyHT9+vOTm5hqcIy0tTWbPnm10TnV1deLl5SX79+/XH9NoNOLh4SFHjx7t2YItzBbzFRH57LPPZOHChT1en7VZIt+srKwu+2ZQUJD88MMPRufE/de8+Ypw/+1Ovp0OHDggY8aMkaioqMc2WtasX3500ExcXFyQl5cHPz8//TE7OzvY2dlBq9WiuroaoaGhBmNCQkKgUqkgIhg+fDjy8vLg6uqqv93e/v6vS6vVoqOjA0ePHu1yjtGjR0OpVBqd06lTp9Dc3GwwxtnZGSNGjHjkGFtli/kCwOnTp+Hu7m6KJVqVufMFgDt37kCpVCI/Px/x8fFPnBPr17z5Aqzf7uwPq1evRmxsrME57O3t9fk/TKVS6R+n07Bhw+Dq6sr6Rc/zBVi/3dkfli5diujoaABAS0sLCgsLodPpMHr0aKNz4v5r3nwB1m938gWAxsZGpKWlITMzEy4uLo+dkzXrl42WmTg7OyMsLAx9+/bVH9uzZw9qa2sxfvx41NXVYciQIQZjXn75Zeh0Oty4cQMvvfQSwsLCDG4vLCxES0sLxo4dC61Wizt37hg9R11dndE5dR53c3N76jG2yhbzBYAzZ86gsbERcXFxGDNmDGbNmoUDBw6YYMWWZe58Ox9jx44dBi88H4f1a958Adbv0+Zrb2+P0NBQg3NcuXIFu3fvxrhx44zOqb6+Hi4uLujXr1+Xx2X99jxfADh79iw0Gg2mTZuGsWPHIiEhAceOHTPRqi3HEvtDp127diEgIAArV67EwoULDV4cP4j7r3nzBbj/djffZcuWITw8HBEREU+ckzXrl42WhRw9ehRpaWmYNGkS3nrrLbS0tBgUIQD9n+/evdtl/N69e5GTk4O5c+fC09MTLS0tBmM69evXD62trUbnoNPpuj3mv8IW8m1ra4NGo8HNmzeRlJSEvLw8BAQEYMGCBU/8Eg1bZ+p8nwXr17z5sn6fPd9r165h/vz5ePHFF/HBBx8YnYNOp+vymADrFzBNvn///Tdu3bqFO3fuYPny5cjNzcXgwYMRHx8PtVptglVajznzHTVqFMrKypCSkoINGzaguLjY6By4/5o3X+6/3cu3tLQU586dQ1pa2lPNwZr129usZycAQGVlJZYsWYLAwECsXbsWwP1f7sMF1flnBwcHg+MlJSXIzMzElClTkJKSoh//4JhOra2tXcZ36t+/v35M538/acx/ga3k27t3b1RVVaFXr176fH19fXH27FkUFBR0eav8v8Ic+T4L1q9582X9Plu+Go0GCxYsQHt7O3766Sc4OzsbnUf//v2Nvohg/ZomXzc3NyiVSjg4OKBPnz4AAD8/P5w8eRKFhYXIyMjo8Vqtwdz5urm5wc3NDV5eXqitrUVBQQFmz57d5X7cf82bL/ffp89Xo9EgOzsbBQUFcHR0fKp5WLN++Y6WmW3ZsgVJSUkIDw/Hxo0b9S/g3dzc0NDQYHDfhoYGODo6wsnJSX8sOzsbK1aswPvvv48vv/xS/znVQYMGwdHR0eg5Hvxc64M63zLtzhhbZ0v5AsCAAQMM/hIDwPDhw1FfX9+jdVqLufJ9Fqxf8+YLsH67m69KpcJ7770HBwcHlJaWYujQoY+cy5AhQ9DU1NTlBQbr1zT5Avc/stTZZAH3/12Hu7s76/ehfNva2lBZWYkrV64YnMPT0/ORWXH/NW++APffp823oqICzc3NSEhIgEKhgEKhQHV1NcrLy6FQKIzOxZr1y0bLjIqLi5GZmYm4uDisW7fO4C3LoKAgHDlyxOD+hw8fRmBgoL6YsrOzkZ+fj6VLlyI1NRV2dnb6+9rZ2SEwMLDLOaqqqhAUFGR0Pl5eXhg4cKDBNUW0Wi1OnjyJUaNG9Xi9lmZr+Z49exaBgYFdrtly4sQJvPHGGz1aqzWYM99nwfo1b76s3+7le+zYMcybNw/Dhw9HUVHRE5+s33zzTXR0dOi/FAMAzp8/j/r6etavCfI9cOAAFAqFwXVx2tracOrUKdbvQ/n26tUL6enpKCkpMThHTU3NI7Pi/mvefLn/Pn2+8fHx2LNnD8rKyvQ/vr6+iIiIQFlZmdH5WLV+zfqdhs8xjUYjPj4+8uGHH3a5podWq5UzZ86Ij4+PZGdni1qtloKCAoPrCBw+fFg8PDwkMzOzy/jbt2+LiMjBgwfF29tbfvzxR1Gr1bJ69Wrx9/c3uM7T9evXRavV6v+8bt06CQ4OlsrKSoPrCNy9e9eyAfWQLebb3t4u06dPl8mTJ4tSqRS1Wi2rVq0SX19fOX36tOVD6gFL5Pug7du3G/36cdav5fJl/T59vvfu3ZPIyEh5++235eLFiwa3P3idl4d/H8nJyRIRESGHDx/WX0crPj7e4vn0lC3me+vWLQkPD5dZs2bJ8ePH5dSpU5KcnCyjRo2Sq1evWiWnZ2WJ/SEvL0/8/f1l165dcv78efn+++/F29tbKisr9fPg/mu5fLn/Pvvzm4hIfHx8l693t5X6ZaNlJhs2bBAPDw+jP53F8Msvv0h0dLT4+vrKu+++K7t379aPX758+SPHr1+/Xn+/nTt3SmRkpPj5+UlsbKy+UDuFh4cbFF9bW5usWbNGQkJCJCAgQObPny+XLl0ycxqmZ6v5Xr16VVJTU2Xs2LHi5+cnM2fOFKVSaeY0TM9S+XZ6VCPA+rVsvqzf+56Ur0qleuTt4eHh+vM8/Ptobm6WZcuWSVBQkAQFBUlycrI0NjZaLhgTsdV8a2trJSkpSYKDg2XkyJGSmJj4n3uRKmKZ/aG9vV02bdokkZGR4uvrK1OmTJG9e/cazIP7r2Xz5f57X3ef30SMN1q2Ur92IiLmfc+MiIiIiIjo+cJ/o0VERERERGRibLSIiIiIiIhMjI0WERERERGRibHRIiIiIiIiMjE2WkRERERERCbGRouIiIiIiMjE2GgRERERERGZGBstIiJ6LqSlpcHT0xO//vqr0dsPHjwIT09PrF271sIzIyKi/0e8YDERET0XtFotoqKi0KdPH/z8889wdHTU33b79m3ExMTAyckJ27ZtQ9++fa04UyIi+n/Ad7SIiOi54OzsjIyMDPz111/46quvDG7LycnB1atXsWbNGjZZRERkEmy0iIjouREREYGYmBhs2bIFNTU1AACVSoWSkhJ89NFH8PLywpUrV5CcnIzg4GCMHDkSc+bMwcmTJw3Oc/nyZaSkpGDcuHHw8fFBaGgoUlJScOPGDYPHWrVqFebMmQN/f38sW7bMomslIiLr4kcHiYjoudLU1ISoqCi4ubmhuLgY06dPx4ABA1BUVISbN29i6tSpcHBwwKJFi+Dg4IDNmzfjxIkT2LZtG9zd3aHT6RAVFQUXFxcsXLgQTk5O+OOPP/Ddd99h+vTp+PzzzwHcb7Tq6+uRkJCAkJAQDBgwAAqFwsqrJyIiS+lt7QkQERFZ0qBBg7BixQosWrQIiYmJuHz5MsrKytCrVy9s3rwZTU1NKCkpwauvvgoAmDBhAiZPnoxvvvkG69evx4ULFzBkyBCsXr0aQ4cOBQCEhISgpqYGR44cMXisV155BUuWLLH4GomIyPrYaBER0XMnMjISkydPRkVFBT799FO89tprAIBDhw7B29sbrq6uaGtrAwDY29tjwoQJ2LVrFwDA29sbxcXF6OjowIULF1BbWwu1Wg2NRqMf08nb29uyCyMiIpvBRouIiJ5L48ePR0VFBcLCwvTHmpqaUFtbCx8fH6NjdDodHBwcsGnTJmzcuBFNTU0YPHgwfH194eDggFu3bhnc/8FvNiQioucLGy0iIqJ/ODk5ITg4GCkpKUZv79u3L8rLy5GVlYVPPvkE06ZNwwsvvAAAWLx4MY4fP27J6RIRkQ1jo0VERPSP4OBglJeXY9iwYRg4cKD++MqVK3Hv3j1kZGRApVLB2dkZ8+bN09/e3NwMlUqF3r35tEpERPfx692JiIj+MXfuXHR0dGDu3LmoqKjAoUOHkJ6ejsLCQgwbNgwA4O/vD61Wi6ysLFRVVaG8vBxxcXG4du0adDqdlVdARES2gv/rjYiI6B+urq4oLS1FTk4OVqxYgdbWVrz++uv44osvMGPGDABAbGwsLl++jO3bt6O4uBiurq4ICwvD7NmzkZ6ejnPnzsHd3d3KKyEiImvjdbSIiIiIiIhMjB8dJCIiIiIiMjE2WkRERERERCbGRouIiIiIiMjE2GgRERERERGZGBstIiIiIiIiE2OjRUREREREZGJstIiIiIiIiEyMjRYREREREZGJsdEiIiIiIiIyMTZaREREREREJsZGi4iIiIiIyMTYaBEREREREZnY/wD3/Nv63dED7AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Plot sentiment scores over time\n", + "plt.figure(figsize=(10, 6))\n", + "\n", + "# Plot Polarity\n", + "plt.plot(yearly_sentiment['year'], yearly_sentiment['polarity'], marker='o', linestyle='-', color='b', label='Polarity')\n", + "\n", + "# Plot Subjectivity\n", + "plt.plot(yearly_sentiment['year'], yearly_sentiment['subjectivity'], marker='o', linestyle='-', color='r', label='Subjectivity')\n", + "\n", + "# Add titles and labels\n", + "plt.title('Average Sentiment Scores by Year')\n", + "plt.xlabel('Year')\n", + "plt.ylabel('Average Score')\n", + "plt.legend()\n", + "plt.grid(True)\n", + "\n", + "# Show the plot\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "02793131-4dd8-4278-8f71-cc56b2ad14ac", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From e68361c4cc19fa1b917be718227ecb99db8e1abe Mon Sep 17 00:00:00 2001 From: Aditya Gahlot Date: Sat, 10 Aug 2024 20:42:08 +1000 Subject: [PATCH 3/5] Remove Sentiment_Analysis.ipynb from root directory --- Sentiment_Analysis.ipynb | 1000 -------------------------------------- 1 file changed, 1000 deletions(-) delete mode 100644 Sentiment_Analysis.ipynb diff --git a/Sentiment_Analysis.ipynb b/Sentiment_Analysis.ipynb deleted file mode 100644 index e919145..0000000 --- a/Sentiment_Analysis.ipynb +++ /dev/null @@ -1,1000 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "a2a1d701-1644-4a79-a16a-d5196eacb4e1", - "metadata": {}, - "source": [ - "# EV News Articles Sentiment Analysis\n", - "Performing news article sentiment analysis of EV vehicles in Australia involves several steps, from data collection to sentiment analysis and visualization. Although the sentiments of people vary across various regions in Australia, I have presented a broad analysis of the Electric Vehicle industry through four online articles. The articles for this project were taken from the following links:\n", - "\n", - "1. https://thedriven.io/2024/02/23/most-australians-think-there-are-too-few-public-charging-stations-to-support-evs/\n", - "2. https://www.ey.com/en_au/sustainability/why-consumers-are-charging-toward-electric-vehicles\n", - "3. https://www.sydney.edu.au/news-opinion/news/2024/04/10/evs-face-future-challenges-despite-increasing-uptake-.html\n", - "4. https://www.carexpert.com.au/car-news/evs-in-australia-report-outlines-sales-and-improving-consumer-sentiment" - ] - }, - { - "cell_type": "markdown", - "id": "ac0279aa-b72c-4ccc-8808-9664ad081343", - "metadata": {}, - "source": [ - "# Procedure\n", - "Performing news article sentiment analysis of EV vehicles in Australia involves several steps, from data collection to sentiment analysis and visualization. These steps are summarized further.\n", - "## Step 1: Data Collection\n", - "After gathering the news articles for EVs, I used the technique of **web scraping** to extract meaningful information from the articles like the title, the publication date of the article and its broad content. For this purpose, I used web scraping tools like BeautifulSoup which is imported in the first cell along with other important libraries. After that, I have initialized all the URLs as an array." - ] - }, - { - "cell_type": "code", - "execution_count": 80, - "id": "aea29846-81dc-468e-ac46-c98193afc97a", - "metadata": {}, - "outputs": [], - "source": [ - "import requests\n", - "from bs4 import BeautifulSoup\n", - "import pandas as pd\n", - "import time\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 81, - "id": "57681cd9-a557-4283-a734-cf346329ee34", - "metadata": {}, - "outputs": [], - "source": [ - "# List of article URLs\n", - "urls = [\n", - " 'https://thedriven.io/2024/02/23/most-australians-think-there-are-too-few-public-charging-stations-to-support-evs/',\n", - " 'https://www.ey.com/en_au/sustainability/why-consumers-are-charging-toward-electric-vehicles',\n", - " 'https://www.sydney.edu.au/news-opinion/news/2024/04/10/evs-face-future-challenges-despite-increasing-uptake-.html',\n", - " 'https://www.carexpert.com.au/car-news/evs-in-australia-report-outlines-sales-and-improving-consumer-sentiment',\n", - " \n", - "]\n" - ] - }, - { - "cell_type": "code", - "execution_count": 82, - "id": "ac8f969b-2142-4494-889b-4e8bfd13caf8", - "metadata": {}, - "outputs": [], - "source": [ - "# Initialize a list to store article data\n", - "articles_data = []\n" - ] - }, - { - "cell_type": "markdown", - "id": "fff14daf-1cb0-4e21-a0f1-175818fd1ec4", - "metadata": {}, - "source": [ - "## Step 2: Scraping an Article with Improved Selectors\n", - "After initializing an empty list to store article data named **articles_data**, I have defined a function **scrape_article** to fetch and parse a single article. It returns the details of an article, including its title, author, publication date, and content. Within the function, **headers** represents a dictionary with the User-Agent header. This helps to mimic a request from a web browser, which can be useful to avoid blocks from some websites that restrict automated scraping. Then an HTTP GET request was sent to the specified URL with the custom headers.\n", - "\n", - "The **BeautifulSoup (response.content, 'html.parser')** function parses the HTML content of the web page, creating a BeautifulSoup object for further extraction.I manually checked the structure of the HTML for each website to determine the correct selectors. This step required viewing the source code of each of the webpages." - ] - }, - { - "cell_type": "code", - "execution_count": 83, - "id": "6320942d-9d3e-4299-aa52-af8866ccafe2", - "metadata": {}, - "outputs": [], - "source": [ - "def scrape_article(url):\n", - " headers = {\n", - " 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'\n", - " }\n", - " \n", - " try:\n", - " # Fetch the web page\n", - " response = requests.get(url, headers=headers)\n", - " response.raise_for_status() # Raise HTTPError for bad responses\n", - "\n", - " # Parse the HTML content\n", - " soup = BeautifulSoup(response.content, 'html.parser')\n", - "\n", - " # Initialize variables\n", - " title = 'No title found'\n", - " author = 'No author found'\n", - " publication_date = 'No date found'\n", - " content = 'No content found'\n", - "\n", - " # Check URL and set selectors accordingly\n", - " if 'thedriven.io' in url:\n", - " title = soup.find('h1').get_text(strip=True) if soup.find('h1') else 'No title found'\n", - " author_tag = soup.find('a', class_='url fn n')\n", - " author = author_tag.get_text(strip=True) if author_tag else 'No author found'\n", - " date_tag = soup.find('a', rel='bookmark')\n", - " publication_date = date_tag.get_text(strip=True) if date_tag else 'No date found'\n", - " content = ' '.join([p.get_text(strip=True) for p in soup.find_all('p')])\n", - "\n", - " elif 'ey.com' in url:\n", - " title = soup.find('h1').get_text(strip=True) if soup.find('h1') else 'No title found'\n", - " authors = [a.get_text(strip=True) for a in soup.find_all('a', class_='surfaceProfile-author-link')]\n", - " author = ', '.join(authors) if authors else 'No author found'\n", - " date_tag = soup.select_one('#container4 > div > div:nth-child(2) > div > div > span:nth-child(2)')\n", - " publication_date = date_tag.get_text(strip=True) if date_tag else 'No date found'\n", - " content = ' '.join([p.get_text(strip=True) for p in soup.find_all('p')])\n", - "\n", - " elif 'sydney.edu.au' in url:\n", - " title = soup.find('h1').get_text(strip=True) if soup.find('h1') else 'No title found'\n", - " author_tag = soup.find('h3', class_='b-contact-information__title')\n", - " author = author_tag.get_text(strip=True) if author_tag else 'No author found'\n", - " date_tag = soup.find('span')\n", - " publication_date = date_tag.get_text(strip=True) if date_tag else 'No date found'\n", - " content = ' '.join([p.get_text(strip=True) for p in soup.find_all('p')])\n", - "\n", - " elif 'carexpert.com.au' in url:\n", - " title = soup.find('h1').get_text(strip=True) if soup.find('h1') else 'No title found'\n", - " author_tag = soup.find('div', class_='gubuy9f')\n", - " author = author_tag.get_text(strip=True) if author_tag else 'No author found'\n", - " date_tag = soup.find('time')\n", - " publication_date = date_tag.get_text(strip=True) if date_tag else 'No date found'\n", - " content = ' '.join([p.get_text(strip=True) for p in soup.find_all('p')])\n", - "\n", - " # Store the data\n", - " article_data = {\n", - " 'title': title,\n", - " 'author': author,\n", - " 'publication_date': publication_date,\n", - " 'content': content\n", - " }\n", - "\n", - " # Print success message\n", - " print(f'Successfully scraped {url}')\n", - " \n", - " return article_data\n", - " \n", - " except Exception as e:\n", - " # Handle errors (e.g., missing elements, request errors)\n", - " print(f'Error fetching {url}: {e}')\n", - " return None\n" - ] - }, - { - "cell_type": "markdown", - "id": "d5d6a6e7-1f9d-4f92-8080-a56787f32bd5", - "metadata": {}, - "source": [ - "The below code iterates over a list of URLs, scraping article data from each URL using the **scrape_article** function, and then appends the collected data to a list. It also includes an optional delay of 2 seconds between requests to avoid overloading the server.\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 84, - "id": "e5bb5795-ee78-4fd2-b8cd-a254e46e7460", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Successfully scraped https://thedriven.io/2024/02/23/most-australians-think-there-are-too-few-public-charging-stations-to-support-evs/\n", - "Successfully scraped https://www.ey.com/en_au/sustainability/why-consumers-are-charging-toward-electric-vehicles\n", - "Successfully scraped https://www.sydney.edu.au/news-opinion/news/2024/04/10/evs-face-future-challenges-despite-increasing-uptake-.html\n", - "Successfully scraped https://www.carexpert.com.au/car-news/evs-in-australia-report-outlines-sales-and-improving-consumer-sentiment\n" - ] - } - ], - "source": [ - "for url in urls:\n", - " article_data = scrape_article(url)\n", - " if article_data:\n", - " articles_data.append(article_data)\n", - " \n", - " # Optional: Delay between requests to avoid overwhelming the server\n", - " time.sleep(2)\n" - ] - }, - { - "cell_type": "markdown", - "id": "3645339f-324d-4832-b072-9be6162c9ff3", - "metadata": {}, - "source": [ - "In the below cell, I have stored the collected articles in a structured format such as CSV or JSON for further processing. It creates a DataFrame from a list of article data, saves it as a CSV file named **ev_articles.csv**, and displays the DataFrame for review. The **pd.Dataframe()** function creates a DataFrame named **articles_df** from the list of dictionaries **articles_data**. Each dictionary in the list represents a row in the DataFrame, with dictionary keys becoming column names." - ] - }, - { - "cell_type": "code", - "execution_count": 85, - "id": "c6c2e563-874b-43c6-ad78-f8f7bc81bff8", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
titleauthorpublication_datecontent
0Most Australians think there are too few publi...Jennifer Dudley-NicholsonFebruary 23, 2024Most Australians think the nation has too few ...
1Why Australian consumers are charging toward e...Neal Johnston, Glenn Maris, Damien Smith, Neal...27 Jul. 2022The CEO Imperative: Is your strategy set for t...
2EVs face future challenges despite increasing ...Harrison Vesey10 April 2024Professor David Hensher One in three Australia...
3EVs in Australia: Report outlines sales, and i...Mike Costello19 August 2020, 1:56pmGuest User Australia's electric-vehicle penetr...
\n", - "
" - ], - "text/plain": [ - " title \\\n", - "0 Most Australians think there are too few publi... \n", - "1 Why Australian consumers are charging toward e... \n", - "2 EVs face future challenges despite increasing ... \n", - "3 EVs in Australia: Report outlines sales, and i... \n", - "\n", - " author publication_date \\\n", - "0 Jennifer Dudley-Nicholson February 23, 2024 \n", - "1 Neal Johnston, Glenn Maris, Damien Smith, Neal... 27 Jul. 2022 \n", - "2 Harrison Vesey 10 April 2024 \n", - "3 Mike Costello 19 August 2020, 1:56pm \n", - "\n", - " content \n", - "0 Most Australians think the nation has too few ... \n", - "1 The CEO Imperative: Is your strategy set for t... \n", - "2 Professor David Hensher One in three Australia... \n", - "3 Guest User Australia's electric-vehicle penetr... " - ] - }, - "execution_count": 85, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Convert the articles data to a DataFrame\n", - "articles_df = pd.DataFrame(articles_data)\n", - "\n", - "# Save the DataFrame to a CSV file\n", - "articles_df.to_csv('ev_articles.csv', index=False)\n", - "\n", - "# Display the DataFrame\n", - "articles_df\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "id": "b8532a3e-860a-4d5c-a594-b5528e60757d", - "metadata": {}, - "source": [ - "## Step 3: Data Preprocessing\n", - "To perform data preprocessing for each article, we need to clean and structure the data appropriately. This typically involves removing unwanted characters or HTML tags. Then we need to normalize text by converting it to lowercase, removing extra whitespace, and handling punctuation. After that, we need to break the text into tokens (words). All this is carried out in the further cells. " - ] - }, - { - "cell_type": "code", - "execution_count": 86, - "id": "fcb4e4c7-f9ce-41c2-8f4e-b1166dcd13f5", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[nltk_data] Downloading package punkt to\n", - "[nltk_data] C:\\Users\\user\\AppData\\Roaming\\nltk_data...\n", - "[nltk_data] Package punkt is already up-to-date!\n", - "[nltk_data] Downloading package stopwords to\n", - "[nltk_data] C:\\Users\\user\\AppData\\Roaming\\nltk_data...\n", - "[nltk_data] Package stopwords is already up-to-date!\n", - "[nltk_data] Downloading package wordnet to\n", - "[nltk_data] C:\\Users\\user\\AppData\\Roaming\\nltk_data...\n", - "[nltk_data] Package wordnet is already up-to-date!\n" - ] - }, - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 86, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import re\n", - "import nltk\n", - "from nltk.corpus import stopwords\n", - "from nltk.stem import PorterStemmer, WordNetLemmatizer\n", - "from nltk.tokenize import word_tokenize\n", - "\n", - "# Download necessary NLTK data files\n", - "nltk.download('punkt')\n", - "nltk.download('stopwords')\n", - "nltk.download('wordnet')\n" - ] - }, - { - "cell_type": "markdown", - "id": "0b8887af-b132-4188-9dea-b1f4cd0687aa", - "metadata": {}, - "source": [ - "The **clean_text()** function removes unwanted characters and HTML tags from the text. It uses a regular expression to remove anything that looks like HTML tags. It is also used to remove special characters and numbers since we don' require them for sentiment analysis. It returns a cleaned version of the text with HTML tags, special characters, and extra whitespace removed. \n", - "\n", - "The **normalize_text()** function normalizes the text by converting it to lowercase and removing extra spaces. First, it converts all characters in the text to lowercase. Then it splits the text into words and then joins them back together with a single space between each word, effectively removing extra spaces. It returns the normalized text with all lowercase characters and consistent spacing.\n", - "\n", - "The **tokenize_text()** function tokenizes the text into individual words and a list of tokens (words) from the text.\n", - "\n", - "The **remove_stop_words()** function remove common stop words from the list of tokens. It returns a list of tokens with stop words removed.\n", - "\n", - "The **stem_tokens()** function apply stemming to the list of tokens. Stemming reduces words to their root form so that the kewords can be analysed easily. It returns a list of stemmed tokens (words reduced to their root form).\n", - "\n", - "Finally, the **lemmatize_tokens()** function applies lemmatization to the list of tokens. Lemmatization reduces words to their base or dictionary form, which is usually more meaningful than stemming. It returns a list of lemmatized tokens (words reduced to their base form)." - ] - }, - { - "cell_type": "code", - "execution_count": 87, - "id": "bdb471d4-e732-4363-a62d-b3e1a98275ca", - "metadata": {}, - "outputs": [], - "source": [ - "def clean_text(text):\n", - " \"\"\"\n", - " Clean the text by removing unwanted characters and HTML tags.\n", - " \"\"\"\n", - " # Remove HTML tags\n", - " text = re.sub(r'<[^>]+>', '', text)\n", - " # Remove special characters and numbers\n", - " text = re.sub(r'[^a-zA-Z\\s]', '', text)\n", - " # Remove extra whitespace\n", - " text = text.strip()\n", - " return text\n", - "\n", - "def normalize_text(text):\n", - " \"\"\"\n", - " Normalize the text by converting to lowercase and removing extra spaces.\n", - " \"\"\"\n", - " # Convert to lowercase\n", - " text = text.lower()\n", - " # Remove extra whitespace\n", - " text = ' '.join(text.split())\n", - " return text\n", - "\n", - "def tokenize_text(text):\n", - " \"\"\"\n", - " Tokenize the text into words.\n", - " \"\"\"\n", - " tokens = word_tokenize(text)\n", - " return tokens\n", - "\n", - "def remove_stop_words(tokens):\n", - " \"\"\"\n", - " Remove stop words from the tokenized text.\n", - " \"\"\"\n", - " stop_words = set(stopwords.words('english'))\n", - " filtered_tokens = [word for word in tokens if word not in stop_words]\n", - " return filtered_tokens\n", - "\n", - "def stem_tokens(tokens):\n", - " \"\"\"\n", - " Apply stemming to tokens.\n", - " \"\"\"\n", - " stemmer = PorterStemmer()\n", - " stemmed_tokens = [stemmer.stem(word) for word in tokens]\n", - " return stemmed_tokens\n", - "\n", - "def lemmatize_tokens(tokens):\n", - " \"\"\"\n", - " Apply lemmatization to tokens.\n", - " \"\"\"\n", - " lemmatizer = WordNetLemmatizer()\n", - " lemmatized_tokens = [lemmatizer.lemmatize(word) for word in tokens]\n", - " return lemmatized_tokens\n" - ] - }, - { - "cell_type": "markdown", - "id": "484d6bf9-826f-4b57-9f5c-7b737c81979a", - "metadata": {}, - "source": [ - "This cell applies preprocessing functions to each article’s content, then converts the preprocessed data into a DataFrame and saves it to a CSV file. The **preprocessed_articles** list is initialized as an empty list to store the preprocessed article data. By looping through each article, many steps of preprocessing are applied like removing HTML tags, special characters, and extra whitespace using **clean_text** function, converting the text to lowercase and removing extra spaces using the **normalize_text** function, splitting the text into individual words (tokens) using **tokenize_text** function, filtering out common stop words from the tokens using **remove_stop_words** function and reducing to their root form using **stem_tokens** function.\n", - "\n", - "After all this, the preprocessed text is joined back into a single string and stored in a dictionary along with the article’s title, author, and publication date which is added to the **preprocessed_articles** list. Finally, we convert the list of preprocessed articles into a DataFrame using **pd.DataFrame** function, save it to a CSV file and display the resulting DataFrame to verify the output.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 88, - "id": "8f35cdf6-3bd8-49f9-956c-a0c587bd5b19", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
titleauthorpublication_datecontent
0Most Australians think there are too few publi...Jennifer Dudley-NicholsonFebruary 23, 2024australian think nation public charg station s...
1Why Australian consumers are charging toward e...Neal Johnston, Glenn Maris, Damien Smith, Neal...27 Jul. 2022ceo imper strategi set takeoff clever govern c...
2EVs face future challenges despite increasing ...Harrison Vesey10 April 2024professor david hensher one three australian c...
3EVs in Australia: Report outlines sales, and i...Mike Costello19 August 2020, 1:56pmguest user australia electricvehicl penetr wel...
\n", - "
" - ], - "text/plain": [ - " title \\\n", - "0 Most Australians think there are too few publi... \n", - "1 Why Australian consumers are charging toward e... \n", - "2 EVs face future challenges despite increasing ... \n", - "3 EVs in Australia: Report outlines sales, and i... \n", - "\n", - " author publication_date \\\n", - "0 Jennifer Dudley-Nicholson February 23, 2024 \n", - "1 Neal Johnston, Glenn Maris, Damien Smith, Neal... 27 Jul. 2022 \n", - "2 Harrison Vesey 10 April 2024 \n", - "3 Mike Costello 19 August 2020, 1:56pm \n", - "\n", - " content \n", - "0 australian think nation public charg station s... \n", - "1 ceo imper strategi set takeoff clever govern c... \n", - "2 professor david hensher one three australian c... \n", - "3 guest user australia electricvehicl penetr wel... " - ] - }, - "execution_count": 88, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Apply preprocessing to each article's content\n", - "preprocessed_articles = []\n", - "\n", - "for article in articles_data:\n", - " # Clean the text\n", - " cleaned_content = clean_text(article['content'])\n", - " # Normalize the text\n", - " normalized_content = normalize_text(cleaned_content)\n", - " # Tokenize the text\n", - " tokens = tokenize_text(normalized_content)\n", - " # Remove stop words\n", - " filtered_tokens = remove_stop_words(tokens)\n", - " # Optionally apply stemming or lemmatization\n", - " stemmed_tokens = stem_tokens(filtered_tokens)\n", - " # lemmatized_tokens = lemmatize_tokens(filtered_tokens)\n", - " \n", - " # Store preprocessed data\n", - " preprocessed_article = {\n", - " 'title': article['title'],\n", - " 'author': article['author'],\n", - " 'publication_date': article['publication_date'],\n", - " 'content': ' '.join(stemmed_tokens) # Use lemmatized_tokens if preferred\n", - " }\n", - " preprocessed_articles.append(preprocessed_article)\n", - " \n", - "# Convert the preprocessed articles data to a DataFrame\n", - "preprocessed_articles_df = pd.DataFrame(preprocessed_articles)\n", - "\n", - "# Save the DataFrame to a CSV file\n", - "preprocessed_articles_df.to_csv('preprocessed_ev_articles.csv', index=False)\n", - "\n", - "# Display the DataFrame\n", - "preprocessed_articles_df\n" - ] - }, - { - "cell_type": "markdown", - "id": "592c4d07-49e8-4f5d-8165-3057d18f48dc", - "metadata": {}, - "source": [ - "In sentiment analysis, **polarity** and **subjectivity** are two key metrics used to assess the sentiment of a text. \n", - "\n", - "Polarity measures the sentiment of the text on a scale from -1 to 1. Negative sentiment indicates that the text expresses a strong negative sentiment or emotion. Neutral sentiment indicates that the text is neutral and does not convey any strong positive or negative sentiment. Positive sentiment indicates that the text expresses a strong positive sentiment or emotion. This can be useful for understanding overall attitudes or reactions.\n", - "\n", - "Subjectivity measures the degree to which the text expresses personal opinions, feelings, or beliefs, as opposed to objective facts. Zero subjectivity means the text is factual and does not include personal opinions or emotions. It is more about reporting facts.A subjectivity of 1 means the text is more personal and opinionated, including personal beliefs, emotions, or feelings. This can be useful for distinguishing between factual reports and personal opinions or feelings." - ] - }, - { - "cell_type": "code", - "execution_count": 89, - "id": "7a2419ad-a537-4396-999f-efe9ad8fb316", - "metadata": {}, - "outputs": [], - "source": [ - "from textblob import TextBlob\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n" - ] - }, - { - "cell_type": "markdown", - "id": "16abc529-f4c0-42db-b793-624477ac2394", - "metadata": {}, - "source": [ - "This code defines a function **analyze_sentiment()** that uses the TextBlob library to analyze the sentiment of a given text. It takes a single argument **text**, which is a string of text that we want to analyze for sentiment. The TextBlob object **blob** has a sentiment property that returns a Sentiment namedtuple - polarity and subjectivity. The function returns the polarity and subjectivity scores as a tuple." - ] - }, - { - "cell_type": "code", - "execution_count": 90, - "id": "7a253b62-1ce6-42c2-986c-bba61766c17a", - "metadata": {}, - "outputs": [], - "source": [ - "def analyze_sentiment(text):\n", - " \"\"\"\n", - " Analyze the sentiment of the given text using TextBlob.\n", - " \"\"\"\n", - " blob = TextBlob(text)\n", - " # Return polarity and subjectivity\n", - " return blob.sentiment.polarity, blob.sentiment.subjectivity\n" - ] - }, - { - "cell_type": "markdown", - "id": "d3c6d5f8-09c8-493b-b866-c0a2fd628a9d", - "metadata": {}, - "source": [ - "This code performs sentiment analysis on the preprocessed content of each article, stores the results, and saves them to a CSV file. The **sentiment_results[]** is an empty list initialized to store the sentiment analysis results for each article. In the 'for' loop, we iterate through each row in the preprocessed articles DataFrame (**preprocessed_articles_df**). Each row represents an article. For each article, the content is passed to the **analyze_sentiment()** function, which returns the polarity and subjectivity scores.\n", - "The results for each article, including its title, author, publication date, content, polarity, and subjectivity, are stored in a dictionary and appended to the above initialized list.\n", - "We then conver this list of dictionaries into pandas DataFrame. Finally, the DataFrame is displayed, showing the sentiment analysis results." - ] - }, - { - "cell_type": "code", - "execution_count": 91, - "id": "1d55944e-1875-47bf-a203-5f2b5a360a6a", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
titleauthorpublication_datecontentpolaritysubjectivity
0Most Australians think there are too few publi...Jennifer Dudley-NicholsonFebruary 23, 2024australian think nation public charg station s...0.0022100.187689
1Why Australian consumers are charging toward e...Neal Johnston, Glenn Maris, Damien Smith, Neal...27 Jul. 2022ceo imper strategi set takeoff clever govern c...0.1020000.283466
2EVs face future challenges despite increasing ...Harrison Vesey10 April 2024professor david hensher one three australian c...0.1815630.347917
3EVs in Australia: Report outlines sales, and i...Mike Costello19 August 2020, 1:56pmguest user australia electricvehicl penetr wel...0.0112450.306212
\n", - "
" - ], - "text/plain": [ - " title \\\n", - "0 Most Australians think there are too few publi... \n", - "1 Why Australian consumers are charging toward e... \n", - "2 EVs face future challenges despite increasing ... \n", - "3 EVs in Australia: Report outlines sales, and i... \n", - "\n", - " author publication_date \\\n", - "0 Jennifer Dudley-Nicholson February 23, 2024 \n", - "1 Neal Johnston, Glenn Maris, Damien Smith, Neal... 27 Jul. 2022 \n", - "2 Harrison Vesey 10 April 2024 \n", - "3 Mike Costello 19 August 2020, 1:56pm \n", - "\n", - " content polarity subjectivity \n", - "0 australian think nation public charg station s... 0.002210 0.187689 \n", - "1 ceo imper strategi set takeoff clever govern c... 0.102000 0.283466 \n", - "2 professor david hensher one three australian c... 0.181563 0.347917 \n", - "3 guest user australia electricvehicl penetr wel... 0.011245 0.306212 " - ] - }, - "execution_count": 91, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Apply sentiment analysis to each article's content\n", - "sentiment_results = []\n", - "\n", - "for index, article in preprocessed_articles_df.iterrows():\n", - " # Analyze sentiment\n", - " polarity, subjectivity = analyze_sentiment(article['content'])\n", - " \n", - " # Store the results\n", - " sentiment_results.append({\n", - " 'title': article['title'],\n", - " 'author': article['author'],\n", - " 'publication_date': article['publication_date'],\n", - " 'content': article['content'],\n", - " 'polarity': polarity,\n", - " 'subjectivity': subjectivity\n", - " })\n", - "\n", - "# Convert the results to a DataFrame\n", - "sentiment_df = pd.DataFrame(sentiment_results)\n", - "\n", - "# Save the sentiment analysis results to a CSV file\n", - "sentiment_df.to_csv('sentiment_analysis_results.csv', index=False)\n", - "\n", - "# Display the DataFrame\n", - "sentiment_df\n" - ] - }, - { - "cell_type": "markdown", - "id": "37a82af6-129d-4a96-ac4e-f063316184b9", - "metadata": {}, - "source": [ - "This code creates a visual representation of the sentiment analysis results for a set of articles, focusing on both polarity and subjectivity. The plotting style is configured to \"whitegrid\" for a clean and readable background. A figure is setup with two subplots arranged vertically, each subplot having its own set of axes. this code generates two horizontal bar plots within a single figure, visually comparing the polarity and subjectivity of the sentiment analysis for each article." - ] - }, - { - "cell_type": "code", - "execution_count": 92, - "id": "8dfd03d0-cab3-4de2-939f-97b4a64bc416", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKAAAASgCAYAAADPWTC8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3yN5//H8XdE0BCxR1VtMUOsiC2ovVcFqQa192h8bWpTIqgVq7GJEbu09qraYlQIEqX2DEHy+8Mj9y9HduRU6ev5eOTxkHOuc9+f+zr3uTlv13XdFmFhYWECAAAAAAAAzCTJhy4AAAAAAAAAnzYCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAAAAA+iLCwsA9dQqw+hhrjg+MB8KEQQAEAAAD/cZcuXVKfPn1Uvnx5FSlSRBUqVFDv3r114cIFs+wvJCREY8eOla+vr/GYu7u7nJ2dzbK/hHj8+LEGDhyoY8eOxdjOzs4u0o+9vb3q1q2refPmKTQ0NF77dXZ2lru7+/uULkk6cuSI7OzsdOTIEUnSrVu39N133ykoKOi9tx2b169fy93dXQ4ODipRooQOHz4cbdunT5+qWLFiKly4sO7cuRPnfUR1PPHtOzs7O3l6esa5PYD3k/RDFwAAAADgw/nzzz/VsmVLFS9eXEOGDFH69Ol169YteXt7q0WLFlqyZImKFy+eqPv8+++/tXjxYo0bN854rGvXrnJ1dU3U/byP8+fPa8OGDWratGmsbZs1a6bmzZsbvwcHB2vHjh2aPHmyHj9+rH79+pmz1CgVLlxYK1euVN68eSVJBw8e1J49e/6Rfe/bt0/r1q1T165dVa5cORUqVCjatps2bZKNjY3evHmjNWvWqEuXLnHaR1THM2PGDKVKleq9agdgPgRQAAAAwH/YwoULlTZtWs2bN09Jk/7/14Pq1aurVq1amjVrlubOnWv2Or788kuz78NcsmTJEimkc3Jy0pUrV7R06VL17NlTVlZW/2hNqVKlSvTgMK4ePnwoSWrSpImyZ88eY1sfHx9VrFhRVlZWWr16tTp16qQkSRI2USemoAvAh8cUPAAAAOA/7O7duwoLC4s0Vcza2lr/+9//VLt2bZPHd+7cqSZNmqho0aIqX768fvjhBz1//tx43tPTUzVq1NDu3btVv359FSlSRDVr1tT69eslSYGBgapWrZokadCgQca0u3en4Dk7O2vGjBkaO3asHB0d5eDgoH79+unZs2eaO3euKlWqpJIlS6pHjx568OCBSY2rV69W3bp1VaRIEVWpUkWenp568+aN8by7u7vatWuntWvXqmbNmipSpIgaNmyovXv3Sno7fS18NJarq6vatm2boL4tUqSInj17pkePHkmSXr58qZkzZ6pWrVoqWrSovvrqK82dOzfGaXqBgYEaOHCgKlSooMKFC8vJyUkDBw40OWZnZ2eNHTtW33zzjezt7TV48GCTKXg+Pj4aNGiQJKlatWpyd3fXhAkTZG9vrydPnpjsb9asWSpZsqSCg4OjrOfNmzdaunSp6tevL3t7e1WpUkWTJ0/Wy5cvjb4NnwZXvXr1GPvu8uXLOnXqlKpUqaIGDRooKChI+/bti3T8dnZ2WrhwoWrVqqVixYpp7dq1kY4nvB8iTsF7+vSpRo8erYoVK6p48eJq2rSpdu/eHW09Dx8+1LBhw1SuXDkVLVpULVq00KFDh0zaHDhwQC1atJCDg4NKly6tLl26yN/fP9ptAvh/BFAAAADAf1iVKlV08+ZNff3111q6dKn8/f2NhZ1r1aqlxo0bG219fX3VrVs35c6dWzNnzlT37t21ceNGde3a1WQx6Dt37mjUqFFydXXV3Llz9cUXX+j777+Xv7+/MmXKpBkzZkiSunTpYvw5KgsWLNBff/2lqVOnqkuXLtq0aZOaNm2q/fv3a/To0erbt6927dql6dOnG6+ZM2eOhg4dKicnJ82ePVutW7fWvHnzNHToUJNtnz17Vl5eXurZs6dmzpwpS0tL9ejRQ48ePVLhwoU1bNgwSdKwYcM0fPjwBPXt1atXlTJlSqVPn15hYWHq3Lmz5s+fr+bNm2v27NmqVauWpk2bFu32g4OD5erqKn9/fw0fPlxeXl5ydXXV5s2bNXXqVJO2S5cuVdGiRTVr1iw1a9bM5LkqVaoYU9tmzJihrl27qlmzZnr58qW2bdtm0nbDhg2qU6eOPvvssyhrGjZsmMaNG6fq1avrp59+UuvWreXt7W2cA127djXZV0x9t3btWqVJk0ZVq1ZVqVKllCNHDi1fvjzKtp6enurYsaMmTpyocuXKRTqed71580Zubm7y9fVVp06dNGvWLOXOnVvdunWLcl2vly9f6ptvvtGuXbvUp08fzZgxQ1myZFGHDh2MEOrGjRvq2rWrihQpop9++kljxozR1atX9d1338V7rS/gv4gpeAAAAMB/mIuLi+7cuSMvLy+NGjVKkpQ2bVpVqFBBrq6usre3l/T2bmOTJ09WxYoVNXnyZOP1OXPmVLt27bRnzx5VqVJF0tvgZMyYMXJycjLaVK1aVXv27JGbm5sKFiwo6e20u5imTaVKlUpTp05V0qRJVa5cOa1bt063b9/W6tWrZWNjI+ntekPHjx+XJD158kSzZs1Sy5YtNWTIEElShQoVlCZNGg0ZMkTffvut8uXLZ7T18fExpv5ZW1urTZs2Onz4sGrWrGmsnZQ3b17jz9EJDQ3V69evjX66e/eufH199euvv6pDhw6ysLDQnj17dPDgQf3444+qW7euJKl8+fJKkSKFPDw85OrqatQWLiAgQFmyZNGECROMqWxly5bVqVOndPToUZO2n3/+ufr372/8Hr74uCSlS5fOOM6CBQvqiy++kCQ5ODhow4YNxvpVx48fV0BAgMaPHx/lcV6+fFlr1qxRv3799N133xnHkClTJg0cOFB79+5V5cqVo9zXu16/fq2NGzeqXr16SpYsmSSpcePG8vT01F9//aWsWbOatK9du7bJelyx7WPv3r06deqUZs6cqerVqxt9d+PGDR0+fFilSpUyab9hwwZduHBBq1atUrFixSRJlSpVUtu2bTV58mStXbtWp0+f1osXL9SpUydlzpxZ0tvpl7t27dLz589ZfwqIBSOgAAAAgP+4Xr16ad++fZoyZYqaNWumVKlSydfX11iEXJKuXLmiW7duydnZWa9fvzZ+SpcurVSpUunAgQMm24y4/lCWLFkkyWSqXlzY29ubrEuVIUMG5cqVywifJClNmjTGNLITJ07oxYsXkWoMn9oXscaIoUzEGqObehaTWbNmqXDhwipcuLAx7W/mzJlq2bKlevToIUk6evSokiZNqlq1apm8tkGDBsbz7ypYsKCWLVumbNmyKSAgQHv27JGXl5euXLmikJCQSG3jq2nTpjp27JhxJ7l169YpV65ccnBwiLJ9eI3hAVq4unXrytLS0iT0is3u3bt19+5dVa9eXY8fP9bjx4/l7Oys0NBQrV69OlL7+B7fH3/8ISsrK5NpnUmSJNGKFSvUvXv3SO0PHTqkjBkzqnDhwsZ58+bNG1WtWlVnz57Vo0ePVKxYMSVPnlzNmjXTmDFjtG/fPhUoUEB9+vQhfALigBFQAAAAAGRra6t69eqpXr16kiQ/Pz8NGDBAkyZNUv369Y2FpUeOHKmRI0dGev3ff/9t8nvEKVzhi0pHnKYXF1F9qbe2to62fXiN4aNzYqrx3SlmFhYWkpSgqVQtWrRQixYtjO2kTJlSX3zxhcnC448ePVLatGllaWlp8tqMGTNKUqS1mMItXLhQs2fP1sOHD5UhQwYVKVJEn332WaT2MfVLdOrUqaOxY8dqw4YNat++vbZu3Rpt34UfQ8SawyVNmlRp06aN9hiisnbtWklSu3btIj23Zs0ade3a1SR8jO/xPXz4UGnSpInzguYPHz7UnTt3VLhw4Sifv3PnjvLmzStvb2/NnTtXa9as0ZIlS5Q6dWq5uLiod+/exjkEIGoEUAAAAMB/1O3bt9W0aVP16tXLmIYVrlChQurTp4+6deumGzduKHXq1JKkgQMHqkyZMpG2ZWtr+4/UHJPwGidPnqycOXNGej5Dhgxm2W+mTJlUtGjRGNvY2trqwYMHevPmjUkIFR6KpU2bNtJrfH19NX78eA0YMEBNmjRRunTpJL0dsXbmzJn3rjtlypSqVauWtm7dqvz58+v58+dq2LBhjMcgvQ1jsmXLZjz+6tUrPXjwIMpjiMrdu3e1d+9eubi4RBoRdvLkSf3444/67bffVKNGjQQc1Vs2NjZ6+PChwsLCTIIhPz8/hYWFRQqabGxslDNnTpPppRGFT/Ozt7fXjBkzFBISoj/++EMrV67U7NmzVaBAgUgL9gMwxRQ8AAAA4D8qQ4YMSpo0qZYtW2bcxSyiK1euKHny5MqRI4dy586t9OnTKzAwUEWLFjV+MmfOrClTpsjPzy/O+313FFBiKVasmKysrHT79m2TGpMmTaoff/xRgYGBH6zGMmXK6PXr15EW/d64caMkqWTJkpFe88cffyh16tTq0KGDET49e/ZMf/zxR7xHakU3EqhZs2a6dOmSFi9erHLlyhlrG0V3DJK0efNmk8c3b96sN2/eRHkMUdmwYYNev36tb775Ro6OjiY/33zzjVKlSqUVK1Yk6HjClSpVSq9evTLubCi9HYE3aNAgzZkzJ8pj++uvv5Q+fXqTc+fAgQOaP3++LC0ttWjRIlWtWlUhISFKliyZnJycNHr0aEnSzZs343TswH8ZI6AAAACA/yhLS0uNGDFC3bp1U9OmTdW6dWvlyZNHwcHBOnDggJYuXapevXoZI1/69OmjYcOGydLSUlWrVtXjx481a9Ys3b59O9qpS1EJX8Pp0KFDypMnj7Ho8/tKmzatOnToIA8PDz19+lSOjo66ffu2PDw8ZGFhoQIFCsS7xt27d8vW1jZer41KpUqV5OjoqCFDhuj27dsqUKCAjh49qnnz5qlx48ZRLnRub2+v5cuXa/z48apatar+/vtveXl56e7du/EecRY+OuyXX35RpUqVlCdPHklvg69cuXLp6NGjke6s9668efOqcePGmj59uoKDg1W6dGmdP39eM2bMkKOjoypWrBinWnx8fFS4cOEoR6mlSJFCNWvWlI+Pj27cuBHttLbojidclSpV5ODgIHd3d/Xu3VvZs2fXhg0b5O/vb4RGETVp0kTe3t769ttv1blzZ2XNmlUHDx7UvHnz1KZNG1lZWals2bKaPHmyunXrpjZt2sjS0lIrVqxQsmTJVLVq1TgdO/BfRgAFAAAA/IdVqVJFq1atkpeXl2bPnq379+8rWbJkKlSokKZOnaqvvvrKaNu8eXOlTJlS8+fP18qVK2Vtba0SJUpo8uTJxl3a4iJVqlT69ttvtXLlSu3ZsyfSAubvo3fv3sqYMaOWLVum+fPny9bWVk5OTurbt6/J4uWxyZcvn+rVq6elS5dq37592rRp03vVZWFhoTlz5mj69OlatGiR7t+/ry+++EJ9+/bVt99+G+VrGjdurMDAQK1du1bLli1T5syZVblyZbm4uGjo0KHy9/ePFLxEx9HRUeXKldOUKVN06NAhzZ0713iuSpUqun//vnG3uJiMGTNGOXLk0Nq1azVv3jxlypRJrq6u6tq1a5zWWzp16pQuX76sgQMHRtumUaNGWrt2rVauXKmvv/463scjvQ1X582bp8mTJ8vDw0PBwcGys7PTggULjDs7RmRtba2lS5dqypQpmjRpkp48eaJs2bKpX79+cnNzkyQVKFBAs2fP1syZM9W3b1+9efNGRYoU0YIFC5Q7d+5Yjx34r7MIi+9KgAAAAACAT0JYWJjq1q2rChUq6H//+9+HLgfAJ4wRUAAAAADwH/P06VMtWrRIZ86c0Y0bN9S2bdsPXRKATxwBFAAAAAD8x6RIkUIrVqxQaGioxo4dG68plACQEEzBAwAAAAAAgFnFvkocAAAAAAAA8B4IoAAAAAAAAGBWBFAAAAAAAAAwKxYhBwAA/1knTpxQWFiYrKysPnQpAAAAH51Xr17JwsJCDg4OsbZlBBQAAPjPCgsLM34Qd2FhYQoJCaHf4ol+Sxj6LWHot4Sh3xKGfkuYT6Hf4vPvKEZAAQCA/ywrKyuFhIQob968sra2/tDlfDSeP3+u8+fP02/xRL8lDP2WMPRbwtBvCUO/Jcyn0G9nzpyJc1tGQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAA4D/PwsLiQ5cAAADwSSOAAgAA/2nJkiXTZ599FuVzoaGh/3A1AAAAn6akH7oAAACAD23S5DW6EXjX5LHsX2TQgP7NPlBFAAAAnxYCKAAA8J93I/Cu/P3/+tBlAAAAfLKYggcAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmRQAFAAAAAAAAsyKAAgAAAAAAgFkRQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAigAAAAAAACYFQEUAAAAAAAAzIoACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmRQAFAAAAAAAAsyKAAgAAAAAAgFkRQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZffAAytnZWXZ2dlq4cGGUzw8bNkx2dnby9PRMtH3++eef2r17d6zt+vXrJzs7O+3cuTPR9h3RH3/8oWPHjr3XNjw9PeXs7Gz8bmdnJx8fn/ctLcFevXqlRYsWGb+/W19U4lNzYGCg7OzsdOTIkTjXFLGfE/L6T8GDBw+0evVqs+9n5MiRcnBwUMmSJXX37l2z7+99xff8jEv7hHJ3d1fbtm3Nsu3Y/NuuG3Fx8+ZNbd682fjd2dk5Uf+eiK+wsDCtW7dO9+7d+2A1fEjPnz/X0qVLo30+/Nob3U+nTp30/PlzOTg4aPz48dFup2bNmho6dKg5DgEAAABm9sEDKEmysrLS9u3bIz3++vVr7dixQxYWFom6v06dOunMmTMxtnny5Il27typXLlyacWKFYm6/3AuLi66fv16om5z//79qlOnTqJuMz42bdqkcePGxes15q7ZHP38sZk4caI2btxo1n1cuHBBy5Yt0/fff68NGzYoQ4YMZt3fh+Dm5qY1a9Z86DIS3cd43fj++++1b98+4/c1a9bIzc0tsUuLs99//13u7u4KDg7+YDV8SAsWLJCXl1es7Tw9PbV///5IP5MmTZK1tbXq1KmjzZs3KzQ0NNJrjx8/roCAADVv3twchwAAAAAz+1cEUE5OTjp58qRu3bpl8vjhw4dlbW2trFmz/uM1bdq0SZaWluratasOHDigwMDAf7yGhMiYMaNSpEjxwfYfFhYW79d86Jr/CxLyvsTX48ePJUnly5fXF198Yfb9fQgpU6ZUunTpPnQZie5DfwYT4/xMly6dUqZMmQjVJMw/8Rn7N4vr8dva2ipjxoyRflKnTi1Jatq0qf7+++8oR6muX79e+fPnl729faLWDgAAgH/GvyKAsre31+eff65t27aZPL5lyxbVrl070gioEydOyNXVVSVLlpSjo6MGDRqkBw8eGM+fPn1aLi4ucnBwUOnSpdWjRw/dvHlT0ttpGkFBQZoxY0aM0118fHxUpkwZVatWTVZWVlq1apXJ81FNxXn3sT179qhJkyYqVqyYnJyc5O7urkePHkl6O+VFkgYNGiR3d3djesKcOXNUvnx5VatWTU+fPtWlS5fUqVMnlS5dWkWKFFG1atW0YMGCaOuOOJUmJCREEyZMkLOzs4oUKaIyZcqoV69eun//vqT/nxKxfft2NW/eXEWKFJGzs7NWrlxpbO/evXvq2bOnHB0dZW9vr6+//lpHjx6Nts8GDRpk1BHxC8TcuXNVqVIl2dvbq23btgoICIiyZnd3d7m7u2vChAlycnJSsWLF1KlTJ92+fTvKffr7+6t8+fIaOHCg3rx5E2V/ROzncKdOnTKOuVq1alq7dq3J69auXavatWvL3t5etWvX1uLFi43/kY/uvXry5ImGDh2qsmXLqmTJknJ1dY11pN3OnTvVvHlzFS9eXEWLFlWTJk1MRnW0bdtWQ4cOVfPmzVWqVCljFFNM9b3L3d1d69at09GjR43+ePPmjRYtWqSaNWuqaNGiqlmzppYvXx6pbzt37ixHR0eVLFlSPXv2VFBQUJT78PHxMT5P1atXN/ra399fHTt2lIODgypUqKB+/frpzp07kqTx48erfv36xjYePXqkggULatSoUcZjv/76qxwcHPTy5ctI+/T09FSrVq00c+ZMOTo6qlSpUho0aJCePn1qtIlqallUj4Vvo0SJEurfv78ePnwY5XG++xm/e/euBg4caPRRp06ddO3atShfK0nXrl1Tly5djGtX3759TaZsvXr1ShMmTFDZsmVVvHhxde3a1WQq47Fjx+Tq6qoSJUqoSJEiql27tjZs2GA87+7urp49e8rNzU0lSpTQvHnzJEm+vr6qXbu2ihYtqubNm2vJkiXGufBun8TlM3j9+nXjfa1YsaIWLlyoGjVqRDuN782bN5o0aZIqV66sIkWKqFatWsb5FtV1IzQ0VHPmzFHNmjVVpEgRlShRQh06dDBGMrZt21ZHjx7VunXrjPfj3Sl4u3fvVosWLYxzb9y4cXrx4oXJMa9Zs0bt2rWTvb29KlSooBkzZhjPBwcHa/DgwSpfvryKFi2qRo0aaceOHVEe35EjR+Tq6ipJqlatmtEPsf1d9a7YrrdRTTOM+JiPj48qVaqkVatWqUKFCnJwcFC3bt1M3jtnZ2fNmjVL7du3l729vWrUqBFpem5sdTs7O2vChAmqU6eOHB0d1bZtW82YMUNBQUGys7N7r/+wKVGihHLnzh1pxGZISIi2bt2qpk2bGo+tX79edevWVdGiRVWxYkWNGTNGISEhCd43AAAAzOtfEUBJUu3atU0CqJCQEO3cuVN169Y1aXf69Gm1bdtW+fLl06pVq+Th4aFTp06pffv2evPmjd68eWMENhs3btSiRYt08+ZN/e9//5P0dppGlixZ5ObmFu16IX/++adOnz6tWrVqKWXKlKpSpYrWrl2rV69exfl47t+/r+7du6tp06basmWLZsyYod9//10TJ06U9HbKiyT973//0+DBg43XrVu3TosXL9a0adNkaWkpNzc3pUmTRitWrNCmTZtUq1YtTZgwQefPn4+1hokTJ2rHjh0aP368tm/frvHjx+vw4cP66aefTNqNGzdOnTt31tatW1WlShWNGDFCN27ckCSNGDFCL1++lLe3t3x9fZUrVy517dpVz58/j7S/OnXqGP28f/9+OTg4SJKCgoJ0/PhxzZ07V97e3rpz547JMb9r06ZNevjwoby9vTVv3jydO3dO06ZNi9Tu2rVrateunSpVqqTx48fL0tIyUpvo+nnx4sXq0qWLtmzZoooVK2rIkCFGcLBy5UpNnDhR3bt31+bNm9W7d2/NmzdPkydPNtl2xPcqZcqU6tixo27cuKE5c+Zo1apVKl68uFq1aiU/P78oj/Ps2bPq0aOH6tatK19fX61atUrp0qXTwIEDTb5ErV69Wq6urlq2bJkqVqwY5/rCDR48WLVr15aDg4PRH+PHj9esWbPUvXt3+fr6qnXr1hozZoyxDk9QUJBatmypZMmSafHixVqwYIHu3LmjNm3amAQ84erUqWN8nlavXq3Bgwfr9u3bcnFxUY4cObRmzRrNnj1bT58+VcuWLfX8+XNVrVpVly5dMgKpQ4cOKSwszCS43L17typUqKDkyZNHeWxnzpzR/v37tWDBAs2cOVO///67evfuHWXb6AQFBenw4cNauHChZs+erTNnzhiBSExev34tNzc3Xb58WbNmzdKqVasUGhqqDh06RBmGPn78WK1bt1ZISIgWL16shQsX6vr16yb1njhxQo8fP9ayZcs0Z84cnTx50rhm3L59W+3bt1fRokW1bt06rV+/Xvb29ho8eLBJSLV9+3aVK1dOa9euVb169fTbb7/p+++/V7NmzbRx40Y1adIk2nMlXEyfweDgYLVr106hoaFavny5pk6dKh8fH+OaEZVly5Zp27Ztmjp1qrZv3642bdpoxIgROnbsWJTXjSVLlsjLy0vu7u7avn27Zs6cqYCAAGNtIE9PTzk4OKh27dpRTon85Zdf1KVLF1WpUkU+Pj4aOXKktmzZor59+5q0mzBhgho3bqzNmzerTZs28vT01O+//y5J8vDw0MWLFzV37lxt2bJFlSpVUp8+faIMVxwcHEzO/zp16sT6d1VU4nO9jc79+/eN69LixYv1119/qUOHDnr9+rXRZtasWXJwcND69evVunVrDRs2TFu2bJEU+9+x4by9vTVkyBDNnz9fs2bNkpubm7JkyaL9+/e/96jlpk2baseOHSbB865duxQcHKyGDRtKejvld8iQIerRo4e2b9+usWPHasOGDZo/f/577RsAAADmk/RDFxCudu3a8vLy0u3bt5U5c2YdOHBA6dKlU6FChUzaLViwQHZ2dsYipHny5NGPP/6ohg0bav/+/SpevLgePHigTJkyKVu2bMqePbumTZtmjDJIly6dLC0tZW1trTRp0kRZi4+Pj5InT67q1atLkurWravt27dr586dql27dpyO5/bt2woJCdHnn3+ubNmyKVu2bJo9e7bxD/iMGTNKkmxsbGRjY2OMjHJxcVHevHklvf0i4erqqtatWxtTS3r27Kn58+fr4sWLKliwYIw1FC1aVLVq1VKpUqUkSdmyZVO5cuV06dIlk3bt2rVTtWrVJEl9+vTR0qVLderUKWXPnl3Xr19X/vz5lT17dqVIkUKDBw9W/fr1owx7UqRIIRsbG5Pjk96u8TV58mSlSpVKkvT1119r6tSp0dZtY2OjUaNGycrKSnny5FGdOnW0Z88ekzaBgYEaOHCgKleurNGjR0e7Tlh0/dytWzdj5ESfPn20fPlynTt3Tjly5NCsWbPUpUsXI/zMnj27nj59qpEjR6pXr17GtiO+V4cOHdLJkyd1+PBh47zq27evjh8/riVLlkS5qK6lpaWGDh0qFxcX4zFXV1d17NhR9+7dM77EFSxY0GSkUGz1vRvW2NjYKEWKFLKyslLGjBn19OlTLV++XO7u7sZ2c+bMqcDAQM2dO1fffPONli1bJmtra02ePFnJkiWTJE2fPl3VqlXThg0b1Lp1a5N9pEiRQra2tpLefsZsbGzk5eWlLFmyaMiQIUa7adOmqWzZstq2bZsaNGggW1tbHThwQI0aNdLBgwdVrVo17dy5U3fv3lWGDBm0d+/eGAMlCwsLTZs2TZkzZ5b09qYFHTt21JUrV5Q7d+5oXxdR8uTJNXXqVGPNqmHDhsnNzU3Xrl1Tjhw5on3doUOHdPHiRW3btk25cuWSJP3www9atGiRHj16FGmq3pYtW/Ts2TP9+OOPRl/98MMP2rx5sxE4ZsyYUaNHj1aSJEmUO3du1alTRwcPHpQkvXz5Uj169FD79u2N8/27777T+vXrFRAQYNRva2urDh06GPsdMGCAatWqpfbt20uScuXKpYCAgBgX/Y7pM7hlyxbdv39fPj4+xrk+adIkIxiIyvXr12Vtba0vvvhCmTJlUps2bZQ7d27lypUryuvGl19+qQkTJqhq1aqS3l67atWqZfwnRZo0aWRlZaUUKVJEOSVy7ty5qlGjhrp27Wocc1hYmLp166bLly8bn9tGjRoZdXfu3FleXl46fvy4SpcurevXrytlypTKnj27UqdOrV69eql06dLGexdRsmTJTM7/FClSxPp3VeXKlaPsp7heb6MTPoquSJEikt6+N3Xq1NGhQ4dUsWJFSVKFChXUvXt3SVLu3Ll16tQpLV68WHXq1Ilz3ZUrV1a5cuWM/VpbW8vS0tLk2h+Vjh07Rnk8Hh4eqlSpkqS378vUqVP122+/qVatWpLejnaqXr260qZNK+nt3wEWFhbKli2bPv/8c33++efy8vIy/p4BAADAv8+/JoAqUqSIsmfPru3bt8vV1VVbtmyJNPpJki5duqTy5cubPFagQAHZ2Njo4sWLqly5sjp06KDRo0dr+vTpKlu2rCpXrhzn4Oj169fauHGjKleubPxDtkqVKkqZMqVWrFgR5+0ULFhQ9erVU+fOnZUxY0aVL19eVapUUY0aNWJ8XcQvvOnSpZOLi4s2bdokPz8/Xb9+XRcuXJCkaKdbRdSwYUMdPHhQkydPVkBAgK5cuaKrV68agVS4PHnyGH8O/yIYPtqre/fuGjBggLZv366SJUuqQoUKqlevXrQjUqKSPn16ky8FqVOnNpkK864vv/xSVlZWJjW9O/psxIgRevXqlbJmzZqgRerDAwNJxhfHly9f6v79+7p165Z+/PFHeXh4GG1CQ0P18uVLBQYGGsce8b06d+6cwsLCjC/M4UJCQqKcPia9PUdsbW01d+5cXblyRdeuXTPe34gjDSLuJy71RXw/o3LlyhW9evVKJUuWNHm8TJkyWrx4se7du6dLly6pSJEiRvgkvQ0HcuXKFSnAjI6fn5/+/PNPYyRcuJcvX8rf319JkyZVxYoVdfDgQTVq1EgHDhzQsGHDdOrUKR05ckR58uTR33//HeUX9XA5c+Y0wifp7fQd6e11Iq4BVI4cOUwWTC9WrJiktyMhYwqgLl26JFtbW5NzKXPmzPr++++jbZ8zZ06TAKNAgQIqUKCA8fuXX36pJEn+f2Cqra2t8Vn58ssv1aRJEy1ZskSXLl0yuR5Ed75Ib8/Nr776yuSx0qVLxxhAxfQZ9PPzU65cuUwC/PBrcHRat26tnTt3qnLlyipYsKDKly+vunXrKn369FG2d3Z21qlTp+Th4aGrV6/q6tWrunz5ssl7HZNLly5F+vujTJkyxnPhAdS7n5WIx9mxY0d17txZTk5Osre3V/ny5VW/fv0Yj/PdGmL7u+pdiXG9TZkypRE+hR+jra2tLl26ZARQjo6OJq9xcHAw7gwb17pj+mzE5IcffjA+YxFlypTJ+HOGDBlUuXJl+fr6qlatWrp3757279+vOXPmGG0qVqwoBwcHNWvWTF988YUxHTrisQMAAODf5V8TQEn/Pw2vZcuW2rVrV5S3jY9uodOwsDDjC1P//v3l4uKiPXv26NChQxo9erTmz5+v9evXm3yhjsru3bt19+5d/fLLLyajr968eaMjR47o6tWrJl84I4o4xUGSpkyZom7dumnv3r06ePCgBgwYoJIlS2rx4sXR7j/iQsB37txRy5YtlS5dOjk7O6tChQoqWrRojF/IIxo2bJi2b9+uRo0aydnZWd26dTNGmUUUVZ+E93ONGjW0b98+7du3TwcPHtTChQs1Y8YMrVq1Svny5YtTHfH53/vo6nlX48aNlT9/fo0fP141atRQ/vz547WPiF/yw4WFhRnB3qBBg0z+dz9c1qxZ9ffff0syfa9CQ0OVKlWqKNfAie54jh49qvbt26tKlSoqWbKk6tevr+DgYHXr1s2k3bv7ia2+2ET3GQrfdtKkSWNsEzGYiEloaKjKli2r4cOHR3ou/Et8tWrVNHbsWF2/fl23b99W6dKl5ejoqCNHjigwMFAlS5Y0RjxE5d1awoOY6M65dz+jUbUN30Zsx5k0afwun3FpH9Nn5fLly3JxcVHhwoVVrlw5ffXVV0qbNm2kO4K9u5h40qRJ4xRYRxTTZ9DS0jLe28uZM6d27Niho0eP6sCBA9q9e7fmzZuncePGqXHjxpHaz507VzNnzlTjxo3l5OSkdu3aadeuXdq8eXOc9hfV+Rvx/A4X07XPwcFBe/bs0YEDB3To0CGtX79eP/30k+bPny8nJ6cE1RD+eHTnVkKut++e01Ft+82bNybn1rvnYmhoqHFNjGvdCV20PnPmzHEKr5o1a6aePXvq0aNH8vX1VebMmU2uecmTJ9eSJUvk5+dn3Emvc+fOatSoUbzvqAgAAIB/xr9mDSjpbQB1/PhxrV27VtmzZ49yJIednZ3++OMPk8cuXLigp0+fKk+ePLpy5YqGDx+u9OnTq1WrVpo+fbrmz58vf39/Y7RATNauXau0adNq/fr1Jj+zZs1SWFiYsRi5lZWVnj17ZvLaiIsPnzp1SmPHjlXu3LnVrl07zZ07V2PHjtXhw4dNFh2OSfg6LMuXL1fXrl1Vo0YNYwpZbHccevDggVauXKnhw4dr0KBBatKkiQoWLKgrV67E+W5FISEhGjdunG7cuKE6derohx9+0M6dO5UkSRLjf8vflZDRSAlRt25dubi4qEiRIho0aFC0a6rEV/r06ZUuXTrduHFDOXLkMH6iW4cqXP78+fX06VO9evXK5HXz5s3Trl27onzNggUL5OjoKE9PT7Vr107ly5fXX3/9JSn69zeh9UV8X/LkySMrK6tIn6Njx44pY8aMsrW1lZ2dnc6cOWOyFtXdu3d17dq1WEdYhcuXL5/8/f2VNWtWo05bW1uNHTvWGEVVsWJFPXz4UEuWLFGxYsVkbW2tcuXK6fDhw/rtt9+MqaHRuXr1qp48eWL8fuLECUkywmMrKyuTNauiWiA8ICDApM0ff/whCwsLY5RMdPLmzatHjx6ZbPP+/ftydHTUyZMno2wfEBBgUu+5c+fk5OQU6Q6gUVmxYoXSp0+vhQsXqmPHjqpcubKx9lNMn+kCBQro1KlTJo+F91NCFChQQNeuXTNZqN3f39/kuN61ZMkS7dixw7hhgK+vr5ycnIx1h969bsyePVvdunXTiBEj1LJlSxUvXlwBAQFxvnbZ2dnp+PHjJo8dO3ZMUuRRT9GZPn26/vjjD1WrVk1DhgzR9u3bjVG6UXn3GGL7u+pdcbnevns+P336NNLfJw8fPjRZj+vPP//U06dPTf5D5d2bIxw/ftx4Pr51R3f876tSpUpKkyaNdu7cqc2bN6tJkyYm/3GwZ88ezZgxQ4UKFdJ3332nJUuWqGfPnsY5BQAAgH+ff1UAVbBgQeXIkUNTpkyJcvqdJH377be6ePGiRo8eLX9/fx05ckT9+/dXoUKF5OTkpLRp02rz5s0aNmyY/P39dfXqVa1bt062trbGlJyUKVMqICDAZOFe6e0X7L1796pFixYqUKCA8ufPb/xUq1ZNZcqUkY+Pj0JCQlS8eHE9fPhQXl5eCgwM1IoVK7R3715jW6lSpdKyZcs0adIkXbt2TZcuXdKWLVuUM2dOY0SHtbW1/P39o70rUpYsWRQcHKxt27bp5s2b2r9/v7GIbmx3+kmVKpVsbGy0a9cuXbt2TRcvXtTQoUN17ty5ON8lKFmyZDpz5oyGDh2qkydPKjAwUD4+Pnr+/HmkaVXhrK2tJb1dYDumaXaJIUmSJBo9erQuXrwY48KzsfVzRBYWFurYsaN+/vlneXt76/r16/rll180YsQIpUiRItqRIRUrVlTBggXVp08fHT58WNeuXdO4cePk4+MT7Ze2rFmz6uLFizp27JgCAwO1du1aY1pddO9RQuuztrbW33//rRs3bihVqlRq2bKlpk+frk2bNunatWtaunSpli1bJjc3N1lYWKhVq1Z69uyZBgwYoAsXLuj06dPq1auX0qZNG+1n810uLi568uSJ+vfvrwsXLujChQvq06ePzpw5Y4xYs7GxUalSpbRy5UpjVImTk5OuXbumU6dOxRpAPX/+XAMHDtSlS5d08OBBjRo1SnXq1FG2bNkkScWLF9fq1at1/vx5+fn5acSIEZH66OXLl+rdu7f8/Px04MABjR49Wo0aNTK2ER0nJycVKVJE33//vU6fPq0///xT33//vdKlS6fChQtHal+/fn3Z2toafXr27FkNHz5c+fPnV5YsWWLtzyxZsujWrVvas2ePgoKCtGPHDo0YMUJSzNeDjh07atu2bVq4cKECAgK0du1aeXt7x7q/6NSrV09p06Y13teTJ09qwIABkqIPIe7fv69Ro0Zp165dCgoK0r59+3T+/HnjOvLudSNr1qw6cOCALl++rCtXrmjq1KnasWOHyXGmTJlSQUFBUYZ3HTp00I4dOzRr1ixdvXpVv/32m0aPHq2qVavGOYC6ceOGhg8frkOHDikoKEjbt2/XzZs3Y732XbhwQc+ePYv176p3xeV6W7x4cW3ZskXHjx/X5cuX9b///S/KUXMDBgzQ2bNndfLkSQ0cONC4I2y4zZs3a+nSpQoICND8+fP1yy+/GOuGxbfuiMf/6NEjXb16NcYbdjx69Eh37tyJ9PNukJY0aVI1atRIS5cu1blz59SkSROT562srDRz5kwtWrRIN27c0NmzZ7V79+5o3x8AAAB8eP+qAEp6Owrq6dOnqlOnTpTPFytWTPPnz9fZs2fVqFEj9e7dWw4ODlq4cKGsrKyUNm1azZs3T0FBQWrRooUaN26swMBALVy40FiHqG3bttq9e7fc3NxMtr1x40aFhYWpVatWUe7722+/1cOHD7V161aVLVtWPXr00IIFC1S3bl0dOHBAPXv2NNrmyZNHnp6eOnz4sBo1aqRWrVrJ0tJS8+bNM/4X183NTd7e3tHecSt84eDx48erdu3aGjt2rJo1a6bSpUtH+h/sd1lZWcnDw0OXLl1S/fr11aFDBwUHB6tv3766fPmygoODY3x9uKlTpyp79uzq0qWLatWqpRUrVmjy5MmR1pEKV7ZsWRUrVkxff/21fvvttzjt433ky5dPHTt21IwZM3T58uUo28TWz1G1d3d3l7e3t+rUqaMxY8aoRYsWGjlyZLSvsbS01IIFC1SkSBH17t1bDRo00O+//64ZM2ZE+6WtZ8+eKl68uDFtZPXq1Ro7dqxSpEgR4/ubkPoaNWqk4OBg1atXT7dv39agQYPk6uqqyZMnq27dulq+fLmx+LYkffHFF/L29tbjx4/VsmVLtW/fXhkzZtTy5cuVOnXqOPVj9uzZ5e3trWfPnqlVq1Zq06aNrKystGTJEpOFo6tWraqQkBCVLVtWkvT5558rZ86cyps3r7Jnzx7jPrJmzaqCBQuqdevW6tu3r6pVq2ay4PuIESNka2urFi1aqEePHmrevHmksKdIkSIqWLCgXF1d1bt3b1WqVCnKaYPvSpIkiWbNmqUsWbLo22+/VatWrZQ8eXLNnz8/ymlQn332mby8vPT69Wt9/fXX6tChg/LmzRvjyLWIXF1dVbt2bQ0cOFD16tXTTz/9pL59+ypbtmwxni+VKlXSqFGjtHTpUtWrV0+rV69Wq1at4jyV8l3JkiXT/Pnz9erVK6NfmzZtKin6aYvdu3dXs2bN9MMPP6hmzZoaNmyYWrVqpU6dOkmKfN2YOHGiXrx4oaZNm6pNmza6dOmSRo4cqXv37unmzZuS3t7M4NKlS2rQoEGkEZA1a9bUjz/+qK1bt6p+/foaPny46tatG+e+lqThw4fLyclJAwYMUM2aNeXh4aH+/ftHu9h6/vz5VblyZfXu3VsrV66M9e+qqMR2ve3bt68KFSqkb7/9Vu3atVPx4sWNdc8iql+/vr777jt16NBB+fLl05w5c0zCwcaNG+uXX35R/fr1tWHDBk2bNs2Y2p2QuiXpq6++UsaMGdWgQYNo7/wpST169FCFChUi/YTf9COipk2bGqMEP//8c5PnypUrpzFjxmjNmjWqV6+e2rdvrxw5cujHH3+Mdt8AAAD4sCzC4jqnAQD+RTw9PbVu3Tr9+uuvH7qUf7WjR48qQ4YMJouyz549W2vWrNHOnTvjvb3AwEAFBASoQoUKxmO3b99WpUqVtHTp0mjDaZifj4+PBg0apIsXL0bbxtnZWY0bN1aPHj3+wcr+3cID3HleB+Tv/5fJc3nyZNX0aZ0/RFn/es+fP9f58+dVsGBBYwQgYke/JQz9ljD0W8LQbwlDvyXMp9Bv4f+WKlq0aKxt/3UjoAAAiWf//v1q3769Dh8+rJs3b2rXrl1avHhxtCN5YvPy5Ut999138vLy0o0bN+Tn56ehQ4cqZ86cUd7dDAAAAACkf9ld8AAAiat79+7GWln3799X1qxZ1a5dO2PNn/jKkyePfvzxR82ePVvTp09XihQp5OTkFOsULQAAAAD/bQRQAD5KPXr0YBpRHCRLlkxDhgzRkCFDEm2btWrVUq1atRJte0gcTZo0ibRY97uYsgoAAIAPhSl4AAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAigAAAAAAACYFQEUAAAAAAAAzIoACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmRQAFAAAAAAAAsyKAAgAAAAAAgFkRQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAigAAAAAAACYFQEUAAAAAAAAzIoACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWST90AQAAAB9a9i8yxOkxAAAAJAwBFAAA+M8b0L9ZlI+HhoYqSRIGjAMAALwv/kUFAAD+00JCQhQcHBzlc4RPAAAAiYN/VQEAgP+8sLCwD10CAADAJ40ACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmRQAFAAAAAAAAsyKAAgAAAAAAgFkRQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAA4D/PwsLiQ5fwUbGwsNBnn31Gv8UT/ZYw9FvC0G8A/m2SfugCAAAAPqRkyZLps88++9BlfFQ+++wzFSpU6EOX8dGh3xKGfkuY2PrtTWioLJMwHgHAP4cACgAA/OcN816ngNt3P3QZAPCPyJk5g0a1afyhywDwH0MABQAA/vMCbt/VxaBbH7oMAACATxZjLgEAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmRQAFAAAAAAAAsyKAAgAAAAAAgFkRQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAigAAAAAAACYFQEUAAAAAAAAzIoACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmRQAFAAAAAAAAsyKAAgAAAAAAgFkRQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAihEqXv37mrevHmkx1u0aCE7OzsdPXrU5PGNGzeqQIECunfvntzd3dW2bdtErykgIEB2dnZq1KhRom9bkp4/f66lS5e+93bs7Ozk4+MjSfL09JSzs/N7bxOftrZt28rd3f0f329gYKDs7Ox05MgRs+0jLCxM69at071798y2j8Rw5MgR2dnZKTAwMMHbiPjZTwy//fabLl++HO3z/8T7F5PYztv49Gli9D8AAAD+3QigECUnJyedP39eL168MB57+PChzpw5o6xZs2rfvn0m7Y8dO6YCBQooffr0ZqvJx8dHuXLl0vnz53Xq1KlE3/6CBQvk5eWVqNt0c3PTmjVrEnWbQGLJmjWr9u/fLwcHB7Pt4/fff5e7u7uCg4PNto9PUVBQkDp37hxjcPdPvH/vw8HBQfv371fWrFk/dCkAAAD4FyCAQpTKli2rV69e6cyZM8ZjBw8eVPr06dW0adMoA6hy5cqZrZ43b95o/fr1atKkifLkyaMVK1Yk+j7CwsISfZspU6ZUunTpEn27QGKwtLRUxowZlSxZMrPtwxyfq/+CuPTbP/H+vY9kyZIpY8aMsrS0/NClAAAA4F+AAApRypMnjzJnzqzjx48bj+3bt08VKlRQhQoVdOHCBd29e1eSdP/+ffn7+6tChQpG21evXmnChAkqW7asihcvrq5duxrtu3XrJldXV5P9XblyRXZ2dvrzzz+jrGf//v26ffu2ypcvr6+++kpbt27V48ePTdpENf0l4mPBwcEaPHiwypcvr6JFi6pRo0basWOHpLdT5WbMmKGgoCBjGoi7u7t69uwpNzc3lShRQvPmzVNoaKjmzJmjmjVrqkiRIipRooQ6dOig69evR1n3u1Pwjh07JldXV5UoUUJFihRR7dq1tWHDBuN5d3d3ubu7a8KECXJyclKxYsXUqVMn3b59O8rth/e1h4eHqlatqmLFiqlJkyY6cOCA8by/v786d+4sR0dHlSxZUj179lRQUJDxfNu2bTV58mT973//U6lSpVSiRAn169dPT58+Ndp4eXmpevXqKlKkiJydnTVz5kzjC3JU0wzffczOzk4rV66Ui4uLihYtqtq1a+v48eNauXKlqlSpohIlSqh3794mI+6OHz+u1q1by97eXlWqVNHIkSNNanJ2dtaECRNUp04dOTo66ujRowoICFD79u1VsmRJOTg4qH379rp48WK0fffo0SMNGTJEFStWVOHCheXk5KQhQ4YYo3WOHDmiQoUKae7cuXJ0dFSTJk0UGhqq27dvq0+fPipVqpQcHR3VuXNnBQQERLsfSTp9+rTatWsnBwcHlStXTsOHDzcZFfTs2TMNGjRIpUqVUsmSJeXu7q7nz58bz+/cuVPNmzdX8eLFVbRoUTVp0sQkCG7btq2GDh2q5s2bq1SpUtq4caMkadGiRXJ2dpa9vb2+/fZbzZgxw3hv3p3CFZdz4ezZs2rdurWKFSumatWqaePGjSpUqFCU08COHDlifNarVatmfBZPnDghV1dXlSxZUo6Ojho0aJAePHggSerRo4c6d+5sbOPChQuys7MzGZ34888/q0aNGpKkmzdvqk+fPnJyclLhwoVVqVIlTZo0SaGhoZLejpysUaOGfvjhB5UsWVJdu3aV9Paz2Lx5c9nb26tBgwa6cOFCjO+f9HZKXJMmTWRvb68aNWpo2rRpCgkJSXD7Z8+eafTo0apQoYIcHBzUpk0bnT17VoGBgapWrZokydXVVZ6enlGeizdu3DB5/8LCwrR48WLVrFlT9vb2qlu3rjZt2hRlbZ6enqpQoYLRT9Lba6SDg4NWr14t6e21o2PHjnJwcFCFChXUr18/3blzx2Q7MZ23706ri+1aFVFYWJjmzZunatWqqVixYmrYsKFxToeL6boEAACAfx8CKETLyclJJ06cMH7fv3+/ypcvL3t7e9nY2Gj//v2SpD/++EMpUqRQyZIljbYnTpzQ48ePtWzZMs2ZM0cnT57UxIkTJUlNmjTR0aNH9ddffxnt169fr6JFiypfvnxR1rJ27Vp9+eWXKly4sOrUqaPg4GCtX78+Xsfj4eGhixcvau7cudqyZYsqVaqkPn36KDAwUG5ubnJzc1OWLFlMpoxs375d5cqV09q1a1WvXj0tWbJEXl5ecnd31/bt2zVz5kwFBARo/Pjxse7/9u3bat++vYoWLap169Zp/fr1sre31+DBg41wTpI2bdqkhw8fytvbW/PmzdO5c+c0bdq0aLc7ZswYrVixQt9//718fX1VsWJFde7cWVeuXFFQUJBatmypZMmSafHixVqwYIHu3LmjNm3amIQKixYtUoYMGbRmzRpNmjRJu3bt0qJFiyRJv/76q+bMmaORI0dqx44d6t+/v3766adIXwZjM3XqVHXo0EEbNmyQjY2NOnfurO3bt2vu3LkaN26cdu7caXzxvXDhgr799ltVrFhRGzdu1OTJk3Xu3Dm5ubmZfMH09vbWkCFDNH/+fBUvXlx9+/ZV5syZtXbtWq1evVpJkiRR9+7do63J3d1dfn5+mjFjhrZv365BgwZp/fr1WrlypdHmzZs32rNnj1auXKkxY8boxYsXxhpn3t7e+vnnn5U2bVq1aNEi2qDwxo0b+uabb5QpUyatXLlSnp6eOnDggEaOHGm02bFjhzJlyiQfHx9NnDhRW7Zs0bx58yS9DX169OihunXrytfXV6tWrVK6dOk0cOBAk0Bj9erVcnV11bJly1SxYkUtXbpUU6dOVdeuXbVhwwaVKVNGM2fOjPF9iulcuH37tr755htly5ZNa9eu1bBhwzR16lS9efMmym05ODjI09PTqK1OnTo6ffq02rZtq3z58mnVqlXy8PDQqVOn1L59e71580ZVq1bV0aNH9fr1a0nSgQMHZGFhYRJw7d692whounTpoidPnmjhwoXatm2b3NzcNH/+fP36669G++vXr+vvv//W+vXr1adPH924cUNubm4qWLCg1q1bp27dumnWrFkx9svevXvVu3dvtWjRQps2bdLw4cO1detWDRgwIMHte/furb1792rcuHFav369smfPLjc3N6VMmdL4LHh6esrNzU1S5HPRwsLCZJ/z5883PmebNm3S119/rYEDB+rw4cOR6mvUqJHu3r1r0q87d+5UWFiYateurdu3b8vFxUU5cuTQmjVrNHv2bD19+lQtW7Y0CUZjOm/fFdO16l1Tp07V8uXLNXToUPn6+srV1VUjRoww1ulLrOsSAAAA/jlJP3QB+PdycnLSuHHjFBYWposXL+rOnTsqX768LC0t5eTkpH379qlRo0b6/fffVapUKSVPntx4bcaMGTV69GglSZJEuXPnVp06dXTw4EFJUuXKlZUhQwZt3LhRnTp1UmhoqDZs2KDvvvsuyjoePHigX3/9Ve3bt5ck5c+fX/nz59fKlSsjjaSKyfXr15UyZUplz55dqVOnVq9evVS6dGnZ2toqZcqUsra2Nqa0hLO1tVWHDh2M37/88ktNmDBBVatWlSRly5ZNtWrV0rZt22Ld/8uXL9WjRw+1b9/e+OL43Xffaf369QoICFCGDBkkSTY2Nho1apSsrKyUJ08e1alTR3v27Ilym0+fPtWaNWs0dOhQ1apVS5LUp08fhYWF6enTp1q7dq2sra01efJkY5rO9OnTVa1aNW3YsEGtW7eWJOXNm1d9+/aVJOXMmVPly5c3wsfr168rWbJkypYtmz7//HN9/vnnypQpkz7//PM4970kNW3a1Bh507BhQ40aNUrDhg1Tzpw5lT9/fs2fP98YAefl5aXy5csbI2Fy5sypKVOmqHr16jp69KgcHR0lvT2XIk79vH79usqVK6ds2bLJyspKY8eO1ZUrVxQaGqokSSLn7eXLl1fp0qVlZ2cnSfriiy/k7e2tS5cumbRzc3NTzpw5Jb0NUh4/fqxJkyYpadK3l9AxY8boyJEjWrVqlXr06BFpP6tWrVKaNGk0duxY4zU//PCDScBrb2+vPn36SHp7npUvX15nz56V9Haq1dChQ+Xi4mK0d3V1VceOHXXv3j0jMC1YsKDq169vtPHy8pKrq6uaNWsm6W1Yc+7cOfn5+UX3NsV4LqxcuVI2NjYaM2aMrKyslDdvXg0ZMsQYVfSuZMmSydbWVpKULl06pUiRQgsWLJCdnZ2GDh0q6e1oyx9//FENGzbU/v37VaVKFQ0ePFgnT55UqVKldPDgQVWrVk2HDh3S69evFRISoqNHj6pz58568eKFGjZsqNq1axt90K5dO82bN08XL15U9erVjVq6du2q7NmzS5KmTJmiDBkyaPjw4bK0tFSePHn0119/ady4cdH2y+zZs9WiRQt9/fXXxns0cuRIffPNNwoMDNQXX3wRr/YhISHau3evvLy8jNGjI0aMUOrUqfXo0SNj6m749SlcxHMx4oLd4aOfXF1djRtItG3bVi9evDDCvIiyZ8+u0qVLa+PGjXJycpIk+fr6qnr16kqVKpXmz5+vLFmyaMiQIcZrpk2bprJly2rbtm1q0qSJpJjP24hiu1ZF9Pz5cy1atEg//vijqlSpYmw7KChIXl5eat26daJdlwAAAPDPIYBCtJycnPTw4UNduXJF+/fvV6FChYwvReXLl9eMGTMkvZ3KUrduXZPXfvnllyZf+G1tbY3pVUmTJlWDBg20YcMGderUSYcPH9b9+/dVr169KOvw9fXVq1evVKdOHeOxunXraurUqTp27JhKlSoVp+Pp2LGjOnfuLCcnJ9nb26t8+fKqX7++bGxson1Njhw5TH53dnbWqVOn5OHhoatXr+rq1au6fPmyMmfOHOv+v/zySzVp0kRLlizRpUuXdP36dWPaT8QRJF9++aWsrKyM321sbPTq1asot3n16lW9evVKxYoVM3k8PEDw9PRUkSJFTNaIyZgxo3LlymUSsuTOndvk9TY2NsYUxwYNGmjt2rWqWbOm8ubNq3LlyqlmzZrx/qIXsS8/++wz41jDpUiRwhjN4+fnp2vXrkW5uLK/v78RQL37/vTp00djx47VsmXLVKZMGVWsWFH16tWLMnySJBcXF/36669at26dAgICdPnyZQUGBkbqj/Av/OG1PXr0SKVLlzZp8/LlS/n7+0e5n0uXLqlw4cJG+CS9XWetbNmyUe5DevuZCZ8qWbBgQdna2mru3Lm6cuWKrl27FuW5E7E/Hjx4oKCgIBUvXtxku6VKlYoxgIrpXPDz81ORIkVMzs93+yE2ly5dUvny5U0eK1CggGxsbHTx4kVVrlxZxYoV04EDB2Rvb69jx47p559/1u7du3X27Fndu3dP1tbWKlGihCwtLdWmTRtt27ZNp0+f1rVr13Tx4kXdvXvXZGqZZNq/ly5dUqFChUzWJipRokSMdfv5+en06dMmNxUIH43n7+8fKYCKrX349MuI70/y5Mk1aNAgSYr2bnDvnifhHjx4oDt37kS6FnTs2DHaY2ratKlGjx6tESNG6NmzZzpw4IAxesnPz09//vlnpM/gu+d5TOdtRLFdqyKOxLp8+bJevnypfv36mXx2wwPIFy9eJNp1CQAAAP8cAihEK3PmzMqVK5dOnDihAwcOmKzxVKFCBQ0bNkznzp3ThQsXNHbsWJPXxrbobNOmTeXl5aWzZ89q48aNqlatmjFS4l3h68Y0btzYeCz8i9zy5cujDaDe/V9/BwcH7dmzRwcOHNChQ4e0fv16/fTTT5o/f74xAuBdKVKkMPl97ty5mjlzpho3biwnJye1a9dOu3bt0ubNm2M8XuntlyoXFxcVLlxY5cqV01dffaW0adMaoxXCxWdB4YhBQFSiWw8lNDTU5LUx7TNdunTasGGDcR7s379fS5YsUY8ePaKd3hbViIuI4Uu46IKh0NBQ1a9f32QtoIj1hHv3/WndurVq1aqlPXv26NChQ5o+fbp++uknrV+/3hhhFnEfnTp10p9//ql69eqpTp06Kly4sDEyJ6KIo/tCQ0OVK1cu/fTTT5HaWVtbR3k8UR37u2L6zBw9elTt27dXlSpVVLJkSdWvX1/BwcHq1q2bSbuI/RG+z/iuiRPTuWBpaRkp2Imv6OoJCwszzklnZ2ft3LlTZcqUUerUqWVvb6+iRYvqyJEjCgoKUtWqVWVpaannz5+rTZs2evHihWrVqqXGjRvL3t7eGNkXUcS+sbCwiHQcsb1HoaGh6tChg8l1KFzEUZNxbR8+IjS+Ip6LEcV2LYjKV199pZEjR+q3337T3bt3lTFjRiMUDQ0NVdmyZTV8+PBIr4sY2sd1gfH41Bd+jkybNi1SICq9PUdTpEgR7+sSAAAAPizWgEKMypUrp+PHj+vEiRMmoxayZcumnDlzaunSpUqXLp0xhSmu8uTJIwcHB23dulW7du0ypnO8y8/PT+fPn1fnzp21fv1642fDhg2qWLGiduzYYSxebGVlZTKV49q1aybbmj59uv744w9Vq1ZNQ4YM0fbt25U9e3Zt375dkiKtpxKV2bNnq1u3bhoxYoRatmyp4sWLKyAgIE5f8lesWKH06dNr4cKF6tixoypXrmys/ZTQhXNz5MghKysrk7sVSlKLFi20aNEi2dnZ6cyZMybrBN29e1fXrl1Tnjx54rSPjRs3avny5cYC5qtWrVLz5s21ZcsWSW/7/dmzZyavebfv4ytfvny6fPmycuTIYfy8fv1a48aNM1k7LKJ79+5p1KhRevXqlZo0aaJJkyZp48aNunPnjo4ePRqp/fnz57V37155eHiof//+atCggb788ktdv349xvcjf/78unnzpmxsbIzaPv/8c02ZMkW///57lK/Jmzev/Pz8TEYr/fLLL3J2dtbLly9j7Y8FCxbI0dFRnp6eateuncqXL2/0Q3S12tjYKFu2bDp58qTJ4+/+Hh8FChSQn5+fyYi8iNMIo/Lu58rOzk5//PGHyWMXLlzQ06dPjXPS2dlZZ8+e1S+//GKEw+XKldPhw4dN1n/av3+/zp07pyVLlqhnz56qU6eOUqVKpXv37sX4HhYoUEBnz541+VxENW0sonz58unq1asm5+StW7c0ceLESOd/XNqHH2vEz+7r16/l7Oysbdu2xel6FJGNjY0yZcoU6VrQs2fPaKcWWltbq3bt2tqxY4c2b96shg0bGqFwvnz55O/vr6xZsxr129raauzYsZGmqMZFbNeqiHLnzq2kSZPq5s2bJv23Z88eeXl5KUmSJLFelwAAAPDvQwCFGDk5OWnr1q2ysLCINEWlYsWK2rp1q5ycnOL9ZUl6OwrK29tbKVKkiDQlJ5yPj48+++wzubm5GWs/hf907NhRISEhxgip4sWLa/Xq1Tp//rz8/Pw0YsQIk9EcN27c0PDhw3Xo0CEFBQVp+/btunnzpjHFxNraWo8ePTKmikQla9asOnDggC5fvqwrV65o6tSp2rFjR4x3wgqXJUsW3bp1S3v27FFQUJB27NihESNGSFKcXh+Vzz77TG3atJGHh4d27dql69ev68cff9SlS5dUqVIltWrVSs+ePdOAAQN04cIFnT59Wr169VLatGkjTZuMzsuXLzVhwgStX79egYGBOnbsmH7//Xej34oXL66HDx/Ky8tLgYGBWrFihfbu3Zug4wnn5uYmPz8/jRw5Uv7+/jpx4oT69eungICAaKcg2draavfu3RoyZIjOnz+vGzduaMWKFbKyslKRIkUitc+QIYOSJk2qrVu36saNGzpz5ox69+6tO3fuxPh+NGjQQLa2turZs6dOnTolf39/ubu7a+/evdEGsS4uLnrw4IGGDx8uf39//f7775o4caLKli0b7YiWiLJmzaqLFy/q2LFjCgwM1Nq1a+Xh4SEp5nOnY8eO8vb2lo+Pj65duyYvLy8jcE0IFxcXPX78WEOHDpW/v78OHjyo0aNHS4o+wA0fFXbhwgU9e/ZM3377rS5evKjRo0fL399fR44cUf/+/VWoUCEjbMqbN6+yZcum1atXG485OTnp8OHDevjwoXG9yJIli6S3IWlQUJCOHTumrl276tWrVzH2S6tWrRQcHKz//e9/8vf312+//WYslh6djh07avv27ZoxY4auXr2qQ4cOadCgQXry5EmUI6Bia58rVy5jBNLhw4d19epVDR06VC9fvlSZMmWMfrt06ZKePHkSY23hvvvuOy1evFgbNmzQ9evXtWTJEu3atcsI7KLSpEkT/fbbbzp58qTJfwS4uLjoyZMn6t+/vy5cuKALFy6oT58+OnPmjPLnzx+neiKK7VoVkY2Njb7++mt5eHhow4YNunHjhrEofqZMmSTFfl0CAADAvw9T8BAjR0dHvXjxQpUrV440haJChQr6+eefow2PYlO7dm2NHj1ajRo1inIaR0hIiHx9fVW/fv0op+c5OjqqcOHCWrVqldzc3DRixAiNGDFCLVq0UKZMmdSrVy/dunXLaD98+HBNmDBBAwYM0MOHD5UtWzb1799fDRs2lPR2OsqqVavUoEEDeXt7R1nzxIkTNWrUKDVt2lQpU6ZUsWLFNHLkSI0YMUI3b96Mcf0RV1dXXblyxbhzWc6cOdW3b19Nnz5dZ86cifQlLK769u0rS0tLDR8+XE+ePFGBAgU0d+5cY+qKt7e3Jk2aZNwNr3z58po0aZJSp04dp+03b95cDx8+1KxZs/TXX3/J1tZWNWvWVP/+/SW9XcuoR48eWrBggaZPn65KlSqpZ8+eWrJkSYKOR3obas2fP18eHh5q3LixrK2t5eTkpO+//z7aKWJJkybVvHnzNGHCBLVr107BwcEqWLCg5s6da7LWVLjMmTNr/Pjx8vT01NKlS5UxY0ZVqVJF7dq1M7mD2rtsbGzk7e2tiRMnGnduK1y4sBYsWBDtqLLMmTNrwYIFmjRpkho1aiRbW1vVqVPHWP8mNj179tTdu3eNKYl58+bV2LFjNWDAAJ05cyba/bZq1UqPHj3StGnT9ODBA5UpU0aNGzeONAIprtKnT6/58+dr7NixatiwobJkyaJWrVpp4sSJ0U6xyp8/vypXrqzevXurb9++xl3qpk2bpkaNGilVqlSqXr26+vXrZ7KNqlWravHixcaUsOLFiytFihRydHQ0whl7e3sNGjRIixYt0rRp05Q5c2bVqVNHWbNmjTTSJqLMmTNr8eLFGjt2rBo3bqysWbOqS5cuJnclfFetWrU0depUzZkzR7Nnz1aaNGnk7OxsfA4S0n7s2LGaOHGievXqpZCQEBUrVkxeXl7GNNOmTZtq4sSJunbtmmrUqBFtbeHCpyN6eHjozp07ypkzp6ZOnaoyZcpE+5pSpUopY8aMSp8+vckaYtmzZ5e3t7emTJmiVq1aydLSUiVKlNCSJUtMpsHGR0zXqjt37pi0HTRokNKmTSsPDw/9/fffypo1q3r27GncFCK26xIAAAD+fSzCEjr3B3hPN27c0FdffaWtW7dGO6oFQMLt3btXefPmNQlGhw4dquvXr2vx4sXx3t7ly5f16NEjlSxZ0njs+PHjatWqlXbv3m3ciQ74mISHlZN2HNbFoFuxtAaAT4Ndtixa0i/6G1X8lz1//lznz59XwYIFo13fE5HRbwnzKfRb+L+lihYtGmtbpuDhH/fXX39p+/btGjJkiCpWrEj4BJjJhg0b1LVrV508eVJBQUFav369Nm7caIz6i69bt27J1dVV69evV1BQkE6cOKFx48apTJkyhE8AAAAAYsQUPPzjHjx4IHd3d+XMmVMzZsz40OUAn6yhQ4dq/Pjx6tatmx4/fqwcOXLof//7X7SL/semQoUKGjx4sObMmaOhQ4fKxsYmxmloAAAAABCOAAr/uEKFCsV65ywA7y9NmjQaP358om7TxcVFLi4uibpNAAAAAJ8+puABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAigAAAAAAACYFQEUAAAAAAAAzIoACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmlTShL9yzZ48OHjyov//+W3379tX58+dVuHBhZcuWLTHrAwAAAAAAwEcu3gFUcHCwunXrpoMHDypVqlR69uyZOnTooOXLl8vPz0/e3t7Kly+fOWoFAAAAAADARyjeU/B+/PFHnTt3TosWLdLhw4cVFhYmSZowYYIyZ84sDw+PRC8SAAAAAAAAH694B1Bbt25V3759VbZsWVlYWBiPZ8qUSV26dNEff/yRqAUCAAAAAADg4xbvAOrx48fRrvNka2ur58+fv3dRAAAAAAAA+HTEO4DKly+ffH19o3zu119/Zf0nAAAAAAAAmIj3IuRdunRR9+7d9fDhQ1WtWlUWFhb6/fff5ePjoxUrVmjKlCnmqBMAAAAAAAAfqXgHUNWrV9ekSZM0ZcoU7dmzR5I0fvx4pU+fXiNGjFCtWrUSvUgAAAAAAAB8vOIdQElS/fr1Vb9+fV25ckUPHz5U6tSplTt3biVJEu8ZfQAAAAAAAPjEJSiACpc7d+7EqgMAAAAAAACfqDgFUAUKFJCFhUWcNmhhYSE/P7/3KgoAAAAAAACfjjgFUN26dYtzAAUAAAAAAABEFKcAqkePHsafb968qQwZMihZsmSR2r18+VLnzp1LvOoAAAAAAADw0Yv3quHVqlXThQsXonzu9OnT+vbbb9+7KAAAAAAAAHw64jQCasKECXr48KEkKSwsTLNmzVLatGkjtTt//rxsbGwStUAAAAAAAAB83OIUQOXOnVs//fSTpLeLjJ89ezbSFDxLS0vZ2Nho0KBBiV8lAAAAAAAAPlpxCqCaN2+u5s2bS5KcnZ01c+ZMFSxY0KyFAQAAAAAA4NMQpwAqol9//dUcdQAAAAAAAOATFacAytXVVcOHD1eePHnk6uoaY1sLCwstXrw4UYoDAAAAAADAxy9OAVRYWFiUf46tLQAAAAAAABCnAKpp06ZKly6dJOnnn382a0EAAAAAAAD4tCSJS6NBgwbpxo0b5q4FAAAAAAAAn6A4BVBMqwMAAAAAAEBCxSmAAgAAAAAAABIqTmtASdKaNWu0d+/eWNtZWFioW7du71UUAAAAAAAAPh1xDqBWrVoVp3YEUAAAAAAAAIgoXgGUvb29OWsBAAD4IHJmzvChSwCAfwzXPAAfQpwDKAAAgE/VqDaNP3QJAPCPehMaKsskLAkM4J/DFQcAAPynhYSEKDg4+EOX8VEJDg6Wn58f/RZP9FvC0G8JE1u/ET4B+Kdx1QEAAP95YWFhH7qEj0pYWJiCg4Ppt3ii3xKGfksY+g3Av02cpuBduHDB3HUAAAAAAADgE8UIKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALOK0yLkUfH399eBAwf0999/q23btrpx44YKFCigVKlSJWZ9AAAAAAAA+MjFO4AKDQ3VsGHDtHbtWoWFhcnCwkK1a9fWrFmzdP36dXl7eytLlizmqBUAAAAAAAAfoXhPwZs1a5Z8fX31ww8/6MCBAwoLC5MkDRgwQKGhoZo6dWqiFwkAAAAAAICPV7wDqLVr16pnz55q2rSp0qRJYzxesGBB9ezZUwcOHEjM+gAAAAAAAPCRi3cAdffuXRUsWDDK5zJnzqzHjx+/d1EAAAAAAAD4dMQ7gMqRI4f27NkT5XNHjx5Vjhw53rsoAAAAAAAAfDrivQj5N998o2HDhunVq1eqWrWqLCwsdO3aNR05ckQLFiyQu7u7OeoEAAAAAADARyreAVTz5s11//59/fTTT1q+fLnCwsLUt29fWVlZqUOHDmrVqpU56gQAAAAAAMBHKt4BlCR16tRJrVu31vHjx/Xo0SOlTp1axYoVM1mUHAAAAAAAAJASGEBJUqpUqVSpUqXErAUAAAAAAACfoDgFUM7OzrKwsIjTBi0sLLRz5873KgoAAAAAAACfjjgFUGXKlIlzAAUAAAAAAABEFKcAavz48ZEee/PmjSwtLSVJwcHBev36tWxsbBK3OgAAAAAAAHz0ksT3Ba9fv9bw4cPVokUL47ETJ07IyclJEyZMUGhoaKIWCAAAAAAAgI9bvAOo6dOna+PGjapbt67xWKFChdS/f3+tWrVK8+fPT9QCAQAAAAAA8HGL913wfH199f333+vrr782HkuTJo3atWunpEmTasmSJfruu+8StUgAAAAAAAB8vOI9AurBgwfKnj17lM/lzp1bt27deu+iAAAA/kncbCV+LCws9Nlnn9Fv8US/JQz9ljD0W8LQbwlDvyXMf63f4j0CKnfu3Nq+fbvKly8f6blff/1VOXLkSJTCAAAA/gnJkiXTZ5999qHL+Kh89tlnKlSo0Icu46NDvyUM/ZYw9FvC0G8JQ78ljLn67U1oqCyTxHu8kdnFO4BydXWVu7u7Hj58qOrVqyt9+vS6f/++fvvtN23dulXjxo0zR50AAABmM2TXal19cOdDlwEAAPBecqXNqB+qNf/QZUQp3gFUo0aN9OzZM82aNUs7duwwHk+bNq2GDh2qRo0aJWZ9AAAAZnf1wR1dvPvXhy4DAADgkxXvAEqSWrduLRcXF129elUPHz5U6tSplTt3biX5Fw7xAgAAAAAAwIeVoABKertYVu7cuROzFgAAAAAAAHyC4hRAFSxYUCtXrpS9vb0KFCgQ4wrtFhYW8vPzS7QCAQAAAAAA8HGLUwDVrVs3Zc6c2fjzf+UWgQAAAAAAAHh/cQqgunfvbvy5R48eMba9devW+1UEAAAAAACAT0q8Vw0vWLCgTp8+HeVzx44dU+3atd+7KAAAAAAAAHw64jQCasGCBXr+/LkkKSwsTKtXr9bevXsjtTtx4oSSJUuWuBUCAAAAAADgoxanAOrly5eaMWOGpLeLjK9evTpSmyRJksjGxkZdunRJ3AoBAAAAAADwUYtTANWlSxcjWCpQoIBWrVole3t7sxYGAAAAAACAT0O814AqV66cnj17Zo5aAAAAAAAA8AmKdwB14sQJWVhYmKMWAAAAAAAAfILiHUBVrFhRGzdu1KtXr8xRDwAAAAAAAD4xcVoDKqLkyZNr48aN2rp1q/LkySNra+tIbZYsWZIoxQEAAAAAAODjF+8A6tatW3JwcDB+DwsLM3n+3d8BAAAAAADw3xbvAOrnn3+O8vHbt29r9erVWrNmzXsXBQAAAAAAgE9HvAOod+3bt08rVqzQnj179Pr1a2XPnj0x6gIAAAAAAMAnIkEB1P3797VmzRqtWrVKQUFBSpUqlRo3bqyGDRuqVKlSiV0jAAAAAAAAPmLxCqAOHz6slStXaufOnXrz5o1KliypoKAgzZw5U2XKlDFXjQAAAAAAAPiIxSmAWrRokVauXKmrV68qR44c6tq1qxo3bixra2uVKVNGFhYW5q4TAAAAAAAAH6k4BVDjx4+XnZ2dlixZYjLS6cmTJ2YrDAAAAAAAAJ+GJHFpVLduXV27dk2dOnVS165d9csvv+j169fmrg0AAAAAAACfgDiNgJoyZYqePn0qX19f+fj4qEePHkqbNq2qV68uCwsLpuABAAAAAAAgWnEaASVJqVKlUqtWrbR69Wr5+vqqYcOG+vXXXxUWFqb//e9/8vDw0OXLl81ZKwAAAAAAAD5CcQ6gIsqXL5/c3d21Z88eeXp6Knfu3Jo3b57q16+vBg0aJHaNAAAAAAAA+IjFaQpetC9OmlQ1atRQjRo1dPfuXa1bt07r1q1LrNoAAAAAAADwCUjQCKioZMiQQR07dtSWLVsSa5MAAAAAAAD4BCRaAAUAAAAAAABEhQAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAigAAAAAAACYFQEUAAAAAAAAzIoACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFPAe2rZtKzs7u2h/7t+/r0GDBqlcuXJ68+ZNlNv46aefVKpUKb148SLe+3/48KHatWunokWLqlmzZu97OAkSEhKinj17yt7eXhUqVFBoaGisr3nw4IFWr179D1QXP23btpW7u3uibePIkSOys7NTYGBgYpT3r5IYfRUfnp6ecnZ2Nn7/888/tXv37gRv71N5b5ydneXp6fmhy4jVH3/8oWPHjsW5vbu7u9q2bWvGigAAAPBPS/qhCwA+drVr19bgwYOjfC5t2rRq2rSpfHx8dODAAVWqVClSm/Xr16tevXpKkSJFvPe9ceNGHTt2TMuWLVPmzJnj/frEsG/fPm3fvl1z5syRnZ2dkiSJPdeeOHGiAgMD1bx583+gQnwK3Nzc1Lp1a+P3Tp06qXHjxqpSpUqCtufg4KD9+/crXbp0iVThh7FmzRolT578Q5cRKxcXF40bN06lSpX60KUAAADgAyGAAt5TihQplDFjxmifL1WqlHLmzClfX99IAdTJkycVEBCgKVOmJGjfjx8/VsaMGWVvb5+g1yeGx48fS5IqV64sCwuLOL0mLCzMnCXhE5QyZUqlTJky0baXLFmyGD+3H4uPPUADAADAfwdT8IB/QNOmTbVz504FBwebPL5u3ToVKFBARYoUkSQFBASoffv2KlmypBwcHNS+fXtdvHgxym26u7vL09NTN2/elJ2dnXx8fBQaGqo5c+aoZs2aKlKkiEqUKKEOHTro+vXrxuuePXum0aNHq0KFCnJwcFCbNm109uxZ4/njx4+rdevWsre3V5UqVTRy5Eg9ffo0yho8PT2NaVgFChSQp6enfHx8ZGdnZ9Iu4mPu7u5at26djh49ajwW1XSud6eyFSpUSHPnzpWjo6OaNGmi0NBQ3b59W3369FGpUqXk6Oiozp07KyAgIMb34vTp02rXrp0cHBxUrlw5DR8+3OR9efbsmQYNGqRSpUqpZMmScnd31/Pnz43nd+7cqebNm6t48eIqWrSomjRpon379sW4z3BhYWGaN2+eqlWrpmLFiqlhw4bauHGj8Xz4ce7Zs0f16tVTkSJFVKtWLe3cudNo8+bNG02dOlUVKlRQ8eLF1bNnT40ZM8ZkupK/v786duwoBwcHVahQQf369dOdO3eM5+Nznklvp1mOHTtWTk5OKlmypCZNmhRpquX77tPOzk5Lly5VixYtVLRoUdWvX1+7du0yno84Bc/Z2VlBQUGaMWOGcdxPnjzR0KFDVbZsWZUsWVKurq46c+ZMtMf07hQ8Z2dneXl5qUePHnJwcJCjo6N++OEHvX792nhNTOdO27ZtNXToUDVv3lylSpUy3te1a9eqdu3asre3V+3atbV48WKTvjt27JhcXV1VokQJFSlSRLVr19aGDRuM5+/du6eePXvK0dFR9vb2+vrrr3X06FHj+YhT8Dw9PdWuXTvNnTtXlSpVUtGiRdWmTRv5+/sb7e/fv2/ymZk8ebJcXV2jncYX1VTFdx9r27atxowZo759+6pYsWKqVKmS5s6dawTN4Z/zQYMGGZ/p2I77XWPGjFHp0qV1+vRpSfF/vwEAAPDhEUAB/4BGjRrp5cuXJl+oQ0JCtHXrVpNpaH379lXmzJm1du1arV69WkmSJFH37t2j3ObgwYPl5uamLFmyaP/+/apTp46WLFkiLy8vubu7a/v27Zo5c6YCAgI0fvx443W9e/fW3r17NW7cOK1fv17Zs2eXm5ubHj16pAsXLujbb79VxYoVtXHjRk2ePFnnzp2Tm5tblKOW3Nzc9L///U+StH//frm5ucXaF4MHD1bt2rWNKVBx9ebNG+3Zs0crV67UmDFj9OLFCyN88Pb21s8//6y0adOqRYsWun37dpTbuHHjhr755htlypRJK1eulKenpw4cOKCRI0cabXbs2KFMmTLJx8dHEydO1JYtWzRv3jxJ0tmzZ9WjRw/VrVtXvr6+WrVqldKlS6eBAwcqJCQk1mOYOnWqli9frqFDh8rX11eurq4aMWKEli5danKckyZN0uDBg7Vp0yblz59f33//vZ49eyZJmjx5slauXKnhw4dr7dq1ypgxo37++Wfj9bdv35aLi4ty5MihNWvWaPbs2Xr69KlatmxpBGnxOc8k6YcfftCWLVs0fvx4rVixQrdu3TJZzyex9jl58mQ1bNhQGzZsUOXKldW9e3cdP348Uj1r1qxRlixZ5ObmJk9PT4WFhaljx466ceOG5syZo1WrVql48eJq1aqV/Pz8Yn1fwnl4eKh06dLauHGjBg4cKG9vb23atElS3M6d1atXy9XVVcuWLVPFihW1cuVKTZw4Ud27d9fmzZvVu3dvzZs3T5MnTzb6rX379ipatKjWrVun9evXy97eXoMHD9bdu3clSSNGjNDLly/l7e0tX19f5cqVS127djUJRSM6duyY/vjjD82dO1fLli3TvXv3jBpDQ0PVqVMnXbt2TfPnz9eCBQt08uRJk0AroZYvXy4bGxv5+PioT58+mjlzpvG5Cf+c/+9//9PgwYPjdNwRTZw4URs2bNDChQtlb2+faO83AAAA/llMwQPek6+vr7Zv3x7p8erVq2vSpEmSpEyZMqlSpUry9fVVvXr1JEm//vqrXrx4ofr16xuvuX79usqVK6ds2bLJyspKY8eO1ZUrVxQaGhppbSUbGxtZW1vL0tLSmEr05ZdfasKECapataokKVu2bKpVq5a2bdsmSbpy5Yr27t0rLy8vVahQQdLbL7ipU6fWgwcP5OXlpfLly6tz586SpJw5c2rKlCmqXr26jh49KkdHR5MaUqZMKRsbG0mK83QmGxsbpUiRQlZWVvGeAuXm5qacOXNKevtl//Hjx5o0aZKSJn17KRszZoyOHDmiVatWqUePHpFev2rVKqVJk0Zjx441XvPDDz/oxIkTRht7e3v16dNH0tv+LF++vDFCzNLSUkOHDpWLi4vR3tXVVR07dtS9e/eUNWvWaGt//vy5Fi1apB9//NFYt+jLL79UUFCQvLy8TNY36t27t5ycnCRJXbt21fbt23Xp0iUVKFBAy5Yt06BBg1SjRg1J0pAhQ0zqX758ubJkyaIhQ4YYj02bNk1ly5bVtm3b1KRJk3idZ0+fPpWPj4+GDx+uypUrS5LGjh2rw4cPJ/o+mzRpYvRD//79dfToUXl7e6tEiRImNaVLl06WlpaytrZWmjRpdOjQIZ08eVKHDx9WmjRpJL0NvI4fP64lS5aYBLAxqVChglxdXSVJ2bNn188//6zjx4+rUaNGcTp3ChYsaPJ5njVrlrp06aK6desa23z69KlGjhypXr166eXLl+rRo4fat29vTF/97rvvtH79egUEBChDhgy6fv268ufPr+zZsytFihQaPHiw6tevL0tLyyiP4fXr15o4caJsbW0lSV9//bVxHTp69KhOnz6trVu3Knfu3Mb7FHFx94TKlSuXRowYIQsLC+XJk0f+/v5asmSJOnbsaHzObWxsZGNjowcPHsR63OGmTp2qtWvXatGiRSpUqJAk6fDhw4nyfgMAAOCfRQAFvCdnZ2f1798/0uPW1tYmvzdr1ky9evXS/fv3lS5dOq1fv141atQwvihKUp8+fTR27FgtW7ZMZcqUUcWKFVWvXr04LewdXsupU6fk4eGhq1ev6urVq7p8+bKxQPmlS5ckScWLFzdekzx5cg0aNEiS5Ofnp2vXrsnBwSHStv39/SMFUP+08PBJelvro0ePVLp0aZM2L1++NJlyFNGlS5dUuHBhI0CQpLJly6ps2bJR7kOSbG1tFRQUJOltwGBra6u5c+fqypUrunbtmi5cuCBJ0d7lMNzly5f18uVL9evXz+T9fP36tUJCQkzughgeDkhSqlSpJEmvXr2Sv7+/Xrx4YfL+WVhYqGTJkkYdfn5++vPPPyO9hxH7JT7n2dWrV/Xq1SsVLVrUeCx58uRGGJCY+3z3/HJwcNCBAwei6k4T586dU1hYmBG8hgsJCdHLly9jfX24PHnymPxuY2OjV69eSYrbuZMjRw7jz/fv39etW7f0448/ysPDw3g8NDRUL1++VGBgoPLkyaMmTZpoyZIlunTpkq5fvx7pfOrevbsGDBig7du3q2TJkqpQoYLq1asX7cLjGTJkMLmmRDwGPz8/2drampxfGTJkUK5cueLcR9FxdHQ0WQPOwcFB8+bN04MHDyKtU/Xll1/GetzS2zXyfv/9d6VLl84k3E2s9xsAAAD/LAIo4D2lTJnS5ItndKpUqaI0adJo69atql27tvbt26f58+ebtGndurVq1aqlPXv26NChQ5o+fbp++uknrV+/3mRUQHTmzp2rmTNnqnHjxnJyclK7du20a9cubd68WZJMvjxHJTQ0VPXr1zdGQEX0PosdxxbORCXi2jvhIn7pDg0NVa5cufTTTz9Favdu+BcutuOXFO3IEuntCJL27durSpUqKlmypOrXr6/g4GB169Yt1u2GT2GcNm2aSQAQLlmyZFH+OeLrw+uPaRH30NBQlS1bVsOHD4/0XPhotficZ+Ghwrv7jNiXibXPd9+fN2/exCl8DQ0NVapUqeTj4xPpuaj6MjrR9XtUtUUl4p0sw9d5GjRokMqVKxepbdasWXX58mW5uLiocOHCKleunL766iulTZvWZFpujRo1tG/fPu3bt08HDx7UwoULNWPGDK1atUr58uWL0zGEs7S0jLR2V0JE9Xl+t3/C9xPV5ykuxy29/RzPnj1b/fr10w8//GDcrCGx3m8AAAD8s1gDCviHJE2aVA0aNNDWrVu1bds2ZcmSxWT0xL179zRq1Ci9evVKTZo00aRJk7Rx40bduXMnzmu0zJ49W926ddOIESPUsmVLFS9eXAEBAcaX6PARHhEX6339+rWcnZ21bds25cuXT5cvX1aOHDmMn9evX2vcuHH666+/4lSDlZWVJJksXP7uwuDv3i3PysrKpH1oaKhu3LgR437y58+vmzdvysbGxqj1888/15QpU/T7779H+Zq8efPKz8/P5Av0L7/8Imdn5ziNnFiwYIEcHR2NxZ7Lly9v9Etsd/bLnTu3kiZNqps3b5r07549e+Tl5RWnoCVHjhxKkSKFTp48afL4qVOnjD/ny5dP/v7+ypo1q7EPW1tbjR07VpcuXYr3eZYrVy4lT57cZC2m169fGyNWEnOf7y4ifeLECRUuXDjWfsmfP7+ePn2qV69emfTtvHnzTNZdex/xPXfSp0+vdOnS6caNGyY1nTt3TtOmTZMkrVixQunTp9fChQvVsWNHVa5c2VgDKSwsTCEhIRo3bpxu3LihOnXq6IcfftDOnTuVJEkS7d69O97HUKBAAT158sRkhOCDBw907dq1aF8Tl8+zFPm9O378uL744guT0VjhYjvucPnz55eDg4NGjBihTZs2GYvx/xPvNwAAABIfARTwnl68eKE7d+5E+fPuwtTNmjXT8ePHtXr1ajVt2tQkiLG1tdXu3bs1ZMgQnT9/Xjdu3NCKFStkZWVl3CUvNlmzZtWBAwd0+fJlXblyRVOnTtWOHTuMOnLlyqWvvvpKI0eO1OHDh3X16lUNHTpUL1++VJkyZeTm5iY/Pz+NHDlS/v7+OnHihPr166eAgIBIU9OiU7x4cVlYWMjT01OBgYHaunWr1q1bZ9LG2tpaf//9txEyFS9eXAcOHNDevXt17do1jR49Wo8fP45xPw0aNJCtra169uypU6dOyd/fX+7u7tq7d2+ku/CFc3Fx0YMHDzR8+HD5+/vr999/18SJE1W2bNlopzRFlDVrVl28eFHHjh1TYGCg1q5da0yvim0RchsbG3399dfy8PDQhg0bdOPGDa1Zs0aTJk1SpkyZYt23JH322Wdq27atpk+frp07d+rq1auaMGGCSQDl4uKiJ0+eqH///rpw4YIuXLigPn366MyZM8qfP3+8z7OUKVOqTZs2mj59unbs2CF/f38NHz7cZKH3xNrn4sWL5evraxzXxYsX9c0330TZFylTplRAQIDu3r2rihUrqmDBgurTp48OHz6sa9euady4cfLx8Yk0rS6h4nvuWFhYqGPHjvr555/l7e2t69ev65dfftGIESOUIkUKJUuWTFmyZNGtW7e0Z88eBQUFaceOHRoxYoSkt+dTsmTJdObMGQ0dOlQnT55UYGCgfHx89Pz58yinycbG0dFRxYoV08CBA3Xy5ElduHBB/fv3V3BwcKRQOFz+/PllbW2tuXPn6vr169q3b58WLlwYqd2xY8c0ffp0BQQEaM2aNVq6dKk6dOhgPG9tbS1/f389ePAg1uN+V6VKlVSvXj2NGDFCjx49+kfebwAAACQ+puAB72nr1q3aunVrlM95eHioVq1axu958uSRvb29Tp06FWnqWNKkSTVv3jxNmDBB7dq1U3BwsAoWLKi5c+fqyy+/jFMtEydO1KhRo9S0aVOlTJlSxYoV08iRIzVixAjdvHlTn3/+ucaOHauJEyeqV69eCgkJUbFixeTl5aV06dIpXbp0mj9/vjw8PNS4cWNZW1vLyclJ33//fZyntmTPnl0jR47UnDlztGzZMpUsWVIDBw7U999/b7Rp1KiRfvnlF9WrV087duyQm5ubrl+/rl69eilZsmRq1qyZ6tatG+OoIhsbG3l7e2vixIlq37693rx5o8KFC2vBggXRfgnNnDmzFixYoEmTJqlRo0aytbVVnTp11Ldv3zgdW8+ePXX37l1jimLevHk1duxYDRgwQGfOnIn1y++gQYOUNm1aeXh46O+//1bWrFnVs2dPky/qsenVq5devXqlIUOGKDg4WFWrVlW1atWMUTjZs2eXt7e3pkyZolatWsnS0lIlSpTQkiVLjGmU8T3P+vXrp+TJk2vUqFF69uyZateubbJwdWLt8+uvv9aiRYuMBde9vLxUoECBKGtq27atJkyYoD///FMbN2403tfevXsrODhYefLk0YwZM4zF3N9XQs4dNzc3JU+eXD///LPGjx+vDBkyqEWLFurZs6ektwvYX7lyxbiLYs6cOdW3b19Nnz5dZ86cUaVKlTR16lSNGzdOXbp00ZMnT5Q7d25NnjxZpUqVStBxeHp6atSoUWrXrp2SJ08uFxcXXblyxRjp9K5UqVJp0qRJmjx5surUqaMCBQro+++/jzTttFq1avL391eDBg2UKVMmDRo0SK1atTLpi/nz58vf31/Tp0+P9bjfFX73zB9++EGTJk0y+/sNAACAxGcRFtu8EQDAv8Yvv/yikiVLmqzJ5ebmpixZsmjs2LEfsLL3Y2dnp3HjxqlJkyYfupRP1v3793Xq1ClVqFDBCJxCQkLk6Oio4cOHq1GjRgnabtu2bZUtW7aP9u5z4dMHx1/cp4t34zbVGAAA4N/KLkNWLW3W9R/bX/i/pSLetCg6jIACgI+Il5eXli1bpoEDBypVqlTatWuXDh8+rAULFnzo0vAvlzRpUvXp00dff/21WrVqpVevXsnLy0vJkiWLctQRAAAAkJhYAwoAPiKTJ09WypQp1a5dO9WrV0++vr7y8PAwWdAeiErq1Kk1e/ZsnTx5Uo0aNVLLli119+5dk6mSAAAAgLkwBQ8AAPxnMQUPAAB8Sv7NU/AYAQUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmRQAFAAAAAAAAsyKAAgAAAAAAgFkRQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZkUABQAAAAAAALMigAIAAAAAAIBZEUABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAigAAAAAAACYFQEUAAAAAAAAzIoACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKwIoAAAAAAAAGBWBFAAAAAAAAAwKwIoAAAAAAAAmBUBFAAAAAAAAMyKAAoAAAAAAABmRQAFAAAAAAAAsyKAAgAAAAAAgFkRQAEAAAAAAMCsCKAAAAAAAABgVgRQAAAAAAAAMCsCKAAAAAAAAJgVARQAAAAAAADMigAKAAAAAAAAZpX0QxcAAADwoeVKm/FDlwAAAPDe/s3/piGAAgAA/3k/VGv+oUsAAABIFG9CQ2WZ5N834e3fVxEAAMA/KCQkRMHBwR+6jI9KcHCw/Pz86Ld4ot8Shn5LGPotYei3hKHfEsZc/fZvDJ8kAigAAACFhYV96BI+KmFhYQoODqbf4ol+Sxj6LWHot4Sh3xKGfkuY/1q/EUABAAAAAADArAigAAAAAAAAYFYEUAAAAAAAADArAigAAAAAAACYFQEUAAAAAAAAzIoACgAAAAAAAGZFAAUAAAAAAACzIoACAAAAAACAWRFAAQAAAAAAwKz+j737jq/xfPw//g4Su0FttUuMCIkZMROKoCL2SolZq6gRn9pqb0GtWLVHxBalqD1be4aYbWqPGkHO74/8cn9zZCKnqfb1fDzyIPe5znVf93Xf507OO9d1HQIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAID/PCsrq8RuAgAAwL8aARQAAPhPs7GxUcqUKRO7GZKkMFNYYjcBAADAIpIldgMAAAASm//52brz7HaitiFTquzyLNQhUdsAAABgKQRQAADgP+/Os9v64+n1xG4GAADAvxZT8AAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALCo/3QA1apVK9nZ2cX4df/+ffXv31/ly5fXmzdvoq3jhx9+UKlSpfTixYv32r+Pj8+HHoYmTZokOzs7LVy48IPris6lS5e0a9euD6rD399fdnZ2xveurq7y9fX9wJb9n0OHDkU5f4UKFZKTk5OaNm2qAwcOJNi+PsSzZ8+0ZMkSi+9n586dunz5sqT/65ubN29KSrjrLrHcvHlTdnZ2OnToUGI35YPF9jr4WI/z7dc6/n1evXqlBQsWGN/7+vrK1dU18RokyWQyae3atbp3716itgMAAAAx+08HUJJUq1Yt7d27N9qv9OnTq0GDBrp375727dsX7fMDAgJUp04dpUiR4p337evrq+++++6D2h8WFqaAgADlzZtXK1as+KC6YtKxY0edOnUqQetcvXq1vL29E7ROSVq1apVx/nbv3q25c+cqWbJk6tixo27dupXg+3tX8+bNk5+fn0X3cevWLXXq1CnGN2IJcd3B8rJly6a9e/fK0dExsZvyTtzd3bV3797EbgYsaOPGjRo1apTxvbe3t1avXp2ILZKOHDkiHx8fPX/+PFHbAQAAgJj95wOoFClSKFOmTNF+WVlZqVSpUsqTJ482bNgQ5bm//fabgoOD1bBhw/fad7p06ZQ2bdoPav/evXv1xx9/qE+fPgoKCtKRI0c+qL6/S4YMGZQ6dWqL1Btx/rJkySInJyeNHTtWL1++1I4dOxJ8f+/KZDIl+j4S4rqD5SVNmlSZMmWSjY1NYjflnUTcU/Hv9fY9JnXq1MqQIUMitSbc33FvBQAAwIf5zwdQ8dGgQQNt3749yl9W165dq0KFCsne3l6SFBwcrLZt26pkyZJydHRU27ZtdeHChRjrjTwVyt/fX9WrVzf+tbe3l6enp44dOxZr2/z9/VWwYEG5uroqW7ZsWr58eZTH354O8/a2kydPqnnz5nJ0dFTp0qXVrVs33b59W1L4FKFbt25p2rRpatWqlSTJzs5OU6dOVdWqVVWhQgUFBwfr9u3b6tmzp5ydnVW0aFFVqlRJ48aNU1hYWLTtjjz1KCwsTLNmzVKNGjVkb28vJycntWvXTtevXzfK+/j4vPcUj+TJk0uSkiVLZmw7fvy4WrRoIQcHB1WpUkVDhw7V06dPzdo3Y8YMtW3bVg4ODqpevbpWrVplVu+vv/4qLy8vlSxZUmXLllX//v314MEDszrGjBkjd3d3lS1bVq1atdK0adN069Ytsylxb4tPvW9P24rYdvPmTbm5uUmSvLy8op3e9a7XXWhoqMaNG6eKFSvK0dFRjRs3Nhvh8ubNG40bN06VK1eWvb29atasqWXLlsVwNuIuHxoaqjFjxsjV1VX29vYqU6aMvvnmG92/fz/GOtesWaNatWrJwcFBtWrV0sKFC82uvYCAANWuXVvFihVTxYoVNWLECIWGhsZY39viur7j049PnjxRv379VKpUKZUrV07z58+PdZ9vT8Fr1aqVxowZo969e8vR0VEVKlTQsmXLdOzYMdWrV0/FixdX06ZNFRwcbPb8iFGaDg4Oaty4sVmbfHx81L17d3l7e8vJyUlz5syRJO3atUuNGzc29jNq1ChjmrGPj48aNWpk1tZbt26pUKFC2r9/f5T7i52dnVavXq3WrVvLwcFBFSpU0LRp08yev2HDBtWqVUvFihVTo0aNtGjRolin8ZlMJi1cuFA1atSQg4ODateurY0bNxqP//777+rdu7dcXFxUokQJtW3bVufPnzc7bh8fH40ZM0bOzs4qXry4OnbsqJCQEKNMbNdMfO6rrq6umj17tjp06KDixYvL1dVV27dv1/bt21WjRg2jXZFHKgYFBal9+/ZGv3/77be6c+eO8XirVq00cOBANWrUSKVKldL69euj9E18Xo+xvV4irpvAwEA1atRI9vb2cnV1NUbY+vv7q3///sa5PXTokNkUvIjnb9q0SR4eHipWrJg8PT0VFBSk6dOnq3z58ipTpoyGDh1qFhrt3LlTnp6exv128uTJZq/R2K6jQ4cOycvLS5Lk5uYmf3//KP0CAACAxEcAFQ8eHh5RRtCEhoZqy5YtZm/EevXqpSxZsmjNmjVatWqVkiRJoq5du8Z7P7///ruWL1+ucePGae3atUqZMqV8fHxi/Mvuw4cPtWPHDtWsWVNWVlaqVauWAgMDY32j/rY3b96oY8eOKl26tNavX68FCxbo9u3b+t///icpfKpc1qxZ5e3tbRZmLF26VFOnTtW0adOUJ08eff3113ry5Inmz5+vrVu3ytvbW3PnztXPP/8cZxsWLVokPz8/+fj4KDAwUNOnT1dwcLBGjx5tlPnuu+/ea4rHnTt3NGzYMKVJk8YIZs6fP682bdqoYsWKWr9+vcaPH68zZ87I29vbrK9nzJghR0dHBQQEqEWLFho0aJA2b94sKTy0a9WqlQoUKKCVK1dqypQpOnHihNq2bWu2XtjixYs1YMAAzZ07VzNmzJC3t7eyZs2qvXv3Klu2bFHaG996Y5ItWzYjKPP19Y3XNMe4rrv+/ftr3759Gj9+vNauXatatWqpU6dOxrpgS5cu1datWzVp0iQFBgaqZcuWGjJkiI4ePRrt/uIqP3bsWG3btk2jR49WYGCgRo8erYMHD+qHH36Itr4VK1Zo7Nix6tq1qzZt2qQePXpozpw5Gj9+vKTw8z1gwAB169ZNgYGBGjlypNatW6e5c+fG2TcR4nN9x9WPPXr00MmTJzVz5kzNnz9fu3bteudpoT/++KMKFy6s9evXy83NTd9//72GDBmi//3vf1q8eLH+/PNPTZgwwew5o0ePVqdOnbR27Vrly5dP3t7eunHjhvF4YGCgypcvrzVr1qhOnTr66aef9PXXX6tKlSry9/fX0KFDtXnzZvXq1UuS5OnpqZMnT5oFxBs2bFDWrFlVrly5aNs9ZswY1a9fX5s2bVLLli3l6+trjNbcuXOn+vXrp4YNG2r9+vXy9PQ0zl1M5s6dq0mTJqldu3bauHGjmjZtqr59++rgwYN6+vSpmjVrppCQEP3www9avny5UqRIoZYtW5r198aNG/Xw4UMtXrxYc+bM0ZkzZzR58mRJCXPNSOH3EHd3d23YsEGFChVS3759NXPmTI0bN04zZ87UqVOnjNAvJCREzZs3V+7cubV69WrNnDlTT58+VZMmTfTs2TOjzlWrVsnLy0tLly5VxYoVo+wzrtdXXK+XCKNGjVKnTp20ZcsWValSRUOGDNGNGzfk7u5u/HyIbYropEmT9L///U+rVq3S48eP1axZMwUHB+vHH39Uz549tXTpUu3cuVOS9Msvv6hHjx5q3LixNm7cqMGDB2vLli3q06ePWZ0xXUeOjo7Gz6dVq1bJ3d39nc4TAAAA/h7J4i7y77ZhwwYFBgZG2V6tWjWNGzdOkpQ5c2ZVqlRJGzZsUJ06dSRJP//8s168eKG6desaz7l+/brKly+vHDlyyNraWiNHjtSVK1cUFhamJEnizvpevXqloUOHqnDhwpKkNm3aqEuXLrpz544yZ84cpfzGjRsVGhqq2rVrS5Jq166tefPmyd/fX+3atYvX8T99+lQPHjxQ5syZlSNHDuXMmVOTJ082/iqfIUMGJU2aVKlSpVK6dOmM59WrV0/FihWTJL148UL16tVTrVq1jFCldevWmjNnji5cuKBq1arF2oZcuXJpzJgxqlq1qiQpR44cqlmzprZu3WqUie+UsTp16sjKykqSjMCmdOnSWrJkibJkySJJ8vPzk4uLizp16iRJypMnjyZMmKBq1arp8OHDKlu2rCSpQoUKRoCYL18+nThxQgsXLpS7u7vmzZsnOzs7DRw4UJKUP39+TZw4UfXq1dPevXtVuXJlSVLlypVVvnx5o32pUqUyplZFJ771xiRp0qTGVBhbW9t4TXOM7bp7/vy5Nm7cqICAALPHz58/Lz8/P1WpUkXXr19XqlSp9Nlnnylz5sxq2bKl8uXLp7x580a7v7jKFytWTDVr1lSpUqUkhV8P5cuX18WLF6Otb8aMGfr666+N10HOnDn19OlTDR06VN98841u3rwpKysr5ciRQ9mzZ1f27Nnl5+enNGnSxNk3Uvyv79j68enTp9q7d68WLFhgHNeECROMaz6+ChcurLZt20qSWrZsqeXLl6tVq1bGNVurVi1t377d7DkdOnQw7lvDhw/XwYMHtXLlSn377beSwq+TyPeL7t27q3r16urcubMkKW/evDKZTOrSpYsuX76s0qVLK2fOnFq/fr3x+tiwYYPq1asX433Ow8ND9erVkyR16tRJfn5+On78uEqXLi0/Pz/VrFnTOK68efMqODjYbJHryCJGP3l5eRl/AGjVqpVevHih169fa/369Xrw4IH8/f2N10LE63vJkiXq27evpPB7yrBhw2Rtba38+fPL3d1du3fvlqQPvmYiVKlSRR4eHpKkxo0ba8eOHerZs6ccHBwkSeXLl9elS5ckScuWLVPWrFk1YMAA4/mTJ09WuXLltHXrVnl6ekoKvwYi/9x5W1yvr7heLxFat25thPY9e/bUkiVLdOLECdWpU8e4H8c21dLb21tlypSRJFWvXl0//vijhg0bppQpUyp//vzy9fXVpUuX5OrqqpkzZ6px48Zq2rSppPCfCUOHDtVXX32lmzdv6rPPPpMU+3Vka2srKfxn1vusyQgAAADL+88HUK6ururdu3eU7alSpTL7vmHDhsY0oAwZMiggIEDVq1c3fumVwn9JHzlypJYuXaoyZcqoYsWKqlOnTrzCpwj58+c3/h/xS/6rV6+iLbtmzRoVLVpUefLkkSTZ29srT548Wrlypdq2bWsEMbGJePM5fPhwTZ06VeXKlVPlypVVq1atWJ+XO3du4/8Rowu2bt2qkydP6tq1a7pw4YLu3r0b4xS8yFxdXXXixAlNmTJFV69e1dWrV3X58mUjMHoXs2fPVpYsWfT06VPNnj1bJ06cUOfOnVWoUCGjzNmzZ3Xt2rVo/3IfFBRkvJmP+DeCo6OjMern4sWLcnFxMXu8UKFCSps2rS5cuGAERZH7KT7iW29Ci+m6O3v2rCSpefPmZuVfvXqlTz75RJLUokULbd++XZUrV1bhwoXl4uKi2rVr69NPP412X3GVr1evnvbv36/x48crODhYV65c0dWrV43gJrL79+/rjz/+0MSJEzVlyhRje1hYmF6+fKmbN28aUwcbNmyozz77TC4uLnJzczOmzsblXa7vmPoxIjyLCG0lKWPGjMqZM2e82hAhV65cxv9TpkwpSWZ1pEiRIsr9IvJ1bG1tLXt7e7Mw7+1r9OLFi0Y4ESEiSLh48aI+//xzeXh4aMOGDeratavOnj2ry5cva8aMGTG2O3K/SOF9E9HOM2fO6IsvvjB7vHTp0jEGUA8ePNCdO3dUvHhxs+3t27eXJA0ZMkR58uQxW5MoRYoUcnBwMDvuXLlyydraOto2feg1EyFy30acr8jnMEWKFEbYf/bsWV26dCnKfenly5cKCgqKts7oxPb6is/rJWLK8rv8LIrr2FOlSqWMGTMafRBx7BFT7M6ePauTJ0+ajXKNGDkYFBRkBFCxXUcAAAD45/vPB1CpU6eOV0hQpUoVpUuXTlu2bFGtWrW0Z8+eKNMxWrRooZo1a2r37t06cOCApk6dqh9++EEBAQHKmDFjvNoT3YLD0U3BO3/+vM6ePSsrKysVKVLE2B4WFiaTyaT9+/dHCTIivD2Vq3fv3mrevLnR7uHDh2vu3LkKCAiIcQHkyH9hfvbsmVq2bKkXL16oZs2aql+/vhwcHNSiRYt4HfPs2bM1ffp01a9fX87OzmrdurV27NihTZs2xev5kWXPnt14szJx4kS1a9dOHTp0kL+/v3Gew8LCVLduXWMEVGSR37RGXjMq4nkRYWJM0yJNJpPZm9p3/Ut8fOt92+vXr99pP2+L6bqLaM+SJUuijKaK6Is8efJo27ZtOnz4sPbt26ddu3Zpzpw5GjVqlOrXrx+l3rjKDxo0SIGBgfLw8JCrq6u6dOkiPz8/s/V5IkQEQP379zcbaRYhW7ZssrGx0aJFi3T27FnjExI7deokDw8Ps0/yism7XN8x9WNEGPx2YPX2NRaX6K6BuALut/fx5s0bs+e8fY1Gdw1GtDuirvr162vatGk6deqUNm/eLCcnp1jvo7Hd15IlSxavoDpCbK+DmNovhR9D5L6IbXH35MmTv/M1E90U2ejOb0x/GAgLC1O5cuU0ePDgKI9FHgEa1z0lttdXxJS92F4vf/75p6T4/yyKydvHHtt1GhYWpnbt2kV7v4g8yupD2wQAAIDExRpQ8ZQsWTJ9+eWX2rJli7Zu3RplvZN79+5p2LBhevXqlTw9PTVu3DitX79ed+7c0eHDhxO8PatXr5a1tbWWLl2qgIAA42vZsmWytrY2FoyNeLMWeYHtiEWKJenKlSsaPHiwPv30UzVr1kxTp07V3LlzFRQUZLZob2z27t2rM2fOaNGiRerevbvc3d2VJk0a3bt3L15vDmbOnKkuXbpoyJAhatKkiUqUKKHg4OAPfmORNGlSjR49WkmSJFG/fv2MN7kFChTQ5cuXlTt3buPr9evXGjVqlH7//Xfj+adOnTKr7/jx40bYZ2dnF2WB+PPnz+vp06dR/kofWVyj0uJTr7W1tdn5fPr0qdlCxvEZ+RZfBQoUkBS+llbk/vL39zcW+l20aJG2bdsmFxcX9e3bVxs2bJCzs7OxXtbbYiv/4MEDrVixQoMHD1b//v3l6empwoUL68qVK9FeD59++qkyZMigGzdumLUv8no+u3fv1rRp01SkSBF16NDBuE5jat/bPvT6lmRMyzt+/Lix7fHjx2brKFlK5Os4NDRUZ86cUdGiRWMsb2dnZ9ZOScb6QRHXYI4cOVS2bFkFBgZqy5YtxvSw91GoUCGdOHHCbNuvv/4aY/m0adMqc+bMUV6f3bt316hRo2RnZ6fg4GCz18TLly91+vRpff755/FqU1zXTFz31fdRoEABBQUFKVu2bMZ1bGtrq5EjR8Y4/TQ6sb2+4vN6iY+EvMdI4cd+9epVszb98ccfGjt2rP76669EaRMAAAAS3n8+gHrx4oXu3LkT7dfbn5LVsGFDHT9+XKtWrVKDBg3MfuG1tbXVrl27NGDAAJ07d043btzQ8uXLjSkvCSk0NFQbNmxQjRo15OTkpIIFCxpfjo6OqlOnjnbs2KE7d+6oRIkSsrKyMj4hbcuWLVq7dq1RV/r06bVp0yYNGjRIQUFBunr1qtauXStbW1vly5dPUvgoseDgYN29ezfa9mTNmlWStH79et26dUtHjx5V586d9erVq3h90li2bNm0b98+Xb58WVeuXNGkSZO0bds2s+c+efLknRZXj5AlSxb17dtXv/76q5YsWSIpfG2Ss2fPaujQoQoKCtKvv/6qb7/9VsHBwcZ0RknatGmTlixZouDgYM2dO1c//fSTsVZOmzZtdOHCBQ0fPlxBQUE6dOiQevfurSJFisjZ2TnG9qRKlUqPHj3S1atXo506Ep96S5Qooc2bN+v48eO6fPmy/ve//ylp0qRm+5DCp0s9efLknfsssgIFCqhq1aoaPHiwfv75Z924cUNz5szRrFmzjKlE9+/f17Bhw7Rjxw7dunVLe/bs0blz52JcnDi28mnSpFHatGm1Y8cOY6rbwIEDdebMmWivJSsrK7Vv314//vijFi9erOvXr+unn37SkCFDlCJFCtnY2Mja2lrTp0/XggULdOPGDZ0+fVq7du0ya9+dO3difKP7ode3FD7tqmbNmho2bJj279+vixcvqm/fvu/0SXzva/Lkydq1a5dxrTx//lyNGzeOsXy7du20bds2zZgxQ1evXtXOnTs1fPhwVa1a1SxcrV+/vpYuXaqHDx/GOWU3Nu3bt9fWrVs1f/58BQcHa82aNVq8eHGsz+nQoYMWLlyodevW6fr161q0aJF27NghNzc31a1bV+nSpTMWfT9//rx69+6tZ8+eqUmTJvFqU1zXTFz31ffRvHlzPXnyRL1799b58+d1/vx59ezZU6dOnVLBggXjXU9sr6/4vF7iI+Iec/r0aePTET9E+/btFRgYqGnTpunq1as6cOCA+vfvrydPnsS6zlR0bTp//ny8QysAAAD8vf7zU/C2bNmiLVu2RPvYlClTVLNmTeP7/Pnzy8HBQSdOnIjyiVzJkiXTnDlzNGbMGLVu3VrPnz9X4cKFNXv2bLM1PxLCzp079fDhwxinuLVu3Vpr167VqlWr1LlzZw0dOlSzZs3S0qVLVbJkSfXt21f9+vWTFB5AzZkzRxMmTFDjxo315s0blShRQvPnzzcW3I34+PdLly5F+7HfDg4O6t+/vxYsWKDJkycrS5Yscnd3V7Zs2aKMUojO2LFjNWzYMDVo0ECpU6dW8eLFNXToUA0ZMkS3b99W9uzZNWLECB0+fDhen6r3tkaNGmnjxo2aOHGi3NzcVKJECc2dO1dTpkxR/fr1lSpVKjk7O6tfv35mb8Dq16+vn376SaNHj1aePHk0efJkYw2m4sWLa+7cuZo8ebI8PDyUJk0aVatWTd9++22sU4S++OILrVy5Ul9++aUWL14cZR2b+NTbq1cvPXz4UG3atFHatGnl7e2tx48fG3WkT59eDRo00NixY3Xt2jVVr179nfssskmTJmnSpEkaNGiQHj16pFy5cmnEiBHGdJmuXbvq1atX+v7773Xnzh1lypRJzZo1U8eOHaOtL7bySZMm1ZQpUzR69GjVrVtXtra2Klu2rHr16qVZs2bp+fPnUerz9vZW8uTJ9eOPP2r06NHKmDGjGjdurO7du0sKX+h5xIgRmjdvniZNmqQUKVKocuXK8vHxMeqIWHC+W7duUer/0Os7wpgxYzRmzBj17NlTYWFhatKkyXuFqu+qWbNmGjNmjG7fvq3ixYvrxx9/jPZDDSLUqFFDEydO1A8//KAZM2YoQ4YMqlOnjtGfkcsNGzZM1apVe+fFuSOrVKmShg0bplmzZmnChAmyt7dXs2bNYg2hIqZETpkyRXfu3FGePHk0adIkY62qxYsXa/To0WrdurUkqWTJklq2bFm819yK65rJmTNnrPfV95EzZ04tXrxYEyZMULNmzZQ0aVI5OTlp0aJFZlOD4xLX6zGu10t8lCtXTsWLF1fTpk2ND+v4EDVr1tSkSZM0a9YszZw5U+nSpYtxfcaYFCxYUJUrV1aPHj3Uq1eveH0CKAAAAP5eViYWUACicHV1Vf369aMNJPDvs2XLFt24cUMdOnRI7KYkmJs3b8rNzU2LFi2KsqD+P8nhw4eVMWNGY8SlFD4td/Xq1VE+0Q+whIggef+rNfrjqeWnxcYma5pc6ug0JFHbEF/Pnj3TuXPnVLhw4Sgf3IKY0W/vh357P/Tb+6Hf3g/99n7+Df0W8btU5A9cisl/fgoegP+2sLAwLVy48INHiuH97N27V23bttXBgwd1+/Zt7dixQwsXLlS9evUSu2kAAAAAEtB/fgoegP+2JEmSaNGiRfFe/wYJq2vXrnr27Jn69u2r+/fvK1u2bGrdurWx3hoAAACAfwcCKCAa77PWFD5e/8bw6bPPPtOFCxcSuxlxsrGx0YABAzRgwIDEbgoAAAAAC2IKHgAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYVLLEbgAAAEBiy5Qqe2I34R/RBgAAAEshgAIAAP95noU6JHYTJElhpjAlsWKAOgAA+PfhNxwAAPCfFhoaqufPnyd2MySJ8AkAAPxr8VsOAAD4zzOZTIndBAAAgH81AigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKCuTyWRK7EYAAAAkhuPHj8tkMsna2lpWVlaJ3ZyPhslk0qtXr+i3d0S/vR/67f3Qb++Hfns/9Nv7+Tf0W2hoqKysrOTk5BRn2WR/Q3sAAAD+kSJ+2ftYf+lLLFZWVrKxsUnsZnx06Lf3Q7+9H/rt/dBv74d+ez//hn6zsrKK9+9RjIACAAAAAACARbEGFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAB+tsLAwTZ06VRUrVlSJEiXUvn173bhxI8byDx480LfffqvSpUurTJkyGjp0qJ4/f25WZsuWLXJ3d5eDg4M8PDx04MCBd67jny6h+y0sLExz585VjRo1VKJECdWuXVurVq0yq+OHH36QnZ1dlK+PiSWuty+++CJKn/j4+LxTHf90Cd1v0V1HEV+3b9+WJB07dizaxw8dOmTx400o79pvkZ/Xrl07+fr6RnmM+1vsz4uu37i/xf28mK437m+xPy+6fvvX399MAAAAHylfX19T2bJlTTt37jSdO3fO5O3tbfriiy9ML1++jLZ8y5YtTQ0aNDCdPn3atH//flPVqlVNffv2NR4/cOCAqWjRoqaFCxeaLl++bBo9erTJ3t7edPny5XjX8TFI6H6bMWOGqVSpUqZNmzaZrl27Zlq+fLmpSJEiprVr1xplvvnmG1OfPn1Mf/75p9nXxySh++2vv/4yFSpUyLRz506zPnn8+HG86/gYJHS/vX0NXbp0yVS2bFmzMkuWLDFVq1YtStmY9vlP9K79ZjKZTC9fvjT169fPVLBgQdPUqVPNHuP+9n79xv3t/fqN+9v79du//f5GAAUAAD5KL1++NDk6OpqWLFlibHv06JHJwcHBtGHDhijljx8/bipYsKDZm609e/aY7OzsTH/88YfJZDKZvL29Td98843Z85o0aWIaOHBgvOv4p7NEv1WsWNE0Y8YMs+f179/f1Lx5c+P7WrVqmebPn5/AR/P3sUS/nThxwlSwYEHTw4cPo90n11u4uI65W7duppo1a5q9+Ro8eLCpU6dOCXgkf6937TeTyWQ6duyYqXbt2iY3NzdTqVKloryx5f72fv3G/e39+o372/v129v+bfc3puABAICP0vnz5/XXX3/J2dnZ2PbJJ5+oSJEiOnLkSJTyR48eVaZMmZQ/f35jW5kyZWRlZaVjx44pLCxMx48fN6tPksqWLWvUF1cdHwNL9NuYMWNUv359s+clSZJEjx8/liSFhoYqODhY+fLls9BRWV5C95skXbhwQRkzZpStrW20++R6CxfbMe/du1fbtm3T8OHDZWNjY2y/cOGCWR0fm3ftN0navXu3KlasqICAAKVNm9bsMe5v799v3N/evd8k7m/v22+R/Rvvb8kSuwEAAADv448//pAkZcuWzWx75syZjcciCwkJiVLWxsZG6dKl0++//67Hjx/r2bNnypo1a4z1xVXHxyCh+y1JkiRR3tTevn1bmzZtUtOmTSVJly9f1ps3bxQYGKgRI0bo5cuXKl26tPr06aPMmTMn5OFZTEL3mxT+JiJVqlTq3r27jh8/rvTp06tBgwby8vJSkiRJuN7+v9iOeeLEiXJzc1OpUqXMtl+6dEnp06eXp6enQkJCVLBgQfXs2VMODg4fekh/i3ftN0nq2bNnjPVxf3u/fuP+9n79JnF/e99+i+zfeH9jBBQAAPgoRSxUGvmvgpKUPHlyvXz5Mtryb5eNXP7Fixdx1hdXHR+DhO63t929e1ft27fXp59+qq+//lqSdPHiRUlSypQpNWXKFI0YMUJXrlyRl5eX0e//dJbot0uXLunx48eqUaOG/Pz81KxZM02ZMsVYlJbrLfbyR44c0ZkzZ9S5c2ez7b///ruePHmiZ8+eacCAAZoxY4YyZsyoli1b6vLlyx96SH+Ld+23uHB/S5hj4P4Wf9zfPuwY/q33N0ZAAQCAj1KKFCkkhU9/iPi/JL18+VIpU6aMtnxoaGiU7S9fvlSqVKmUPHlyo763H4+oL646PgYJ3W+RXblyRR06dNCbN2+0aNEiffLJJ5IkDw8PVapUSRkyZDDKFihQQJUqVdLPP/8sd3f3BDk2S7JEv82ZM0cvX740pmHY2dnp6dOn+uGHH9StWzeut0iiO+a1a9fKwcFBRYsWNdueLVs2HTlyRClTppS1tbUkqVixYjp79qx+/PFHDR069IOPy9Letd/iwv3t/fotMu5v74b724ddb//W+xsjoAAAwEcpYsj7n3/+abb9zz//VJYsWaKUz5o1a5SyoaGhevjwoTJnzqx06dIpVapUsdYXVx0fg4TutwjHjh1T06ZNlTJlSi1fvlw5c+Y0e07kN2eSjD6PaZrCP40l+s3GxibKGiAFCxbUs2fP9OjRI663/y+6Yw4LC9PPP/+sunXrRrvfTz75xHhzJoVPpcqfP79CQkLe+1j+Tu/ab3Hh/vZ+/RaB+9u74/72/tfbv/n+RgAFAAA+SoUKFVKaNGl06NAhY9vjx4919uxZlS5dOkr50qVL648//tC1a9eMbYcPH5YklSxZUlZWVnJycjK2RTh06JCx/kJcdXwMErrfJOnkyZNq166dChQooCVLlkT5xXvSpEmqUaOGTCaTse3mzZt68OCBPv/88wQ9PktJ6H4zmUyqVq2apk2bZva8U6dOKVOmTEqfPj3X2/8X3TFfvnxZDx48UPny5aPU8csvv8jR0VE3btwwtr1+/Vrnz5//115vceH+9n79JnF/e59+4/72/teb9O++vxFAAQCAj5KNjY1atmyp8ePHa8eOHTp//rx69uyprFmz6osvvtCbN290584dYw2O4sWLy8nJST179tTJkyd18OBBDRo0SB4eHsYbijZt2mjTpk2aP3++goKCNHbsWJ07d05fffVVvOv4p0vofnv9+rV69+6tTz/9VKNHj9bLly91584d3blzR/fv35ckVa9eXbdu3dKQIUN09epVHTlyRN26dZOTk5MqVqyYmN0Rbwndb1ZWVqpevbr8/Py0efNmXb9+XStWrNDcuXPVvXv3eNXxMbDE61SSzp49K2tr62g/eczJyUnp06dXv379dPr0aV24cEH9+vXTw4cP1bp167/r0D/Iu/ZbfHB/e/d+4/72fv3G/e39X6fSv/z+ZgIAAPhIvX792jR27FhTuXLlTCVKlDC1b9/edOPGDZPJZDLduHHDVLBgQdOaNWuM8nfv3jV169bNVKJECVPZsmVNgwcPNr148cKszrVr15qqV69uKlasmKl+/fqm/fv3mz0enzr+6RKy344dO2YqWLBgtF9Vq1Y16ti/f7+pSZMmphIlSpjKlClj6t+/v+nhw4d/74F/oIS+3l69emWaNm2ayc3NzVS0aFFTjRo1TCtWrDDbJ9db9Mc8e/ZsU/ny5WPc57Vr10zdunUzlSlTxlS8eHGTt7e36cKFC5Y5QAt5136LrGrVqqapU6dG2c797d36jfvb+19v3N/e/3X6b76/WZlMkcYKAgAAAAAAAAmMKXgAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAA4F/MZDIldhMAgAAKAAAAAN5Vq1atZGdnZ/Zlb2+vKlWqaOjQoXr06FG86/Lx8ZGrq2uCtMvOzk6+vr6SpNDQUI0cOVIbNmxIkLoB4EMkS+wGAAAAAMDHqEiRIho8eLDx/atXr3TmzBlNnDhR586d07Jly2RlZfW3tmnFihXKmjWrJOnPP//UwoULNWrUqL+1DQAQHQIoAAAAAHgPadKkUYkSJcy2lS5dWn/99ZemTp2qEydORHnc0v7u/QFAfDEFDwAAAAASkL29vSTp9u3bkqTNmzfL09NTjo6OcnFx0aBBg2KdovfixQtNmDBBX3zxhezt7eXk5KQ2bdro3LlzRhkfHx999dVXGjx4sJycnOTu7q43b94YU/Bu3rwpNzc3SVL//v3l6uqqXbt2yc7OTnv37jXb39GjR2VnZ6djx44ldFcAgIEACgAAAAAS0NWrVyVJOXPm1IwZM9SrVy+VKFFCU6dOVZcuXRQYGKhWrVrpxYsX0T6/b9++WrNmjTp06KB58+apf//+unTpkr799luzBcWPHj2q33//XdOnT9e3336rpEmTGo9lzpxZ06ZNkyR9/fXXmjZtmipWrKjMmTNr3bp1ZvsLCAhQnjx5VLJkyYTuCgAwMAUPAAAAAN6DyWTS69evje8fPXqkw4cP64cffpCjo6Ny5cqlH374QY0bN9agQYOMcgULFlSLFi20Zs0atWjRwqzO0NBQ/fXXXxowYIDc3d0lSWXKlNHTp081evRo3b17V5kyZZIkvX79WsOGDTPWfIrMxsZGhQsXliTlypVLRYoUkSTVr19fP/74o/766y+lTp1aL1680JYtW9ShQ4eE7RwAeAsBFAAAAAC8hyNHjqho0aJm25IkSaLy5ctr2LBh+u233xQaGqo6deqYlSlVqpRy5Mihw4cPRwmgbGxs5OfnJ0kKCQnR1atXFRwcrJ07d0oKD6gipEuXLtrwKTYNGjTQrFmz9NNPP8nDw0M//fSTnj17Jg8Pj3eqBwDeFQEUAAAAALyHokWLaujQoZIkKysrJU+eXNmyZVOaNGkkyVhTKWPGjFGemzFjRj158iTaevfs2aORI0fqypUrSp06tQoVKqRUqVJJktkUvNSpU79zm3Pnzq0yZcooICBAHh4eCggIUPny5ZUlS5Z3rgsA3gVrQAEAAADAe0idOrWKFSumYsWKyd7eXgUKFDDCJ0mytbWVJN29ezfKc+/cuaP06dNH2X79+nV16dJFhQsX1k8//aRjx45p6dKlqlq1aoK1u0GDBjp8+LCCgoJ04MABNWjQIMHqBoCYEEABAAAAgAUUL15cNjY22rhxo9n2o0eP6vbt23JycorynNOnT+vly5fq0KGDcuXKJSsrK0nho6Ik8xFQcYm8KHlkNWrUUMqUKTVkyBClTp1a1apVi3edAPC+mIIHAAAAABaQLl06dejQQdOnT5e1tbWqVq2qmzdvasqUKfr8889Vv379KM8pWrSokiVLpnHjxsnb21uhoaHy9/fXrl27JEnPnj2L9/7Tpk0rSTpw4IDy58+v4sWLS5JSpkyp2rVra8WKFWrWrJlsbGw+/GABIA6MgAIAAAAAC+nWrZsGDx6sgwcPqlOnTpo2bZpq1qyppUuXGus6RZY7d25NmDBBISEh+vrrr41Pz/vxxx9lZWWlo0ePxnvfadKkUZs2bbR9+3a1b99er169Mh6rUqWKJMnT0/PDDhAA4snK9C5jOAEAAAAAH73BgwfrxIkTCggISOymAPiPYAoeAAAAAPxHLFq0SFeuXNHKlSs1bty4xG4OgP8QAigAAAAA+I84evSo9uzZo6+++kp16tRJ7OYA+A9hCh4AAAAAAAAsikXIAQAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAvDeTyZTYTYjTx9DGhJTQx/tv679/2/EAHwsCKAAAAOBf4OLFi+rZs6dcXFxkb2+vChUqqEePHjp//rxF9hcaGqqRI0dqw4YNxjYfHx+5urpaZH/v4/Hjx+rbt6+OHj0aZ9mff/5ZX331lUqVKqVixYqpevXqGjFihO7du/fO+23VqpVatWoVaxlfX1/Z2dm9c92xSYhz8na7jh07pg4dOiRoO2Pyxx9/qEWLFipWrJicnZ31/PnzGMvu27dPdnZ2qlu37jvt4+3juXnzpuzs7OTv7x+v5x86dEh2dnY6dOjQO+0XAAEUAAAA8NG7dOmSmjRpoocPH2rAgAGaN2+e+vbtq9u3b6tx48b67bffEnyff/75pxYuXKjXr18b2zp37qxp06Yl+L7e17lz57Ru3TqFhYXFWm7t2rXq3Lmz8ubNq3HjxmnOnDn66quvFBgYqCZNmujRo0cJ3rZGjRppxYoVCVpnQpyTt9u1atUqBQUFJWg7Y7Jw4UL99ttvGjNmjKZNm6aUKVPGWHbNmjUqWLCgLl68qGPHjsV7H28fT+bMmbVixQpVqVLlQ5oOIB6SJXYDAAAAAHyY+fPnK3369JozZ46SJfu/X/GrVaummjVrasaMGZo9e7bF25ErVy6L78MSpk+frtq1a2vIkCHGtnLlyqlUqVKqV6+eVq1apXbt2iXoPrNmzaqsWbMmaJ3Reddz8ne1KzoPHz5U5syZ5e7uHmu5x48fa/v27Ro6dKhmzZql5cuXq2TJku+1TxsbG5UoUeK9ngvg3TACCgAAAPjI3b17VyaTKcpIn1SpUul///ufatWqZbZ9+/bt8vT0VLFixeTi4qLvv/9ez549Mx739fVV9erVtWvXLtWtW1f29vaqUaOGAgICJIVPW3Jzc5Mk9e/f35ji9fZ0L1dXV02bNk0jR45U2bJl5ejoqG+//VZ//fWXZs+erUqVKqlkyZLq1q2bHjx4YNbGVatWqXbt2rK3t1eVKlXk6+urN2/eGI/7+PiodevWWrNmjWrUqCF7e3vVq1dPv/zyi6TwqVJeXl6SJC8vr1inxEX039sKFSqk/v37y97e3jju6KZrxTTNbfr06SpfvrwcHR3VuXNn3bhxw6yP356CF9d5kaTffvtN3t7ecnJyUrly5dSrVy+FhITE65wMHDhQLi4uZv0oSSNGjFDZsmX16tUrs3b5+Pho7dq1unXrlnHcDRo0UNOmTaMca+vWrdWmTZtoejfckydPNGrUKFWrVk3FihVTnTp1tHr1auNxV1dX+fv76/bt27Kzs5Ovr2+MdW3YsEGvX79WxYoV9eWXXyowMFAPHz40K+Pv768iRYpo1apVcnFxUZkyZfTNN99EOZ7ozumVK1fUtWtXlSlTRqVLl1bHjh1jHQV28eJFdezYUU5OTnJyclKXLl3MzrUUPrqrZs2aKlasmCpWrKghQ4bo6dOnMdYJ/BsRQAEAAAAfuSpVquj27dtq2rSplixZoqCgICNQqVmzpurXr2+U3bBhg7p06aJ8+fJp+vTp6tq1q9avX6/OnTubhTB37tzRsGHD5OXlpdmzZ+uzzz5Tv379FBQUpMyZMxvTur7++utYp3jNmzdPv//+uyZNmqSvv/5aGzduVIMGDbR3714NHz5cvXr10o4dOzR16lTjObNmzdLAgQPl7OysmTNnqkWLFpozZ44GDhxoVvfp06fl5+en7t27a/r06UqaNKm6deumR48eqWjRoho0aJAkadCgQRo8eHCs/bdp0yZ16dJFGzduVEhIiPFY69atVa5cuficBjPHjh3Tpk2bNGjQIH3//fc6f/68vLy8Ygwd4nNezp49q5YtW+rly5caO3ashg4dqtOnT6tt27bxOif16tXT3bt3zdYvCgsL05YtW1S7dm1ZW1uble/cubMqV66sTJkyGdPUGjZsqF9//VXXrl0zyv3+++86dOiQPD09oz22Fy9eqHnz5tqwYYPatWunGTNmqGTJkvruu+80c+ZMSdK0adPM9tWoUaMY+3bNmjWqWLGiMmbMKA8PD7169Upr166NUu7NmzeaN2+eRowYof79++vbb7+NcjxvCwkJUZMmTRQcHKwhQ4Zo3Lhxunv3rr766qsoIZckXb16VU2bNtW9e/c0ZswYjRgxQjdu3FCzZs2M9cM2btyocePGqUWLFvLz81OXLl20bt06DR8+PMZjBP6NmIIHAAAAfOSaN2+uO3fuyM/PT8OGDZMkpU+fXhUqVJCXl5ccHBwkhX/61/jx41WxYkWNHz/eeH6ePHnUunVr7d6923hT/vz5c40YMULOzs5GmapVq2r37t3y9vZW4cKFJYVP8SpSpEiMbUuTJo0mTZqkZMmSqXz58lq7dq1CQkK0atUqpU2bVpK0Z88eHT9+XFL4SJkZM2aoSZMmGjBggCSpQoUKSpcunQYMGKA2bdqoQIECRll/f39jmlmqVKnUsmVLHTx4UDVq1NDnn38uSfr888+N/0dn+PDhCgsL07Zt27R9+3bjuNzc3NSmTRtlyZIlvqfCkDRpUs2bN8+YzpYvXz55eHgoICBALVu2NCsb3/Myc+ZMpUuXTvPmzVPy5Mklha9h9O233yooKCjOc1KyZEnlyJFDGzduVPny5SWFjxS7c+eO6tWrF6V8rly5lCFDBrNpanXq1NHo0aO1bt06de/eXZK0bt06pU6dWtWrV4+2L/z9/XXx4kUtX75cjo6OkqSKFSvq9evXmjFjhpo2baoiRYpE2Vd0Lly4oDNnzhiBZfbs2VWuXDmtWLEi2hFYnTp1Mgua3t7H2yPMFixYoNDQUM2fP1+ZMmWSFD4SrlmzZjpx4oRSpEhhVj5iraoFCxYoTZo0kiRnZ2dVq1ZNc+fOVb9+/XT48GF99tlnatGihZIkSaIyZcooVapUFllbDPgnYwQUAAAA8C/wzTffaM+ePZowYYIaNmyoNGnSaMOGDWrcuLEWLVokKXxq0R9//CFXV1e9fv3a+CpdurTSpEmjffv2mdUZOQiICFLefsMeFwcHB7N1qTJmzKi8efMa4ZMkpUuXTk+ePJEk/frrr3rx4kWUNkZMI4vcxgwZMpitcRTRxtg+PS06adOm1dSpU7V9+3YNGjRINWrU0OPHjzV//nzVrFlTv/766zvVJ0lOTk5maykVLlxYOXPm1JEjR6KUje95OXbsmCpVqmSET5Lk6Oion3/+2QifYmNlZaUvv/xS27dvV2hoqCRp06ZNypMnj4oXLx6v40qbNq2++OILrV+/3ti2du1aubu7RwlnIhw+fFg5cuQwwqcIX375pV6+fKkTJ07Ea99S+OinTz75RKVKldLjx4/1+PFj1ahRQ1evXtXBgwejlI9Pv0R27NgxlShRwgifpPDraufOnapcuXKU8gcPHlSZMmWUIkUK47ylSZNGpUqV0v79+yWFryd29epVeXp6atq0aTp16pTq1q0b5yclAv82jIACAAAA/iVsbW1Vp04d1alTR1L4lK0+ffpo3Lhxqlu3rjGFaOjQoRo6dGiU5//5559m30f+FLIkScL/dh3dWkmxiRgVElmqVKliLB/Rxg4dOkT7eOQ2vv0paVZWVpIU56fexSRilEqLFi0UFham7du3y8fHR8OHD4+y7lNcMmbMGGXbp59+qsePH0fZHt/z8vDhQ3366afv1I631atXTz/88IP27NmjihUratu2bfrqq6/eqY6GDRtq/fr1Onr0qJImTarg4GCNGTMmxvKPHj0yC3QiRPRRdH0SnVevXmn9+vV6/PixMYIrsuXLl0eZLhnbtRadhw8f6rPPPnun8ps3b9bmzZujPJYhQwZJkru7u8LCwrR06VLNmDFDvr6+ypEjh3r37h3nguvAvwkBFAAAAPARCwkJUYMGDfTNN99EWTenSJEi6tmzp7Eo8ieffCJJ6tu3r8qUKROlLltb27+lzbGJaOP48eOVJ0+eKI9HF+x8iMDAQA0ePFjLli1T3rx5je1JkiTRF198oSNHjmjlypWS/i/gensR7+hGhUU3verOnTtRRgFJivd5SZs2re7fvx/l8d27d8d7pE/evHnl4OCgLVu2KEmSJHr8+LG+/PLLeD03QpkyZZQrVy5t3bpVSZIkUb58+WKdNmdra2u2ZlSEO3fuSAqfLhofO3fu1IMHDzR8+HDlzp3b7LFly5Zp+/btunfv3geFdDH18YEDB6INptKmTavy5ctHO/0v8si/iGD4yZMn2rt3r+bMmaM+ffqoZMmS7zXFE/gYMQUPAAAA+IhlzJhRyZIl09KlS/Xy5csoj1+5ckXJkydX7ty5lS9fPn366ae6efOmihUrZnxlyZJFEyZM0NmzZ+O936RJkybkYRiKFy8ua2trhYSEmLUxWbJkmjhxom7evJmgbSxQoIAePnyohQsXRvt4cHCwChYsKOn/RnNFXqT81atXOnnyZJTnHTt2zJhWKEknTpzQrVu3ol3QPL7npVSpUtq3b58xfU4KH+XWoUMHnTlzJt7npF69etqzZ482bdokJycn5cyZM8ayESPfIrOyspKnp6e2b9+un3/+2WyR++iULl1at27dijKVcf369bK2tjbWKIvLmjVrlDVrVjVq1Ehly5Y1+2rVqpVevXqlNWvWxFpHdMcTWalSpXTixAmzEOrevXtq166ddu/eHaV8mTJldPnyZRUuXNg4b/b29lqwYIF++uknSVKPHj3UpUsXSeGBVa1atdS5c2e9fv06yqhD4N+MEVAAAADARyxp0qQaMmSIunTpogYNGqhFixbKnz+/nj9/rn379mnJkiX65ptvjFE0PXv21KBBg5Q0aVJVrVpVjx8/1owZMxQSEqKiRYvGe78RazgdOHBA+fPnj/caQnFJnz692rVrpylTpujp06cqW7asQkJCNGXKFFlZWalQoULv3MZdu3bJ1tY22ufmy5dPHTp00KxZs3T79m19+eWXypo1q+7du6d169bpwIEDmj9/vqTwkTyOjo768ccflTt3btna2mrRokV68eJFlKleYWFh6tChgzp16qQHDx5owoQJKliwYLSjjZImTRqv89K5c2c1adJEHTt2lJeXl168eKHJkyfLwcFBLi4uRjAV1zlxd3fX6NGjtXnz5lg/HVAKH5119+5dY5RV5syZJUmenp7y9fWVpGgXMI/M09NTS5cuVZcuXdS9e3d99tln+vnnn7VmzRp17drVGAEWmz///FN79uzRV199ZYxEi6xkyZLKlSuXVqxYofbt28f7eN7WunVrBQQEqF27durYsaOsra31ww8/KGvWrKpbt67Onz9vVr5z585q2rSpOnbsqGbNmil58uRasWKFtm/fbiyUXq5cOQ0ePFhjxoxRpUqV9PjxY02bNk158uR5p+sZ+NgRQAEAAAAfuSpVqmjlypXy8/PTzJkzdf/+fdnY2KhIkSKaNGmSvvjiC6Nso0aNlDp1as2dO1crVqxQqlSp5OTkpPHjx8c6EuZtadKkUZs2bbRixQrt3r07ygLmH6JHjx7KlCmTli5dqrlz58rW1lbOzs7q1auX2eLlcSlQoIDq1KmjJUuWaM+ePdq4cWO05Xr16qXChQtr1apV+v777/X06VNjoevVq1ebhQSjR4/W8OHDNWDAAKVJk0YNGzZUyZIltWrVKrM6q1WrpuzZs6tPnz56/fq1qlatqu+++85sAfHI4nNeihQpoh9//FETJkxQjx49lCZNGlWuXFm9e/eWjY2NbGxs4nVOMmTIoAoVKmjfvn2qWbNmrH3o6emp3bt3G+FRxNpcWbJkUaFChZQxY8Y4p5ClTJnSaHdEsJgvXz6NGDFCDRs2jPW5EQICAvTmzZtY10yqV6+efH19tWfPnngfz9v1ZcuWTUuXLtW4cePk4+MjGxsblS1bVpMmTYp2imqhQoW0ZMkSTZo0SX379pXJZFLBggU1ffp0ubm5SZKaNm2qV69eafny5Vq6dKlSpEghZ2dn9enTR9bW1vE6fuDfwMr0rqsIAgAAAAA+yPjx47V48WL99ttvid2U9xISEqKqVatq6tSpqlatWmI3B8BHgBFQAAAAAPA3efr0qXbu3KmdO3cqV65cid2cd3bu3Dnt2LFDgYGBypMnj1xdXRO7SQA+EixCDgAAAAB/kwsXLmjw4MF6+fKlfHx8Ers57+zly5eaP3++3rx5o4kTJ8a5qDcARGAKHgAAAAAAACyKuBoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEXxKXgAAOA/69dff5XJZJK1tXViNwUAAOCj8+rVK1lZWcnR0THOsoyAAgAA/1kmk8n4wvszmUwKDQ2lHz8AfZgw6McPRx9+OPowYdCPH+7v6MN3+T2KEVAAAOA/y9raWqGhofr888+VKlWqxG7OR+vZs2c6d+4c/fgB6MOEQT9+OPrww9GHCYN+/HB/Rx+eOnUq3mUZAQUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAgP88KyurxG7CR83KykopU6akHz8AfZgw6EcA+OdKltgNAAAASEw2NjZKmTJlYjfjo5YyZUoVKVIksZvxUaMPE8Z/tR/DwsKUJAljCwD8sxFAAQCA/7xx41frxs27id0MAHhnOT/LqD69GyZ2MwAgTgRQAADgP+/GzbsKCvo9sZsBAADwr8U4TQAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACwq0QMoV1dX2dnZaf78+dE+PmjQINnZ2cnX1zfB9nnp0iXt2rUrznLffvut7OzstH379gTbd2THjh3T0aNHP6gOX19fubq6Gt/b2dnJ39//Q5v23l69eqUFCxYY37/dvui8S5tv3rwpOzs7HTp0KN5titzP7/P8f4MHDx5o1apVFt/P0KFD5ejoqJIlS+ru3bsW39+HetfrMz7l35ePj49atWplkbrj8k+7b8TH7du3tWnTJuN7V1fXBP058a5MJpPWrl2re/fuJVobEtOzZ8+0ZMmSGB+PuPfG9NWxY0c9e/ZMjo6OGj16dIz11KhRQwMHDrTEIQAAAMDCEj2AkiRra2sFBgZG2f769Wtt27ZNVlZWCbq/jh076tSpU7GWefLkibZv3668efNq+fLlCbr/CM2bN9f169cTtM69e/fK3d09Qet8Fxs3btSoUaPe6TmWbrMl+vljM3bsWK1fv96i+zh//ryWLl2qfv36ad26dcqYMaNF95cYvL29tXr16sRuRoL7GO8b/fr10549e4zvV69eLW9v74RuWrwdOXJEPj4+ev78eaK1ITHNmzdPfn5+cZbz9fXV3r17o3yNGzdOqVKlkru7uzZt2qSwsLAozz1+/LiCg4PVqFEjSxwCAAAALOwfEUA5Ozvrt99+0x9//GG2/eDBg0qVKpWyZcv2t7dp48aNSpo0qTp37qx9+/bp5s2bf3sb3kemTJmUIkWKRNu/yWR65+ckdpv/C97nvLyrx48fS5JcXFz02WefWXx/iSF16tTKkCFDYjcjwSX2azAhrs8MGTIoderUCdCa9/N3vMb+yeJ7/La2tsqUKVOUr08++USS1KBBA/3555/RjlINCAhQwYIF5eDgkKBtBwAAwN/jHxFAOTg4KHv27Nq6davZ9s2bN6tWrVpRRkD9+uuv8vLyUsmSJVW2bFn1799fDx48MB4/efKkmjdvLkdHR5UuXVrdunXT7du3JYVP07h165amTZsW63QXf39/lSlTRm5ubrK2ttbKlSvNHo9uKs7b23bv3i1PT08VL15czs7O8vHx0aNHjySFT3mRpP79+8vHx8eYnjBr1iy5uLjIzc1NT58+1cWLF9WxY0eVLl1a9vb2cnNz07x582Jsd+SpNKGhoRozZoxcXV1lb2+vMmXK6JtvvtH9+/cl/d+UiMDAQDVq1Ej29vZydXXVihUrjPru3bun7t27q2zZsnJwcFDTpk11+PDhGPusf//+Rjsiv4GYPXu2KlWqJAcHB7Vq1UrBwcHRttnHx0c+Pj4aM2aMnJ2dVbx4cXXs2FEhISHR7jMoKEguLi7q27ev3rx5E21/RO7nCCdOnDCO2c3NTWvWrDF73po1a1SrVi05ODioVq1aWrhwofEX+ZjO1ZMnTzRw4ECVK1dOJUuWlJeXV5wj7bZv365GjRqpRIkSKlasmDw9Pc1GdbRq1UoDBw5Uo0aNVKpUKWMUU2zte5uPj4/Wrl2rw4cPG/3x5s0bLViwQDVq1FCxYsVUo0YNLVu2LErfdurUSWXLllXJkiXVvXt33bp1K9p9+Pv7G6+natWqGX0dFBSk9u3by9HRURUqVNC3336rO3fuSJJGjx6tunXrGnU8evRIhQsX1rBhw4xtP//8sxwdHfXy5cso+/T19VWzZs00ffp0lS1bVqVKlVL//v319OlTo0x0U8ui2xZRh5OTk3r37q2HDx9Ge5xvv8bv3r2rvn37Gn3UsWNHXbt2LdrnStK1a9f09ddfG/euXr16mU3ZevXqlcaMGaNy5cqpRIkS6ty5s9lUxqNHj8rLy0tOTk6yt7dXrVq1tG7dOuNxHx8fde/eXd7e3nJyctKcOXMkSRs2bFCtWrVUrFgxNWrUSIsWLTKuhbf7JD6vwevXrxvntWLFipo/f76qV68e4zS+N2/eaNy4capcubLs7e1Vs2ZN43qL7r4RFhamWbNmqUaNGrK3t5eTk5PatWtnjGRs1aqVDh8+rLVr1xrn4+0peLt27VLjxo2Na2/UqFF68eKF2TGvXr1arVu3loODgypUqKBp06YZjz9//lzfffedXFxcVKxYMXl4eGjbtm3RHt+hQ4fk5eUlSXJzczP6Ia6fVW+L634b3TTDyNv8/f1VqVIlrVy5UhUqVJCjo6O6dOlidu5cXV01Y8YMtW3bVg4ODqpevXqU6blxtdvV1VVjxoyRu7u7ypYtq1atWmnatGm6deuW7OzsPugPNk5OTsqXL1+UEZuhoaHasmWLGjRoYGwLCAhQ7dq1VaxYMVWsWFEjRoxQaGjoe+8bAAAAlvWPCKAkqVatWmYBVGhoqLZv367atWublTt58qRatWqlAgUKaOXKlZoyZYpOnDihtm3b6s2bN3rz5o0R2Kxfv14LFizQ7du39b///U9S+DSNrFmzytvbO8b1Qi5duqSTJ0+qZs2aSp06tapUqaI1a9bo1atX8T6e+/fvq2vXrmrQoIE2b96sadOm6ciRIxo7dqyk8CkvkvS///1P3333nfG8tWvXauHChZo8ebKSJk0qb29vpUuXTsuXL9fGjRtVs2ZNjRkzRufOnYuzDWPHjtW2bds0evRoBQYGavTo0Tp48KB++OEHs3KjRo1Sp06dtGXLFlWpUkVDhgzRjRs3JElDhgzRy5cvtXjxYm3YsEF58+ZV586d9ezZsyj7c3d3N/p57969cnR0lCTdunVLx48f1+zZs7V48WLduXPH7JjftnHjRj18+FCLFy/WnDlzdObMGU2ePDlKuWvXrql169aqVKmSRo8eraRJk0YpE1M/L1y4UF9//bU2b96sihUrasCAAUZwsGLFCo0dO1Zdu3bVpk2b1KNHD82ZM0fjx483qzvyuUqdOrXat2+vGzduaNasWVq5cqVKlCihZs2a6ezZs9Ee5+nTp9WtWzfVrl1bGzZs0MqVK5UhQwb17dvX7E3UqlWr5OXlpaVLl6pixYrxbl+E7777TrVq1ZKjo6PRH6NHj9aMGTPUtWtXbdiwQS1atNCIESOMdXhu3bqlJk2ayMbGRgsXLtS8efN0584dtWzZ0izgieDu7m68nlatWqXvvvtOISEhat68uXLnzq3Vq1dr5syZevr0qZo0aaJnz56patWqunjxohFIHThwQCaTySy43LVrlypUqKDkyZNHe2ynTp3S3r17NW/ePE2fPl1HjhxRjx49oi0bk1u3bungwYOaP3++Zs6cqVOnThmBSGxev34tb29vXb58WTNmzNDKlSsVFhamdu3aRRuGPn78WC1atFBoaKgWLlyo+fPn6/r162bt/fXXX/X48WMtXbpUs2bN0m+//WbcM0JCQtS2bVsVK1ZMa9euVUBAgBwcHPTdd9+ZhVSBgYEqX7681qxZozp16mjnzp3q16+fGjZsqPXr18vT0zPGayVCbK/B58+fq3Xr1goLC9OyZcs0adIk+fv7G/eM6CxdulRbt27VpEmTFBgYqJYtW2rIkCE6evRotPeNRYsWyc/PTz4+PgoMDNT06dMVHBxsrA3k6+srR0dH1apVK9opkT/99JO+/vprValSRf7+/ho6dKg2b96sXr16mZUbM2aM6tevr02bNqlly5by9fXVkSNHJElTpkzRhQsXNHv2bG3evFmVKlVSz549ow1XHB0dza5/d3f3OH9WRedd7rcxuX//vnFfWrhwoX7//Xe1a9dOr1+/NsrMmDFDjo6OCggIUIsWLTRo0CBt3rxZUtw/YyMsXrxYAwYM0Ny5czVjxgx5e3sra9as2rt37wePWm7QoIG2bdtmFjzv2LFDz58/V7169SSFT/kdMGCAunXrpsDAQI0cOVLr1q3T3LlzP2jfAAAAsJxkid2ACLVq1ZKfn59CQkKUJUsW7du3TxkyZFCRIkXMys2bN092dnbGIqT58+fXxIkTVa9ePe3du1clSpTQgwcPlDlzZuXIkUM5c+bU5MmTjVEGGTJkUNKkSZUqVSqlS5cu2rb4+/srefLkqlatmiSpdu3aCgwM1Pbt21WrVq14HU9ISIhCQ0OVPXt25ciRQzly5NDMmTONX+AzZcokSUqbNq3Spk1rjIxq3ry5Pv/8c0nhbyS8vLzUokULY2pJ9+7dNXfuXF24cEGFCxeOtQ3FihVTzZo1VapUKUlSjhw5VL58eV28eNGsXOvWreXm5iZJ6tmzp5YsWaITJ04oZ86cun79ugoWLKicOXMqRYoU+u6771S3bt1ow54UKVIobdq0Zscnha/xNX78eKVJk0aS1LRpU02aNCnGdqdNm1bDhg2TtbW18ufPL3d3d+3evduszM2bN9W3b19VrlxZw4cPj3GdsJj6uUuXLsbIiZ49e2rZsmU6c+aMcufOrRkzZujrr782ws+cOXPq6dOnGjp0qL755huj7sjn6sCBA/rtt9908OBB47rq1auXjh8/rkWLFkW7qG7SpEk1cOBANW/e3Njm5eWl9u3b6969e8abuMKFC5uNFIqrfW+HNWnTplWKFClkbW2tTJky6enTp1q2bJl8fHyMevPkyaObN29q9uzZ+uqrr7R06VKlSpVK48ePl42NjSRp6tSpcnNz07p169SiRQuzfaRIkUK2traSwl9jadOmlZ+fn7JmzaoBAwYY5SZPnqxy5cpp69at+vLLL2Vra6t9+/bJw8ND+/fvl5ubm7Zv3667d+8qY8aM+uWXX2INlKysrDR58mRlyZJFUviHFrRv315XrlxRvnz5YnxeZMmTJ9ekSZOMNasGDRokb29vXbt2Tblz547xeQcOHNCFCxe0detW5c2bV5L0/fffa8GCBXr06FGUqXqbN2/WX3/9pYkTJxp99f3332vTpk1G4JgpUyYNHz5cSZIkUb58+eTu7q79+/dLkl6+fKlu3bqpbdu2xvXeoUMHBQQEKDg42Gi/ra2t2rVrZ+y3T58+qlmzptq2bStJyps3r4KDg2Nd9Du21+DmzZt1//59+fv7G9f6uHHjjGAgOtevX1eqVKn02WefKXPmzGrZsqXy5cunvHnzRnvfyJUrl8aMGaOqVatKCr931axZ0/gjRbp06WRtba0UKVJEOyVy9uzZql69ujp37mwcs8lkUpcuXXT58mXjdevh4WG0u1OnTvLz89Px48dVunRpXb9+XalTp1bOnDn1ySef6JtvvlHp0qWNcxeZjY2N2fWfIkWKOH9WVa5cOdp+iu/9NiYRo+js7e0lhZ8bd3d3HThwQBUrVpQkVahQQV27dpUk5cuXTydOnNDChQvl7u4e73ZXrlxZ5cuXN/abKlUqJU2a1OzeH5327dtHezxTpkxRpUqVJIWfl0mTJmnnzp2qWbOmpPDRTtWqVVP69Oklhf8MsLKyUo4cOZQ9e3Zlz55dfn5+xs8ZAAAA/PP8YwIoe3t75cyZU4GBgfLy8tLmzZujjH6SpIsXL8rFxcVsW6FChZQ2bVpduHBBlStXVrt27TR8+HBNnTpV5cqVU+XKleMdHL1+/Vrr169X5cqVjV9kq1SpotSpU2v58uXxrqdw4cKqU6eOOnXqpEyZMsnFxUVVqlRR9erVY31e5De8GTJkUPPmzbVx40adPXtW169f1/nz5yUpxulWkdWrV0/79+/X+PHjFRwcrCtXrujq1atGIBUhf/78xv8j3ghGjPbq2rWr+vTpo8DAQJUsWVIVKlRQnTp1YhyREp1PP/3U7E3BJ598YjYV5m25cuWStbW1WZveHn02ZMgQvXr1StmyZXuvReojAgNJxhvHly9f6v79+/rjjz80ceJETZkyxSgTFhamly9f6ubNm8axRz5XZ86ckclkMt4wRwgNDY12+pgUfo3Y2tpq9uzZunLliq5du2ac38gjDSLvJz7ti3w+o3PlyhW9evVKJUuWNNtepkwZLVy4UPfu3dPFixdlb29vhE9SeDiQN2/eKAFmTM6ePatLly4ZI+EivHz5UkFBQUqWLJkqVqyo/fv3y8PDQ/v27dOgQYN04sQJHTp0SPnz59eff/4Z7Rv1CHny5DHCJyl8+o4Ufp+IbwCVO3duswXTixcvLil8JGRsAdTFixdla2trdi1lyZJF/fr1i7F8njx5zAKMQoUKqVChQsb3uXLlUpIk/zcw1dbW1nit5MqVS56enlq0aJEuXrxodj+I6XqRwq/NL774wmxb6dKlYw2gYnsNnj17Vnnz5jUL8CPuwTFp0aKFtm/frsqVK6tw4cJycXFR7dq19emnn0Zb3tXVVSdOnNCUKVN09epVXb16VZcvXzY717G5ePFilJ8fZcqUMR6LCKDefq1EPs727durU6dOcnZ2loODg1xcXFS3bt1Yj/PtNsT1s+ptCXG/TZ06tRE+RRyjra2tLl68aARQZcuWNXuOo6Oj8cmw8W13bK+N2Hz//ffGayyyzJkzG//PmDGjKleurA0bNqhmzZq6d++e9u7dq1mzZhllKlasKEdHRzVs2FCfffaZMR068rEDAADgn+UfE0BJ/zcNr0mTJtqxY0e0Hxsf00KnJpPJeMPUu3dvNW/eXLt379aBAwc0fPhwzZ07VwEBAWZvqKOza9cu3b17Vz/99JPZ6Ks3b97o0KFDunr1qtkbzsgiT3GQpAkTJqhLly765ZdftH//fvXp00clS5bUwoULY9x/5IWA79y5oyZNmihDhgxydXVVhQoVVKxYsVjfkEc2aNAgBQYGysPDQ66ururSpYsxyiyy6Pokop+rV6+uPXv2aM+ePdq/f7/mz5+vadOmaeXKlSpQoEC82vEuf72PqT1vq1+/vgoWLKjRo0erevXqKliw4DvtI/Kb/Agmk8kI9vr372/21/0I2bJl059//inJ/FyFhYUpTZo00a6BE9PxHD58WG3btlWVKlVUsmRJ1a1bV8+fP1eXLl3Myr29n7jaF5eYXkMRdSdLlizWMpGDidiEhYWpXLlyGjx4cJTHIt7Eu7m5aeTIkbp+/bpCQkJUunRplS1bVocOHdLNmzdVsmRJY8RDdN5uS0QQE9M19/ZrNLqyEXXEdZzJkr3b7TM+5WN7rVy+fFnNmzdX0aJFVb58eX3xxRdKnz59lE8Ee3sx8WTJksUrsI4sttdg0qRJ37m+PHnyaNu2bTp8+LD27dunXbt2ac6cORo1apTq168fpfzs2bM1ffp01a9fX87OzmrdurV27NihTZs2xWt/0V2/ka/vCLHd+xwdHbV7927t27dPBw4cUEBAgH744QfNnTtXzs7O79WGiO0xXVvvc799+5qOru43b96YXVtvX4thYWHGPTG+7X7fReuzZMkSr/CqYcOG6t69ux49eqQNGzYoS5YsZve85MmTa9GiRTp79qzxSXqdOnWSh4fHO3+iIgAAAP4e/5g1oKTwAOr48eNas2aNcubMGe1IDjs7Ox07dsxs2/nz5/X06VPlz59fV65c0eDBg/Xpp5+qWbNmmjp1qubOnaugoCBjtEBs1qxZo/Tp0ysgIMDsa8aMGTKZTMZi5NbW1vrrr7/Mnht58eETJ05o5MiRypcvn1q3bq3Zs2dr5MiROnjwoNmiw7GJWIdl2bJl6ty5s6pXr25MIYvrE4cePHigFStWaPDgwerfv788PT1VuHBhXblyJd6fVhQaGqpRo0bpxo0bcnd31/fff6/t27crSZIkxl/L3/Y+o5HeR+3atdW8eXPZ29urf//+Ma6p8q4+/fRTZciQQTdu3FDu3LmNr5jWoYpQsGBBPX36VK9evTJ73pw5c7Rjx45onzNv3jyVLVtWvr6+at26tVxcXPT7779Livn8vm/7Ip+X/Pnzy9raOsrr6OjRo8qUKZNsbW1lZ2enU6dOma1FdffuXV27di3OEVYRChQooKCgIGXLls1op62trUaOHGmMoqpYsaIePnyoRYsWqXjx4kqVKpXKly+vgwcPaufOncbU0JhcvXpVT548Mb7/9ddfJckIj62trc3WrIpugfDg4GCzMseOHZOVlZUxSiYmn3/+uR49emRW5/3791W2bFn99ttv0ZYPDg42a++ZM2fk7Owc5RNAo7N8+XJ9+umnmj9/vtq3b6/KlSsbaz/F9pouVKiQTpw4YbYtop/eR6FChXTt2jWzhdqDgoLMjuttixYt0rZt24wPDNiwYYOcnZ2NdYfevm/MnDlTXbp00ZAhQ9SkSROVKFFCwcHB8b532dnZ6fjx42bbjh49KinqqKeYTJ06VceOHZObm5sGDBigwMBAY5RudN4+hrh+Vr0tPvfbt6/np0+fRvl58vDhQ7P1uC5duqSnT5+a/UHl7Q9HOH78uPH4u7Y7puP/UJUqVVK6dOm0fft2bdq0SZ6enmZ/ONi9e7emTZumIkWKqEOHDlq0aJG6d+9uXFMAAAD45/lHBVCFCxdW7ty5NWHChGin30lSmzZtdOHCBQ0fPlxBQUE6dOiQevfurSJFisjZ2Vnp06fXpk2bNGjQIAUFBenq1atau3atbG1tjSk5qVOnVnBwsNnCvVL4G+xffvlFjRs3VqFChVSwYEHjy83NTWXKlJG/v79CQ0NVokQJPXz4UH5+frp586aWL1+uX375xagrTZo0Wrp0qcaNG6dr167p4sWL2rx5s/LkyWOM6EiVKpWCgoJi/FSkrFmz6vnz59q6datu376tvXv3GovoxvVJP2nSpFHatGm1Y8cOXbt2TRcuXNDAgQN15syZeH9KkI2NjU6dOqWBAwfqt99+082bN+Xv769nz55FmVYVIVWqVJLCF9iObZpdQkiSJImGDx+uCxcuxLrwbFz9HJmVlZXat2+vH3/8UYsXL9b169f1008/aciQIUqRIkWMI0MqVqyowoULq2fPnjp48KCuXbumUaNGyd/fP8Y3bdmyZdOFCxd09OhR3bx5U2vWrDGm1cV0jt63falSpdKff/6pGzduKE2aNGrSpImmTp2qjRs36tq1a1qyZImWLl0qb29vWVlZqVmzZvrrr7/Up08fnT9/XidPntQ333yj9OnTx/jafFvz5s315MkT9e7dW+fPn9f58+fVs2dPnTp1yhixljZtWpUqVUorVqwwRpU4Ozvr2rVrOnHiRJwB1LNnz9S3b19dvHhR+/fv17Bhw+Tu7q4cOXJIkkqUKKFVq1bp3LlzOnv2rIYMGRKlj16+fKkePXro7Nmz2rdvn4YPHy4PDw+jjpg4OzvL3t5e/fr108mTJ3Xp0iX169dPGTJkUNGiRaOUr1u3rmxtbY0+PX36tAYPHqyCBQsqa9ascfZn1qxZ9ccff2j37t26deuWtm3bpiFDhkiK/X7Qvn17bd26VfPnz1dwcLDWrFmjxYsXx7m/mNSpU0fp06c3zutvv/2mPn36SIo5hLh//76GDRumHTt26NatW9qzZ4/OnTtn3Efevm9ky5ZN+/bt0+XLl3XlyhVNmjRJ27ZtMzvO1KlT69atW9GGd+3atdO2bds0Y8YMXb16VTt37tTw4cNVtWrVeAdQN27c0ODBg3XgwAHdunVLgYGBun37dpz3vvPnz+uvv/6K82fV2+Jzvy1RooQ2b96s48eP6/Lly/rf//4X7ai5Pn366PTp0/rtt9/Ut29f4xNhI2zatElLlixRcHCw5s6dq59++slYN+xd2x35+B89eqSrV6/G+oEdjx490p07d6J8vR2kJUuWTB4eHlqyZInOnDkjT09Ps8etra01ffp0LViwQDdu3NDp06e1a9euGM8PAAAAEt8/KoCSwkdBPX36VO7u7tE+Xrx4cc2dO1enT5+Wh4eHevToIUdHR82fP1/W1tZKnz695syZo1u3bqlx48aqX7++bt68qfnz5xvrELVq1Uq7du2St7e3Wd3r16+XyWRSs2bNot13mzZt9PDhQ23ZskXlypVTt27dNG/ePNWuXVv79u1T9+7djbL58+eXr6+vDh48KA8PDzVr1kxJkybVnDlzjL/ient7a/HixTF+4lbEwsGjR49WrVq1NHLkSDVs2FClS5eO8hfst1lbW2vKlCm6ePGi6tatq3bt2un58+fq1auXLl++rOfPn8f6/AiTJk1Szpw59fXXX6tmzZpavny5xo8fH2UdqQjlypVT8eLF1bRpU+3cuTNe+/gQBQoUUPv27TVt2jRdvnw52jJx9XN05X18fLR48WK5u7trxIgRaty4sYYOHRrjc5ImTap58+bJ3t5ePXr00JdffqkjR45o2rRpMb5p6969u0qUKGFMG1m1apVGjhypFClSxHp+36d9Hh4eev78uerUqaOQkBD1799fXl5eGj9+vGrXrq1ly5YZi29L0meffabFixfr8ePHatKkidq2batMmTJp2bJl+uSTT+LVjzlz5tTixYv1119/qVmzZmrZsqWsra21aNEis4Wjq1atqtDQUJUrV06SlD17duXJk0eff/65cubMGes+smXLpsKFC6tFixbq1auX3NzczBZ8HzJkiGxtbdW4cWN169ZNjRo1ihL22Nvbq3DhwvLy8lKPHj1UqVKlaKcNvi1JkiSaMWOGsmbNqjZt2qhZs2ZKnjy55s6dG+00qJQpU8rPz0+vX79W06ZN1a5dO33++eexjlyLzMvLS7Vq1VLfvn1Vp04d/fDDD+rVq5dy5MgR6/VSqVIlDRs2TEuWLFGdOnW0atUqNWvWLN5TKd9mY2OjuXPn6tWrV0a/NmjQQFLM0xa7du2qhg0b6vvvv1eNGjU0aNAgNWvWTB07dpQU9b4xduxYvXjxQg0aNFDLli118eJFDR06VPfu3dPt27clhX+YwcWLF/Xll19GGQFZo0YNTZw4UVu2bFHdunU1ePBg1a5dO959LUmDBw+Ws7Oz+vTpoxo1amjKlCnq3bt3jIutFyxYUJUrV1aPHj20YsWKOH9WRSeu+22vXr1UpEgRtWnTRq1bt1aJEiWMdc8iq1u3rjp06KB27dqpQIECmjVrllk4WL9+ff3000+qW7eu1q1bp8mTJxtTu9+n3ZL0xRdfKFOmTPryyy9j/ORPSerWrZsqVKgQ5SviQz8ia9CggTFKMHv27GaPlS9fXiNGjNDq1atVp04dtW3bVrlz59bEiRNj3DcAAAASl5UpvnMaAOAfxNfXV2vXrtXPP/+c2E35Rzt8+LAyZsxotij7zJkztXr1am3fvv2d67t586aCg4NVoUIFY1tISIgqVaqkJUuWxBhOw/L8/f3Vv39/XbhwIcYyrq6uql+/vrp16/Y3tuyfLSLAneO3T0FBvydyawDg3eXPn01TJ3dKsPqePXumc+fOqXDhwsYIX7wb+jBh0I8f7u/ow4jfpYoVKxZn2X/cCCgAQMLZu3ev2rZtq4MHD+r27dvasWOHFi5cGONInri8fPlSHTp0kJ+fn27cuKGzZ89q4MCBypMnT7SfbgYAAAAA0j/sU/AAAAmra9euxlpZ9+/fV7Zs2dS6dWtjzZ93lT9/fk2cOFEzZ87U1KlTlSJFCjk7O8c5RQsAAADAfxtT8AAAwH8WU/AAfOyYgvfPQx8mDPrxwzEFDwAAAAAAAP8pBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAopIldgMAAAASW87PMiZ2EwDgvXD/AvCxIIACAAD/eX16N0zsJgDAewsLC1OSJExuAfDPxl0KAAD8p4WGhur58+eJ3YyP2vPnz3X27Fn68QPQhwnjv9qPhE8APgbcqQAAwH+eyWRK7CZ81Ewmk54/f04/fgD6MGHQjwDwz0UABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAA8J9nZWWV2E34qFlZWSllypT04wegDxMG/fjh6MMPRx8C0UuW2A0AAABITDY2NkqZMmViN+OjljJlShUpUiSxm/FRow8TBv344ejDD/dv78M3YWFKmoSxLHh3BFAAAOA/b9DitQoOuZvYzQAA4B8tT5aMGtayfmI3Ax8pAigAAPCfFxxyVxdu/ZHYzQAAAPjXYtwcAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUAhWh17dpVjRo1irK9cePGsrOz0+HDh822r1+/XoUKFdK9e/fk4+OjVq1aJXibgoODZWdnJw8PjwSvW5KePXumJUuWfHA9dnZ28vf3lyT5+vrK1dX1g+vEv1urVq3k4+Pzt+/35s2bsrOz06FDhyy2D5PJpLVr1+revXsW20dCOHTokOzs7HTz5s33riPyaz8h7Ny5U5cvX47x8b/j/MUmruv2Xfo0IfofAAAA/2wEUIiWs7Ozzp07pxcvXhjbHj58qFOnTilbtmzas2ePWfmjR4+qUKFC+vTTTy3WJn9/f+XNm1fnzp3TiRMnErz+efPmyc/PL0Hr9Pb21urVqxO0TiChZMuWTXv37pWjo6PF9nHkyBH5+Pjo+fPnFtvHv9GtW7fUqVOnWIO7v+P8fQhHR0ft3btX2bJlS+ymAAAA4B+AAArRKleunF69eqVTp04Z2/bv369PP/1UDRo0iDaAKl++vMXa8+bNGwUEBMjT01P58+fX8uXLE3wfJpMpwetMnTq1MmTIkOD1AgkhadKkypQpk2xsbCy2D0u8rv4L4tNvf8f5+xA2NjbKlCmTkiZNmthNAQAAwD8AARSilT9/fmXJkkXHjx83tu3Zs0cVKlRQhQoVdP78ed29e1eSdP/+fQUFBalChQpG2VevXmnMmDEqV66cSpQooc6dOxvlu3TpIi8vL7P9XblyRXZ2drp06VK07dm7d69CQkLk4uKiL774Qlu2bNHjx4/NykQ3/SXytufPn+u7776Ti4uLihUrJg8PD23btk1S+FS5adOm6datW8Y0EB8fH3Xv3l3e3t5ycnLSnDlzFBYWplmzZqlGjRqyt7eXk5OT2rVrp+vXr0fb7ren4B09elReXl5ycnKSvb29atWqpXXr1hmP+/j4yMfHR2PGjJGzs7OKFy+ujh07KiQkJNr6I/p6ypQpqlq1qooXLy5PT0/t27fPeDwoKEidOnVS2bJlVbJkSXXv3l23bt0yHm/VqpXGjx+v//3vfypVqpScnJz07bff6unTp0YZPz8/VatWTfb29nJ1ddX06dONN8jRTTN8e5udnZ1WrFih5s2bq1ixYqpVq5aOHz+uFStWqEqVKnJyclKPHj3MRtwdP35cLVq0kIODg6pUqaKhQ4eatcnV1VVjxoyRu7u7ypYtq8OHDys4OFht27ZVyZIl5ejoqLZt2+rChQsx9t2jR480YMAAVaxYUUWLFpWzs7MGDBhgjNY5dOiQihQpotmzZ6ts2bLy9PRUWFiYQkJC1LNnT5UqVUply5ZVp06dFBwcHON+JOnkyZNq3bq1HB0dVb58eQ0ePNhsVNBff/2l/v37q1SpUipZsqR8fHz07Nkz4/Ht27erUaNGKlGihIoVKyZPT0+zILhVq1YaOHCgGjVqpFKlSmn9+vWSpAULFsjV1VUODg5q06aNpk2bZpybt6dwxedaOH36tFq0aKHixYvLzc1N69evV5EiRaKdBnbo0CHjte7m5ma8Fn/99Vd5eXmpZMmSKlu2rPr3768HDx5Ikrp166ZOnToZdZw/f152dnZmoxN//PFHVa9eXZJ0+/Zt9ezZU87OzipatKgqVaqkcePGKSwsTFL4yMnq1avr+++/V8mSJdW5c2dJ4a/FRo0aycHBQV9++aXOnz8f6/mTwqfEeXp6ysHBQdWrV9fkyZMVGhr63uX/+usvDR8+XBUqVJCjo6Natmyp06dP6+bNm3Jzc5MkeXl5ydfXN9pr8caNG2bnz2QyaeHChapRo4YcHBxUu3Ztbdy4Mdq2+fr6qkKFCkY/SeH3SEdHR61atUpS+L2jffv2cnR0VIUKFfTtt9/qzp07ZvXEdt2+Pa0urntVZCaTSXPmzJGbm5uKFy+uevXqGdd0hNjuSwAAAPjnIYBCjJydnfXrr78a3+/du1cuLi5ycHBQ2rRptXfvXknSsWPHlCJFCpUsWdIo++uvv+rx48daunSpZs2apd9++01jx46VJHl6eurw4cP6/fffjfIBAQEqVqyYChQoEG1b1qxZo1y5cqlo0aJyd3fX8+fPFRAQ8E7HM2XKFF24cEGzZ8/W5s2bValSJfXs2VM3b96Ut7e3vL29lTVrVrMpI4GBgSpfvrzWrFmjOnXqaNGiRfLz85OPj48CAwM1ffp0BQcHa/To0XHuPyQkRG3btlWxYsW0du1aBQQEyMHBQd99950RzknSxo0b9fDhQy1evFhz5szRmTNnNHny5BjrHTFihJYvX65+/fppw4YNqlixojp16qQrV67o1q1batKkiWxsbLRw4ULNmzdPd+7cUcuWLc1ChQULFihjxoxavXq1xo0bpx07dmjBggWSpJ9//lmzZs3S0KFDtW3bNvXu3Vs//PBDlDeDcZk0aZLatWundevWKW3atOrUqZMCAwM1e/ZsjRo1Stu3bzfe+J4/f15t2rRRxYoVtX79eo0fP15nzpyRt7e32RvMxYsXa8CAAZo7d65KlCihXr16KUuWLFqzZo1WrVqlJEmSqGvXrjG2ycfHR2fPntW0adMUGBio/v37KyAgQCtWrDDKvHnzRrt379aKFSs0YsQIvXjxwljjbPHixfrxxx+VPn16NW7cOMag8MaNG/rqq6+UOXNmrVixQr6+vtq3b5+GDh1qlNm2bZsyZ84sf39/jR07Vps3b9acOXMkhYc+3bp1U+3atbVhwwatXLlSGTJkUN++fc0CjVWrVsnLy0tLly5VxYoVtWTJEk2aNEmdO3fWunXrVKZMGU2fPj3W8xTbtRASEqKvvvpKOXLk0Jo1azRo0CBNmjRJb968ibYuR0dH+fr6Gm1zd3fXyZMn1apVKxUoUEArV67UlClTdOLECbVt21Zv3rxR1apVdfjwYb1+/VqStG/fPllZWZkFXLt27TICmq+//lpPnjzR/PnztXXrVnl7e2vu3Ln6+eefjfLXr1/Xn3/+qYCAAPXs2VM3btyQt7e3ChcurLVr16pLly6aMWNGrP3yyy+/qEePHmrcuLE2btyowYMHa8uWLerTp897l+/Ro4d++eUXjRo1SgEBAcqZM6e8vb2VOnVq47Xg6+srb29vSVGvRSsrK7N9zp0713idbdy4UU2bNlXfvn118ODBKO3z8PDQ3bt3zfp1+/btMplMqlWrlkJCQtS8eXPlzp1bq1ev1syZM/X06VM1adLELBiN7bp9W2z3qrdNmjRJy5Yt08CBA7VhwwZ5eXlpyJAhxjp9CXVfAgAAwN8nWWI3AP9czs7OGjVqlEwmky5cuKA7d+7IxcVFSZMmlbOzs/bs2SMPDw8dOXJEpUqVUvLkyY3nZsqUScOHD1eSJEmUL18+ubu7a//+/ZKkypUrK2PGjFq/fr06duyosLAwrVu3Th06dIi2HQ8ePNDPP/+stm3bSpIKFiyoggULasWKFVFGUsXm+vXrSp06tXLmzKlPPvlE33zzjUqXLi1bW1ulTp1aqVKlMqa0RLC1tVW7du2M73PlyqUxY8aoatWqkqQcOXKoZs2a2rp1a5z7f/nypbp166a2bdsabxw7dOiggIAABQcHK2PGjJKktGnTatiwYbK2tlb+/Pnl7u6u3bt3R1vn06dPtXr1ag0cOFA1a9aUJPXs2VMmk0lPnz7VmjVrlCpVKo0fP96YpjN16lS5ublp3bp1atGihSTp888/V69evSRJefLkkYuLixE+Xr9+XTY2NsqRI4eyZ8+u7NmzK3PmzMqePXu8+16SGjRoYIy8qVevnoYNG6ZBgwYpT548KliwoObOnWuMgPPz85OLi4sxEiZPnjyaMGGCqlWrpsOHD6ts2bKSwq+lyFM/r1+/rvLlyytHjhyytrbWyJEjdeXKFYWFhSlJkqh5u4uLi0qXLi07OztJ0meffabFixfr4sWLZuW8vb2VJ08eSeFByuPHjzVu3DglSxZ+Cx0xYoQOHTqklStXqlu3blH2s3LlSqVLl04jR440nvP999+bBbwODg7q2bOnpPDrzMXFRadPn5YUPtVq4MCBat68uVHey8tL7du3171794zAtHDhwqpbt65Rxs/PT15eXmrYsKGk8LDmzJkzOnv2bEynKdZrYcWKFUqbNq1GjBgha2trff755xowYIAxquhtNjY2srW1lSRlyJBBKVKk0Lx582RnZ6eBAwdKCh9tOXHiRNWrV0979+5VlSpV9N133+m3335TqVKltH//frm5uenAgQN6/fq1QkNDdfjwYXXq1EkvXrxQvXr1VKtWLaMPWrdurTlz5ujChQuqVq2a0ZbOnTsrZ86ckqQJEyYoY8aMGjx4sJImTar8+fPr999/16hRo2Lsl5kzZ6px48Zq2rSpcY6GDh2qr776Sjdv3tRnn332TuVDQ0P1yy+/yM/Pzxg9OmTIEH3yySd69OiRMXU34v4UIfK1GHnB7ojRT15eXsYHSLRq1UovXrwwwrzIcubMqdKlS2v9+vVydnaWJG3YsEHVqlVTmjRpNHfuXGXNmlUDBgwwnjN58mSVK1dOW7dulaenp6TYr9vI4rpXRfbs2TMtWLBAEydOVJUqVYy6b926JT8/P7Vo0SLB7ksAAAD4+xBAIUbOzs56+PChrly5or1796pIkSLGmyIXFxdNmzZNUvhUltq1a5s9N1euXGZv+G1tbY3pVcmSJdOXX36pdevWqWPHjjp48KDu37+vOnXqRNuODRs26NWrV3J3dze21a5dW5MmTdLRo0dVqlSpeB1P+/bt1alTJzk7O8vBwUEuLi6qW7eu0qZNG+NzcufObfa9q6urTpw4oSlTpujq1au6evWqLl++rCxZssS5/1y5csnT01OLFi3SxYsXdf36dWPaT+QRJLly5ZK1tbXxfdq0afXq1ato67x69apevXql4sWLm22PCBB8fX1lb29vtkZMpkyZlDdvXrOQJV++fGbPT5s2rTHF8csvv9SaNWtUo0YNff755ypfvrxq1Kjxzm/0IvdlypQpjWONkCJFCmM0z9mzZ3Xt2rVoF1cOCgoyAqi3z0/Pnj01cuRILV26VGXKlFHFihVVp06daMMnSWrevLl+/vlnrV27VsHBwbp8+bJu3rwZpT8i3vBHtO3Ro0cqXbq0WZmXL18qKCgo2v1cvHhRRYsWNcInKXydtXLlykW7Dyn8NRMxVbJw4cKytbXV7NmzdeXKFV27di3aaydyfzx48EC3bt1SiRIlzOotVapUrAFUbNfC2bNnZW9vb3Z9vt0Pcbl48aJcXFzMthUqVEhp06bVhQsXVLlyZRUvXlz79u2Tg4ODjh49qh9//FG7du3S6dOnde/ePaVKlUpOTk5KmjSpWrZsqa1bt+rkyZO6du2aLly4oLt375pNLZPM+/fixYsqUqSI2dpETk5Osbb77NmzOnnypNmHCkSMxgv6f+3dd3xO9///8WdsIbVXVa1KYoVYsUdQo9RW+6Oxas8iLRXUpgS1o0RsYoTGLGqPGlURI4SgWntGgly/P/xyvrkkkURyScnjfrvlVjnXGa/zvt7XqevpvN8nICBSABXT+uHDLyO+P6lTp5arq6skRfs0uNf7Sbh79+7p1q1bka4FXbp0ifacmjVrptGjR8vNzU1PnjzR/v37jbuX/Pz8dOHChUifwdf7+Zv6bUQxXasi3ol18eJFhYSEaODAgWaf3fAA8tmzZwl2XQIAAMC7QwCFaOXIkUP58+fXiRMntH//frM5nipXrqwffvhBZ86ckb+/v8aOHWu2bUyTzjZr1kweHh7666+/tHHjRtWsWdO4U+J14fPGNGnSxFgW/kVu+fLl0QZQr/+rv6Ojo/bs2aP9+/fr4MGDWr9+vWbPnq0FCxYYdwC8Lk2aNGa/z5s3Tz///LOaNGmiChUqqGPHjtq5c6c2b978xvOVXn2patOmjYoWLaqKFSvq888/V6ZMmYy7FcLFZULhiEFAVKKbDyUsLMxs2zcdM3PmzNqwYYPRD/bt2ydPT0/17t072uFtUd1xETF8CRddMBQWFqaGDRuazQUUsZ5wr78/bdu2Vd26dbVnzx4dPHhQ06dP1+zZs7V+/XrjDrOIx+jWrZsuXLigBg0aqH79+ipatKhxZ05EEe/uCwsLU/78+TV79uxI61lbW0d5PlGd++ve9Jk5cuSIOnXqpOrVq6t06dJq2LChgoOD1bNnT7P1IrZH+DHjOifOm/pC8uTJIwU7cRVdPSaTyeiTzs7O2rFjh8qVK6ePPvpIDg4OKl68uA4fPqzr16+rRo0aSp48uZ4+fap27drp2bNnqlu3rpo0aSIHBwfjzr6IIraNlZVVpPOI6T0KCwtT586dza5D4SLeNRnb9cPvCI2riH0xopiuBVH5/PPPNXLkSO3atUu3b99WtmzZjFA0LCxM5cuX14gRIyJtFzG0j+0E43GpL7yPTJs2LVIgKr3qo2nSpInzdQkAAACJizmg8EYVK1bU8ePHdeLECbO7FnLnzq18+fJp6dKlypw5szGEKbYKFiwoR0dH+fr6aufOncZwjtf5+fnp7Nmz+uabb7R+/XrjZ8OGDapSpYq2bdtmTF6cMmVKs6EcV65cMdvX9OnT9ccff6hmzZoaNmyYtm7dqjx58mjr1q2SFGk+lajMmTNHPXv2lJubm7766iuVLFlSgYGBsfqSv2LFCmXJkkW//PKLunTpomrVqhlzP73txLl58+ZVypQpzZ5WKEktW7bUokWLZGdnp9OnT5vNE3T79m1duXJFBQsWjNUxNm7cqOXLlxsTmK9atUotWrTQr7/+KulVuz958sRsm9fbPq4KFSqkixcvKm/evMbPixcvNG7cOLO5wyK6c+eORo0apefPn6tp06aaNGmSNm7cqFu3bunIkSOR1j979qx+//13ubu7a9CgQfryyy/16aef6urVq298P2xtbXXjxg3Z2NgYtX388ceaMmWKjh49GuU2n332mfz8/MzuVtq+fbucnZ0VEhISY3ssXLhQTk5OmjFjhjp27KhKlSoZ7RBdrTY2NsqdO7dOnjxptvz13+PC3t5efn5+ZnfkRRxGGJXXP1d2dnb6448/zJb5+/vr8ePHRp90dnbWX3/9pe3btxvhcMWKFXXo0CGz+Z/27dunM2fOyNPTU3369FH9+vWVPn163blz543vob29vf766y+zz0VUw8YiKlSokC5fvmzWJ2/evKmJEydG6v+xWT/8XCN+dl+8eCFnZ2dt2bIlVtejiGxsbJQ9e/ZI14I+ffpEO7TQ2tpa9erV07Zt27R582Y1atTICIULFSqkgIAA5cqVy6g/Q4YMGjt2bKQhqrER07UqogIFCihFihS6ceOGWfvt2bNHHh4eSpYsWYzXJQAAAPz3EEDhjSpUqCBfX19ZWVlFGqJSpUoV+fr6qkKFCnH+siS9ugvKy8tLadKkiTQkJ5y3t7fSpk0rFxcXY+6n8J8uXbooNDTUuEOqZMmSWr16tc6ePSs/Pz+5ubmZ3c0RFBSkESNG6ODBg7p+/bq2bt2qGzduGENMrK2t9eDBA2OoSFRy5cql/fv36+LFi7p06ZKmTp2qbdu2vfFJWOFy5sypmzdvas+ePbp+/bq2bdsmNzc3hG4B6wAAYPhJREFUSYrV9lFJmzat2rVrJ3d3d+3cuVNXr17VTz/9pPPnz6tq1apq3bq1njx5om+//Vb+/v76888/1bdvX2XKlCnSsMnohISEaMKECVq/fr2uXbumY8eO6ejRo0a7lSxZUvfv35eHh4euXbumFStW6Pfff3+r8wnn4uIiPz8/jRw5UgEBATpx4oQGDhyowMDAaIcgZciQQbt379awYcN09uxZBQUFacWKFUqZMqWKFSsWaf2sWbMqRYoU8vX1VVBQkE6fPq1+/frp1q1bb3w/vvzyS2XIkEF9+vTRqVOnFBAQoKFDh+r333+PNoht06aN7t27pxEjRiggIEBHjx7VxIkTVb58+WjvaIkoV65cOnfunI4dO6Zr165p7dq1cnd3l/TmvtOlSxd5eXnJ29tbV65ckYeHhxG4vo02bdro4cOHGj58uAICAnTgwAGNHj1aUvQBbvhdYf7+/nry5Im+/vprnTt3TqNHj1ZAQIAOHz6sQYMGqUiRIkbY9Nlnnyl37txavXq1saxChQo6dOiQ7t+/b1wvcubMKelVSHr9+nUdO3ZMPXr00PPnz9/YLq1bt1ZwcLC+++47BQQEaNeuXcZk6dHp0qWLtm7dqpkzZ+ry5cs6ePCgXF1d9ejRoyjvgIpp/fz58xt3IB06dEiXL1/W8OHDFRISonLlyhntdv78eT169OiNtYXr2rWrFi9erA0bNujq1avy9PTUzp07jcAuKk2bNtWuXbt08uRJs38IaNOmjR49eqRBgwbJ399f/v7+6t+/v06fPi1bW9tY1RNRTNeqiGxsbNSqVSu5u7trw4YNCgoKMibFz549u6SYr0sAAAD472EIHt7IyclJz549U7Vq1SINoahcubKWLFkSbXgUk3r16mn06NFq3LhxlMM4QkND5ePjo4YNG0Y5PM/JyUlFixbVqlWr5OLiIjc3N7m5ually5bKnj27+vbtq5s3bxrrjxgxQhMmTNC3336r+/fvK3fu3Bo0aJAaNWok6dVwlFWrVunLL7+Ul5dXlDVPnDhRo0aNUrNmzZQuXTqVKFFCI0eOlJubm27cuPHG+Uc6dOigS5cuGU8uy5cvnwYMGKDp06fr9OnTkb6ExdaAAQOUPHlyjRgxQo8ePZK9vb3mzZtnDF3x8vLSpEmTjKfhVapUSZMmTdJHH30Uq/23aNFC9+/f16xZs/T3338rQ4YMqlOnjgYNGiTp1VxGvXv31sKFCzV9+nRVrVpVffr0kaen51udj/Qq1FqwYIHc3d3VpEkTWVtbq0KFChoyZEi0Q8RSpEih+fPna8KECerYsaOCg4NVuHBhzZs3z2yuqXA5cuTQ+PHjNWPGDC1dulTZsmVT9erV1bFjR7MnqL3OxsZGXl5emjhxovHktqJFi2rhwoXR3lWWI0cOLVy4UJMmTVLjxo2VIUMG1a9f35j/JiZ9+vTR7du3jSGJn332mcaOHatvv/1Wp0+fjva4rVu31oMHDzRt2jTdu3dP5cqVU5MmTSLdgRRbWbJk0YIFCzR27Fg1atRIOXPmVOvWrTVx4sRoh1jZ2tqqWrVq6tevnwYMGGA8pW7atGlq3Lix0qdPr1q1amngwIFm+6hRo4YWL15sDAkrWbKk0qRJIycnJyOccXBwkKurqxYtWqRp06YpR44cql+/vnLlyhXpTpuIcuTIocWLF2vs2LFq0qSJcuXKpe7du5s9lfB1devW1dSpUzV37lzNmTNHGTNmlLOzs/E5eJv1x44dq4kTJ6pv374KDQ1ViRIl5OHhYQwzbdasmSZOnKgrV66odu3a0dYWLnw4oru7u27duqV8+fJp6tSpKleuXLTblClTRtmyZVOWLFnM5hDLkyePvLy8NGXKFLVu3VrJkydXqVKl5OnpaTYMNi7edK26deuW2bqurq7KlCmT3N3d9e+//ypXrlzq06eP8VCImK5LAAAA+O+xMr3t2B8gnoKCgvT555/L19c32rtaALy933//XZ999plZMDp8+HBdvXpVixcvjvP+Ll68qAcPHqh06dLGsuPHj6t169bavXu38SQ64H0SHlZO2nZI567fjGFtAACSNrvcOeU5MPqHnCSkp0+f6uzZsypcuHC0c63izd5FG4b/Xap48eIxrssQPLxzf//9t7Zu3aphw4apSpUqhE+AhWzYsEE9evTQyZMndf36da1fv14bN2407vqLq5s3b6pDhw5av369rl+/rhMnTmjcuHEqV64c4RMAAACAN2IIHt65e/fuaejQocqXL59mzpyZ2OUAH6zhw4dr/Pjx6tmzpx4+fKi8efPqu+++i3bS/5hUrlxZ33//vebOnavhw4fLxsbmjcPQAAAAACAcARTeuSJFisT45CwA8ZcxY0aNHz8+QffZpk0btWnTJkH3CQAAAODDxxA8AAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAolK87YZ79uzRgQMH9O+//2rAgAE6e/asihYtqty5cydkfQAAAAAAAHjPxTmACg4OVs+ePXXgwAGlT59eT548UefOnbV8+XL5+fnJy8tLhQoVskStAAAAAAAAeA/FeQjeTz/9pDNnzmjRokU6dOiQTCaTJGnChAnKkSOH3N3dE7xIAAAAAAAAvL/iHED5+vpqwIABKl++vKysrIzl2bNnV/fu3fXHH38kaIEAAAAAAAB4v8U5gHr48GG08zxlyJBBT58+jXdRAAAAAAAA+HDEOYAqVKiQfHx8onztt99+Y/4nAAAAAAAAmInzJOTdu3dXr169dP/+fdWoUUNWVlY6evSovL29tWLFCk2ZMsUSdQIAAAAAAOA9FecAqlatWpo0aZKmTJmiPXv2SJLGjx+vLFmyyM3NTXXr1k3wIgEAAAAAAPD+inMAJUkNGzZUw4YNdenSJd2/f18fffSRChQooGTJ4jyiDwAAAAAAAB+4twqgwhUoUCCh6gAAAAAAAMAHKlYBlL29vaysrGK1QysrK/n5+cWrKAAAAAAAAHw4YhVA9ezZM9YBFAAAAAAAABBRrAKo3r17G3++ceOGsmbNqlSpUkVaLyQkRGfOnEm46gAAAAAAAPDei/Os4TVr1pS/v3+Ur/3555/6+uuv410UAAAAAAAAPhyxugNqwoQJun//viTJZDJp1qxZypQpU6T1zp49KxsbmwQtEAAAAAAAAO+3WAVQBQoU0OzZsyW9mmT8r7/+ijQEL3ny5LKxsZGrq2vCVwkAAAAAAID3VqwCqBYtWqhFixaSJGdnZ/38888qXLiwRQsDAAAAAADAhyFWAVREv/32myXqAAAAAAAAwAcqVgFUhw4dNGLECBUsWFAdOnR447pWVlZavHhxghQHAAAAAACA91+sAiiTyRTln2NaFwAAAAAAAIhVANWsWTNlzpxZkrRkyRKLFgQAAAAAAIAPS7LYrOTq6qqgoCBL1wIAAAAAAIAPUKwCKIbVAQAAAAAA4G3FKoACAAAAAAAA3las5oCSpDVr1uj333+PcT0rKyv17NkzXkUBAAAAAADgwxHrAGrVqlWxWo8ACgAAAAAAABHFKYBycHCwZC0AAACJIl+OrIldAgAA/3n8/xLxEesACgAA4EM1ql2TxC4BAID3wsuwMCVPxnTSiDt6DQAASNJCQ0MVHByc2GW814KDg+Xn50c7xgNtmDBox/ijDePvQ29Dwie8LXoOAABI8kwmU2KX8F4zmUwKDg6mHeOBNkwYtGP80YbxRxsCUYvVEDx/f39L1wEAAAAAAIAPFHdAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWFSsJiGPSkBAgPbv369///1X7du3V1BQkOzt7ZU+ffqErA8AAAAAAADvuTgHUGFhYfrhhx+0du1amUwmWVlZqV69epo1a5auXr0qLy8v5cyZ0xK1AgAAAAAA4D0U5yF4s2bNko+Pj3788Uft379fJpNJkvTtt98qLCxMU6dOTfAiAQAAAAAA8P6KcwC1du1a9enTR82aNVPGjBmN5YULF1afPn20f//+hKwPAAAAAAAA77k4B1C3b99W4cKFo3wtR44cevjwYbyLAgAAAAAAwIcjzgFU3rx5tWfPnihfO3LkiPLmzRvvogAAAAAAAPDhiPMk5P/73//0ww8/6Pnz56pRo4asrKx05coVHT58WAsXLtTQoUMtUScAAAAAAADeU3EOoFq0aKG7d+9q9uzZWr58uUwmkwYMGKCUKVOqc+fOat26tSXqBAAAAAAAwHsqzgGUJHXr1k1t27bV8ePH9eDBA3300UcqUaKE2aTkAAAAAAAAgPSWAZQkpU+fXlWrVk3IWgAAAAAAAPABilUA5ezsLCsrq1jt0MrKSjt27IhXUQAAAAAAAPhwxCqAKleuXKwDKAAAAAAAACCiWAVQ48ePj7Ts5cuXSp48uSQpODhYL168kI2NTcJWBwAAAAAAgPdesrhu8OLFC40YMUItW7Y0lp04cUIVKlTQhAkTFBYWlqAFAgAAAAAA4P0W5wBq+vTp2rhxo7744gtjWZEiRTRo0CCtWrVKCxYsSNACAQAAAAAA8H6L81PwfHx8NGTIELVq1cpYljFjRnXs2FEpUqSQp6enunbtmqBFAgAAAAAA4P0V5zug7t27pzx58kT5WoECBXTz5s14FwUAAPAu8bCV+LGyslLatGlpx3igDRMG7Rh/tGH80YYJg3b88MQ5gCpQoIC2bt0a5Wu//fab8ubNG++iAAAA3pVUqVIpbdq0iV3Gey1t2rQqUqQI7RgPtGHCoB3jjzaMP9owYdCOb+/lf3Ru7jgPwevQoYOGDh2q+/fvq1atWsqSJYvu3r2rXbt2ydfXV+PGjbNEnQAAABYzbOdqXb53K7HLAAAAiJf8mbLpx5otEruMKMU5gGrcuLGePHmiWbNmadu2bcbyTJkyafjw4WrcuHFC1gcAAGBxl+/d0rnbfyd2GQAAAB+sOAdQktS2bVu1adNGly9f1v379/XRRx+pQIECSpYsziP6AAAAAAAA8IF7qwBKejUhWIECBRKyFgAAAAAAAHyAYhVAFS5cWCtXrpSDg4Ps7e3fOAu9lZWV/Pz8EqxAAAAAAAAAvN9iFUD17NlTOXLkMP7MYxABAAAAAAAQW7EKoHr16mX8uXfv3m9c9+bNm/GrCAAAAAAAAB+UOM8aXrhwYf35559Rvnbs2DHVq1cv3kUBAAAAAADgwxGrO6AWLlyop0+fSpJMJpNWr16t33//PdJ6J06cUKpUqRK2QgAAAAAAALzXYhVAhYSEaObMmZJeTTK+evXqSOskS5ZMNjY26t69e8JWCAAAAAAAgPdarAKo7t27G8GSvb29Vq1aJQcHB4sWBgAAAAAAgA9DnOeAqlixop48eWKJWgAAAAAAAPABinMAdeLECVlZWVmiFgAAAAAAAHyA4hxAValSRRs3btTz588tUQ8AAAAAAAA+MLGaAyqi1KlTa+PGjfL19VXBggVlbW0daR1PT88EKQ4AAAAAAADvvzgHUDdv3pSjo6Pxu8lkMnv99d8BAAAAAACQtMU5gFqyZEmUy//55x+tXr1aa9asiXdRAAAAAAAA+HDEOYB63d69e7VixQrt2bNHL168UJ48eRKiLgAAAAAAAHwg3iqAunv3rtasWaNVq1bp+vXrSp8+vZo0aaJGjRqpTJkyCV0jAAAAAAAA3mNxCqAOHTqklStXaseOHXr58qVKly6t69ev6+eff1a5cuUsVSMAAAAAAADeY7EKoBYtWqSVK1fq8uXLyps3r3r06KEmTZrI2tpa5cqVk5WVlaXrBAAAAAAAwHsqVgHU+PHjZWdnJ09PT7M7nR49emSxwgAAAAAAAPBhSBablb744gtduXJF3bp1U48ePbR9+3a9ePHC0rUBAAAAAADgAxCrO6CmTJmix48fy8fHR97e3urdu7cyZcqkWrVqycrKiiF4AAAAAAAAiFas7oCSpPTp06t169ZavXq1fHx81KhRI/32228ymUz67rvv5O7urosXL1qyVgAAAAAAALyHYh1ARVSoUCENHTpUe/bs0YwZM1SgQAHNnz9fDRs21JdffpnQNQIAAAAAAOA9FqsheNFunCKFateurdq1a+v27dtat26d1q1bl1C1AQAAAAAA4APwVndARSVr1qzq0qWLfv3114TaJQAAAAAAAD4ACRZAAQAAAAAAAFEhgAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFxEP79u1lZ2cX7c/du3fl6uqqihUr6uXLl1HuY/bs2SpTpoyePXsW5+Pfv39fHTt2VPHixdW8efP4ns5bCQ0NVZ8+feTg4KDKlSsrLCwsxm3u3bun1atXv4Pq4qZ9+/YaOnRogu3j8OHDsrOz07Vr1xKivP+UhGiruJgxY4acnZ2N3y9cuKDdu3e/9f4+lPfG2dlZM2bMSOwyYvTHH3/o2LFjsV5/6NChat++vQUrAgAAwLuWIrELAN539erV0/fffx/la5kyZVKzZs3k7e2t/fv3q2rVqpHWWb9+vRo0aKA0adLE+dgbN27UsWPHtGzZMuXIkSPO2yeEvXv3auvWrZo7d67s7OyULFnMufbEiRN17do1tWjR4h1UiA+Bi4uL2rZta/zerVs3NWnSRNWrV3+r/Tk6Omrfvn3KnDlzAlWYONasWaPUqVMndhkxatOmjcaNG6cyZcokdikAAABIJARQQDylSZNG2bJli/b1MmXKKF++fPLx8YkUQJ08eVKBgYGaMmXKWx374cOHypYtmxwcHN5q+4Tw8OFDSVK1atVkZWUVq21MJpMlS8IHKF26dEqXLl2C7S9VqlRv/Ny+L973AA0AAABJB0PwgHegWbNm2rFjh4KDg82Wr1u3Tvb29ipWrJgkKTAwUJ06dVLp0qXl6OioTp066dy5c1Huc+jQoZoxY4Zu3LghOzs7eXt7KywsTHPnzlWdOnVUrFgxlSpVSp07d9bVq1eN7Z48eaLRo0ercuXKcnR0VLt27fTXX38Zrx8/flxt27aVg4ODqlevrpEjR+rx48dR1jBjxgxjGJa9vb1mzJghb29v2dnZma0XcdnQoUO1bt06HTlyxFgW1XCu14eyFSlSRPPmzZOTk5OaNm2qsLAw/fPPP+rfv7/KlCkjJycnffPNNwoMDHzje/Hnn3+qY8eOcnR0VMWKFTVixAiz9+XJkydydXVVmTJlVLp0aQ0dOlRPnz41Xt+xY4datGihkiVLqnjx4mratKn27t37xmOGM5lMmj9/vmrWrKkSJUqoUaNG2rhxo/F6+Hnu2bNHDRo0ULFixVS3bl3t2LHDWOfly5eaOnWqKleurJIlS6pPnz4aM2aM2XClgIAAdenSRY6OjqpcubIGDhyoW7duGa/HpZ9Jr4ZZjh07VhUqVFDp0qU1adKkSEMt43tMOzs7LV26VC1btlTx4sXVsGFD7dy503g94hA8Z2dnXb9+XTNnzjTO+9GjRxo+fLjKly+v0qVLq0OHDjp9+nS05/T6EDxnZ2d5eHiod+/ecnR0lJOTk3788Ue9ePHC2OZNfad9+/YaPny4WrRooTJlyhjv69q1a1WvXj05ODioXr16Wrx4sVnbHTt2TB06dFCpUqVUrFgx1atXTxs2bDBev3Pnjvr06SMnJyc5ODioVatWOnLkiPF6xCF4M2bMUMeOHTVv3jxVrVpVxYsXV7t27RQQEGCsf/fuXbPPzOTJk9WhQ4doh/FFNVTx9WXt27fXmDFjNGDAAJUoUUJVq1bVvHnzjKA5/HPu6upqfKZjOu/XjRkzRmXLltWff/4pKe7vNwAAABIfARTwDjRu3FghISFmX6hDQ0Pl6+trNgxtwIABypEjh9auXavVq1crWbJk6tWrV5T7/P777+Xi4qKcOXNq3759ql+/vjw9PeXh4aGhQ4dq69at+vnnnxUYGKjx48cb2/Xr10+///67xo0bp/Xr1ytPnjxycXHRgwcP5O/vr6+//lpVqlTRxo0bNXnyZJ05c0YuLi5R3rXk4uKi7777TpK0b98+ubi4xNgW33//verVq2cMgYqtly9fas+ePVq5cqXGjBmjZ8+eGeGDl5eXlixZokyZMqlly5b6559/otxHUFCQ/ve//yl79uxauXKlZsyYof3792vkyJHGOtu2bVP27Nnl7e2tiRMn6tdff9X8+fMlSX/99Zd69+6tL774Qj4+Plq1apUyZ86swYMHKzQ0NMZzmDp1qpYvX67hw4fLx8dHHTp0kJubm5YuXWp2npMmTdL333+vTZs2ydbWVkOGDNGTJ08kSZMnT9bKlSs1YsQIrV27VtmyZdOSJUuM7f/55x+1adNGefPm1Zo1azRnzhw9fvxYX331lRGkxaWfSdKPP/6oX3/9VePHj9eKFSt08+ZNs/l8EuqYkydPVqNGjbRhwwZVq1ZNvXr10vHjxyPVs2bNGuXMmVMuLi6aMWOGTCaTunTpoqCgIM2dO1erVq1SyZIl1bp1a/n5+cX4voRzd3dX2bJltXHjRg0ePFheXl7atGmTpNj1ndWrV6tDhw5atmyZqlSpopUrV2rixInq1auXNm/erH79+mn+/PmaPHmy0W6dOnVS8eLFtW7dOq1fv14ODg76/vvvdfv2bUmSm5ubQkJC5OXlJR8fH+XPn189evQwC0UjOnbsmP744w/NmzdPy5Yt0507d4waw8LC1K1bN125ckULFizQwoULdfLkSbNA620tX75cNjY28vb2Vv/+/fXzzz8bn5vwz/l3332n77//PlbnHdHEiRO1YcMG/fLLL3JwcEiw9xsAAADvFkPwgHjy8fHR1q1bIy2vVauWJk2aJEnKnj27qlatKh8fHzVo0ECS9Ntvv+nZs2dq2LChsc3Vq1dVsWJF5c6dWylTptTYsWN16dIlhYWFRZpbycbGRtbW1kqePLkxlOjTTz/VhAkTVKNGDUlS7ty5VbduXW3ZskWSdOnSJf3+++/y8PBQ5cqVJb36gvvRRx/p3r178vDwUKVKlfTNN99IkvLly6cpU6aoVq1aOnLkiJycnMxqSJcunWxsbCQp1sOZbGxslCZNGqVMmTLOQ6BcXFyUL18+Sa++7D98+FCTJk1SihSvLmVjxozR4cOHtWrVKvXu3TvS9qtWrVLGjBk1duxYY5sff/xRJ06cMNZxcHBQ//79Jb1qz0qVKhl3iCVPnlzDhw9XmzZtjPU7dOigLl266M6dO8qVK1e0tT99+lSLFi3STz/9ZMxb9Omnn+r69evy8PAwm9+oX79+qlChgiSpR48e2rp1q86fPy97e3stW7ZMrq6uql27tiRp2LBhZvUvX75cOXPm1LBhw4xl06ZNU/ny5bVlyxY1bdo0Tv3s8ePH8vb21ogRI1StWjVJ0tixY3Xo0KEEP2bTpk2Ndhg0aJCOHDkiLy8vlSpVyqymzJkzK3ny5LK2tlbGjBl18OBBnTx5UocOHVLGjBklvQq8jh8/Lk9PT7MA9k0qV66sDh06SJLy5MmjJUuW6Pjx42rcuHGs+k7hwoXNPs+zZs1S9+7d9cUXXxj7fPz4sUaOHKm+ffsqJCREvXv3VqdOnYzhq127dtX69esVGBiorFmz6urVq7K1tVWePHmUJk0aff/992rYsKGSJ08e5Tm8ePFCEydOVIYMGSRJrVq1Mq5DR44c0Z9//ilfX18VKFDAeJ8iTu7+tvLnzy83NzdZWVmpYMGCCggIkKenp7p06WJ8zm1sbGRjY6N79+7FeN7hpk6dqrVr12rRokUqUqSIJOnQoUMJ8n4DAADg3SKAAuLJ2dlZgwYNirTc2tra7PfmzZurb9++unv3rjJnzqz169erdu3axhdFSerfv7/Gjh2rZcuWqVy5cqpSpYoaNGgQq4m9w2s5deqU3N3ddfnyZV2+fFkXL140Jig/f/68JKlkyZLGNqlTp5arq6skyc/PT1euXJGjo2OkfQcEBEQKoN618PBJelXrgwcPVLZsWbN1QkJCzIYcRXT+/HkVLVrUCBAkqXz58ipfvnyUx5CkDBky6Pr165JeBQwZMmTQvHnzdOnSJV25ckX+/v6SFO1TDsNdvHhRISEhGjhwoNn7+eLFC4WGhpo9BTE8HJCk9OnTS5KeP3+ugIAAPXv2zOz9s7KyUunSpY06/Pz8dOHChUjvYcR2iUs/u3z5sp4/f67ixYsby1KnTm2EAQl5zNf7l6Ojo/bv3x9Vc5o5c+aMTCaTEbyGCw0NVUhISIzbhytYsKDZ7zY2Nnr+/Lmk2PWdvHnzGn++e/eubt68qZ9++knu7u7G8rCwMIWEhOjatWsqWLCgmjZtKk9PT50/f15Xr16N1J969eqlb7/9Vlu3blXp0qVVuXJlNWjQINqJx7NmzWp2TYl4Dn5+fsqQIYNZ/8qaNavy588f6zaKjpOTk9kccI6Ojpo/f77u3bsXaZ6qTz/9NMbzll7NkXf06FFlzpzZLNxNqPcbAAAA7xYBFBBP6dKlM/viGZ3q1asrY8aM8vX1Vb169bR3714tWLDAbJ22bduqbt262rNnjw4ePKjp06dr9uzZWr9+vdldAdGZN2+efv75ZzVp0kQVKlRQx44dtXPnTm3evFmSzL48RyUsLEwNGzY07oCKKD6THccUzkQl4tw74SJ+6Q4LC1P+/Pk1e/bsSOu9Hv6Fi+n8JUV7Z4n06g6STp06qXr16ipdurQaNmyo4OBg9ezZM8b9hg9hnDZtmlkAEC5VqlRR/jni9uH1v2kS97CwMJUvX14jRoyI9Fr43Wpx6WfhocLrx4zYlgl1zNffn5cvX8YqfA0LC1P69Onl7e0d6bWo2jI60bV7VLVFJeKTLMPneXJ1dVXFihUjrZsrVy5dvHhRbdq0UdGiRVWxYkV9/vnnypQpk9mw3Nq1a2vv3r3au3evDhw4oF9++UUzZ87UqlWrVKhQoVidQ7jkyZNHmrvrbUT1eX69fcKPE9XnKTbnLb36HM+ZM0cDBw7Ujz/+aDysIaHebwAAALxbzAEFvCMpUqTQl19+KV9fX23ZskU5c+Y0u3vizp07GjVqlJ4/f66mTZtq0qRJ2rhxo27duhXrOVrmzJmjnj17ys3NTV999ZVKliypwMBA40t0+B0eESfrffHihZydnbVlyxYVKlRIFy9eVN68eY2fFy9eaNy4cfr7779jVUPKlCklyWzi8tcnBn/9aXkpU6Y0Wz8sLExBQUFvPI6tra1u3LghGxsbo9aPP/5YU6ZM0dGjR6Pc5rPPPpOfn5/ZF+jt27fL2dk5VndOLFy4UE5OTsZkz5UqVTLaJaYn+xUoUEApUqTQjRs3zNp3z5498vDwiFXQkjdvXqVJk0YnT540W37q1Cnjz4UKFVJAQIBy5cplHCNDhgwaO3aszp8/H+d+lj9/fqVOndpsLqYXL14Yd6wk5DFfn0T6xIkTKlq0aIztYmtrq8ePH+v58+dmbTt//nyzedfiI659J0uWLMqcObOCgoLMajpz5oymTZsmSVqxYoWyZMmiX375RV26dFG1atWMOZBMJpNCQ0M1btw4BQUFqX79+vrxxx+1Y8cOJUuWTLt3747zOdjb2+vRo0dmdwjeu3dPV65ciXab2Hyepcjv3fHjx/XJJ5+Y3Y0VLqbzDmdraytHR0e5ublp06ZNxmT87+L9BgAAQMIjgALi6dmzZ7p161aUP69PTN28eXMdP35cq1evVrNmzcyCmAwZMmj37t0aNmyYzp49q6CgIK1YsUIpU6Y0npIXk1y5cmn//v26ePGiLl26pKlTp2rbtm1GHfnz59fnn3+ukSNH6tChQ7p8+bKGDx+ukJAQlStXTi4uLvLz89PIkSMVEBCgEydOaODAgQoMDIw0NC06JUuWlJWVlWbMmKFr167J19dX69atM1vH2tpa//77rxEylSxZUvv379fvv/+uK1euaPTo0Xr48OEbj/Pll18qQ4YM6tOnj06dOqWAgAANHTpUv//+e6Sn8IVr06aN7t27pxEjRiggIEBHjx7VxIkTVb58+WiHNEWUK1cunTt3TseOHdO1a9e0du1aY3hVTJOQ29jYqFWrVnJ3d9eGDRsUFBSkNWvWaNKkScqePXuMx5aktGnTqn379po+fbp27Nihy5cva8KECWYBVJs2bfTo0SMNGjRI/v7+8vf3V//+/XX69GnZ2trGuZ+lS5dO7dq10/Tp07Vt2zYFBARoxIgRZhO9J9QxFy9eLB8fH+O8zp07p//9739RtkW6dOkUGBio27dvq0qVKipcuLD69++vQ4cO6cqVKxo3bpy8vb0jDat7W3HtO1ZWVurSpYuWLFkiLy8vXb16Vdu3b5ebm5vSpEmjVKlSKWfOnLp586b27Nmj69eva9u2bXJzc5P0qj+lSpVKp0+f1vDhw3Xy5Eldu3ZN3t7eevr0aZTDZGPi5OSkEiVKaPDgwTp58qT8/f01aNAgBQcHRwqFw9na2sra2lrz5s3T1atXtXfvXv3yyy+R1jt27JimT5+uwMBArVmzRkuXLlXnzp2N162trRUQEKB79+7FeN6vq1q1qho0aCA3Nzc9ePDgnbzfAAAASHgMwQPiydfXV76+vlG+5u7urrp16xq/FyxYUA4ODjp16lSkoWMpUqTQ/PnzNWHCBHXs2FHBwcEqXLiw5s2bp08//TRWtUycOFGjRo1Ss2bNlC5dOpUoUUIjR46Um5ubbty4oY8//lhjx47VxIkT1bdvX4WGhqpEiRLy8PBQ5syZlTlzZi1YsEDu7u5q0qSJrK2tVaFCBQ0ZMiTWQ1vy5MmjkSNHau7cuVq2bJlKly6twYMHa8iQIcY6jRs31vbt29WgQQNt27ZNLi4uunr1qvr27atUqVKpefPm+uKLL954V5GNjY28vLw0ceJEderUSS9fvlTRokW1cOHCaL+E5siRQwsXLtSkSZPUuHFjZciQQfXr19eAAQNidW59+vTR7du3jSGKn332mcaOHatvv/1Wp0+fjvHLr6urqzJlyiR3d3f9+++/ypUrl/r06WP2RT0mffv21fPnzzVs2DAFBwerRo0aqlmzpnEXTp48eeTl5aUpU6aodevWSp48uUqVKiVPT09jGGVc+9nAgQOVOnVqjRo1Sk+ePFG9evXMJq5OqGO2atVKixYtMiZc9/DwkL29fZQ1tW/fXhMmTNCFCxe0ceNG433t16+fgoODVbBgQc2cOdOYzD2+3qbvuLi4KHXq1FqyZInGjx+vrFmzqmXLlurTp4+kVxPYX7p0yXiKYr58+TRgwABNnz5dp0+fVtWqVTV16lSNGzdO3bt316NHj1SgQAFNnjxZZcqUeavzmDFjhkaNGqWOHTsqderUatOmjS5dumTc6fS69OnTa9KkSZo8ebLq168ve3t7DRkyJNKw05o1ayogIEBffvmlsmfPLldXV7Vu3dqsLRYsWKCAgABNnz49xvN+XfjTM3/88UdNmjTJ4u83AAAAEp6VKaZxIwCA/4zt27erdOnSZnNyubi4KGfOnBo7dmwiVhY/dnZ2GjdunJo2bZrYpXyw7t69q1OnTqly5cpG4BQaGionJyeNGDFCjRs3fqv9tm/fXrlz535vnz4XPnxw/Lm9Onc7dkONAQAA/qvssubS0uY9JL16EvfZs2dVuHDhaOfJja/wv0tFfGhRdLgDCgDeIx4eHlq2bJkGDx6s9OnTa+fOnTp06JAWLlyY2KXhPy5FihTq37+/WrVqpdatW+v58+fy8PBQqlSporzrCAAAAEhIzAEFAO+RyZMnK126dOrYsaMaNGggHx8fubu7m01oD0Tlo48+0pw5c3Ty5Ek1btxYX331lW7fvm02VBIAAACwFO6AAoD3yCeffKKZM2cmdhkJ7ty5c4ldQpJQvnx5rVixIkH3uWTJkgTdHwAAAD5M3AEFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABaVIrELAAAASGz5M2VL7BIAAADi7b/8dxoCKAAAkOT9WLNFYpcAAACQIF6GhSl5sv/egLf/XkUAAADvUGhoqIKDgxO7jPdacHCw/Pz8aMd4oA0TBu0Yf7Rh/NGGCYN2fHv/xfBJIoACAACQyWRK7BLeayaTScHBwbRjPNCGCYN2jD/aMP5ow4RBO354CKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAASZ6VlVVil/Bes7KyUtq0aWnHeKANEwbtGH+0YfzRhgmDdvzwWJlMJlNiFwEAAJAYTp8+LUkqXrx4IlcCAADeVpgpTMmsuL/mdU+fPtXZs2dVuHBhWVtbW+QYcfm7VAqLVAAAAPAe8fafp1tPbyR2GQAAII6yWX+spvZdE7sMxAIBFAAASPJuPb2hm4+vJnYZAAAAHyzuUQMAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiknQA1b59e9nZ2UX7c/fuXbm6uqpixYp6+fJllPuYPXu2ypQpo2fPnr3V8YcOHRrf09DUqVNlZ2enxYsXx3tfUblw4YJ2794dr314e3vLzs7O+N3Z2VkzZsyIZ2X/5/Dhw5HeP3t7e5UqVUqtWrXSwYMHE+xY8fH06VMtXbrU4sfZtWuXLl68KOn/2ubatWuSEq7fJZZr167Jzs5Ohw8fTuxS4u1Nn4P39Txf/6zjw/P8+XMtWrTI+H3GjBlydnZOvIIkmUwmrVu3Tnfu3EnUOgAAABC9JB1ASVK9evW0b9++KH8yZcqkZs2a6c6dO9q/f3+U269fv14NGjRQmjRp4nzsGTNm6Pvvv49X/WFhYVq/fr3y58+vlStXxmtf0enWrZtOnz6doPtcs2aNXFxcEnSfkrR69Wrj/duzZ48WLFigFClSqFu3brp+/XqCHy+uFi5cKA8PD4se4/r16/rmm2+i/SKWEP0OlpcrVy7t27dPjo6OiV1KnNSvX1/79u1L7DJgQZs2bdK4ceOM311cXLRmzZpErEg6evSohg4dquDg4EStAwAAANFL8gFUmjRplC1btih/rKysVKZMGeXLl08+Pj6Rtj158qQCAwPVvHnztzp2xowZZWNjE6/69+3bp5s3b+rbb79VQECAjh49Gq/9vSuZM2dWunTpLLLf8PcvR44cKlWqlCZOnKiQkBDt3LkzwY8XVyaTKdGPkRD9DpaXPHlyZcuWTalSpUrsUuIk/JqKD9fr15h06dIpc+bMiVTNK+/i2goAAID4SfIBVGw0a9ZMO3bsiPQvq+vWrZO9vb2KFSsmSQoMDFSnTp1UunRpOTo6qlOnTjp37ly0+404FMrb21u1a9c2/lusWDE1bdpUf/zxxxtr8/b2lq2trZydnZUrVy6tWLEi0uuvD4d5fdmff/6pNm3ayNHRUWXLllXv3r1148YNSa+GCF2/fl0zZ85U+/btJUl2dnaaPn26atSoocqVKyswMFA3btxQ//79VaFCBRUtWlRVq1bVpEmTFBYWFmXdEYcehYWFae7cuapTp46KFSumUqVKqXPnzrp69aqx/tChQ996iEfq1KklSSlSpDCWHT9+XG3btpWDg4OqV6+ukSNH6vHjx2b1zZo1S506dZKDg4Nq166t1atXm+33xIkT6tChg0qXLi0nJye5urrq3r17ZvuYMGGC6tevLycnJ7Vv314zZ87U9evXzYbEvS42+3192Fb4smvXrqlmzZqSpA4dOkQ5vCuu/S40NFSTJk1SlSpV5OjoqJYtW5rd4fLy5UtNmjRJ1apVU7FixVS3bl0tX748mncj5vVDQ0M1YcIEOTs7q1ixYipXrpz69u2ru3fvRrvPtWvXql69enJwcFC9evW0ePFis763fv16ffHFFypevLiqVKmiMWPGKDQ0NNr9vS6m/h2bdnz06JGGDBmiMmXKqHz58vrll1/eeMzXh+C1b99eEyZM0KBBg+To6KjKlStr+fLl+uOPP9SoUSOVKFFCrVq1UmBgoNn24XdpOjg4qGXLlmY1DR06VH369JGLi4tKlSql+fPnS5J2796tli1bGscZN26cMcx46NChatGihVmt169fl729vQ4cOBDp+mJnZ6c1a9aoY8eOcnBwUOXKlTVz5kyz7X18fFSvXj0VL15cLVq0kKen5xuH8ZlMJi1evFh16tSRg4ODvvjiC23atMl4/e+//9agQYNUqVIllSxZUp06dZK/v7/ZeQ8dOlQTJkxQhQoVVKJECXXr1k3//POPsc6b+kxsrqvOzs6aN2+eunbtqhIlSsjZ2Vk7duzQjh07VKdOHaOuiHcqBgQEqEuXLka7Dxw4ULdu3TJeb9++vYYPH64WLVqoTJky2rhxY6S2ic3n8U2fl/B+s3XrVrVo0ULFihWTs7OzcYett7e3XF1djff28OHDZkPwwrffvHmzGjdurOLFi6tp06YKCAjQzz//rIoVK6pcuXIaOXKkWWi0a9cuNW3a1LjeTps2zewz+qZ+dPjwYXXo0EGSVLNmTXl7e0dqFwAAACQ+AqhYaNy4caQ7aEJDQ+Xr62v2RWzAgAHKkSOH1q5dq9WrVytZsmTq1atXrI/z999/a8WKFZo0aZLWrVuntGnTaujQodH+y+79+/e1c+dO1a1bV1ZWVqpXr562bt36xi/qr3v58qW6deumsmXLauPGjVq0aJFu3Lih7777TtKroXI5c+aUi4uLWZixbNkyTZ8+XTNnzlS+fPnUvXt3PXr0SL/88ou2bNkiFxcXLViwQL/99luMNXh6esrDw0NDhw7V1q1b9fPPPyswMFDjx4831vn+++/faojHrVu3NGrUKKVPn94IZvz9/fX111+rSpUq2rhxoyZPnqwzZ87IxcXFrK1nzZolR0dHrV+/Xm3bttUPP/ygX3/9VdKr0K59+/YqVKiQVq1aJXd3d506dUqdOnUymy/My8tLw4YN04IFCzRr1iy5uLgoZ86c2rdvn3LlyhWp3tjuNzq5cuUygrIZM2bEaphjTP3O1dVV+/fv1+TJk7Vu3TrVq1dP33zzjTEv2LJly7RlyxZNnTpVW7duVbt27eTm5qZjx45FebyY1p84caK2bdum8ePHa+vWrRo/frwOHTqk2bNnR7m/lStXauLEierVq5c2b96sfv36af78+Zo8ebKkV+/3sGHD1Lt3b23dulVjx47Vhg0btGDBghjbJlxs+ndM7divXz/9+eefmjNnjn755Rft3r07zsNClyxZosKFC2vjxo2qWbOmfvzxR7m5uem7776Tl5eX/v33X02ZMsVsm/Hjx+ubb77RunXrVKBAAbm4uCgoKMh4fevWrapYsaLWrl2rBg0aaPv27erevbuqV68ub29vjRw5Ur/++qsGDBggSWratKn+/PNPs4DYx8dHOXPmVPny5aOse8KECWrSpIk2b96sdu3aacaMGcbdmrt27dKQIUPUvHlzbdy4UU2bNjXeu+gsWLBAU6dOVefOnbVp0ya1atVKgwcP1qFDh/T48WO1bt1a//zzj2bPnq0VK1YoTZo0ateunVl7b9q0Sffv35eXl5fmz5+vM2fOaNq0aZISps9Ir64h9evXl4+Pj+zt7TV48GDNmTNHkyZN0pw5c3T69Gkj9Pvnn3/Upk0b5c2bV2vWrNGcOXP0+PFjffXVV3r69Kmxz9WrV6tDhw5atmyZqlSpEumYMX2+Yvq8hBs3bpy++eYb+fr6qnr16nJzc1NQUJDq169v/P/hTUNEp06dqu+++06rV6/Ww4cP1bp1awUGBmrJkiXq37+/li1bpl27dkmSfv/9d/Xr108tW7bUpk2bNGLECPn6+urbb78122d0/cjR0dH4/9Pq1atVv379OL1PAAAAeDdSxLzKh83Hx0dbt26NtLxWrVqaNGmSJCl79uyqWrWqfHx81KBBA0nSb7/9pmfPnqlhw4bGNlevXlXFihWVO3dupUyZUmPHjtWlS5cUFhamZMlizvqeP3+ukSNHqnDhwpKkr7/+Wj179tStW7eUPXv2SOtv2rRJoaGh+uKLLyRJX3zxhRYuXChvb2917tw5Vuf/+PFj3bt3T9mzZ1fu3LmVJ08eTZs2zfhX+cyZMyt58uSytrZWxowZje0aNWqk4sWLS5KePXumRo0aqV69ekao0rFjR82fP1/nzp1TrVq13ljDp59+qgkTJqhGjRqSpNy5c6tu3brasmWLsU5sh4w1aNBAVlZWkmQENmXLltXSpUuVI0cOSZKHh4cqVaqkb775RpKUL18+TZkyRbVq1dKRI0fk5OQkSapcubIRIBYoUECnTp3S4sWLVb9+fS1cuFB2dnYaPny4JKlgwYL66aef1KhRI+3bt0/VqlWTJFWrVk0VK1Y06rO2tjaGVkUltvuNTvLkyY2hMBkyZIjVMMc39bvg4GBt2rRJ69evN3vd399fHh4eql69uq5evSpra2t98sknyp49u9q1a6cCBQoof/78UR4vpvWLFy+uunXrqkyZMpJe9YeKFSvq/PnzUe5v1qxZ6t69u/E5yJMnjx4/fqyRI0eqb9++unbtmqysrJQ7d259/PHH+vjjj+Xh4aH06dPH2DZS7Pv3m9rx8ePH2rdvnxYtWmSc15QpU4w+H1uFCxdWp06dJEnt2rXTihUr1L59e6PP1qtXTzt27DDbpmvXrsZ1a/To0Tp06JBWrVqlgQMHSnrVTyJeL/r06aPatWurR48ekqT8+fPLZDKpZ8+eunjxosqWLas8efJo48aNxufDx8dHjRo1ivY617hxYzVq1EiS9M0338jDw0PHjx9X2bJl5eHhobp16xrnlT9/fgUGBppNch1R+N1PHTp0MP4BoH379nr27JlevHihjRs36t69e/L29jY+C+Gf76VLl2rw4MGSXl1TRo0apZQpU6pgwYKqX7++9uzZI0nx7jPhqlevrsaNG0uSWrZsqZ07d6p///5ycHCQJFWsWFEXLlyQJC1fvlw5c+bUsGHDjO2nTZum8uXLa8uWLWratKmkV30g4v93XhfT5yumz0u4jh07GqF9//79tXTpUp06dUoNGjQwrsdvGmrp4uKicuXKSZJq166tJUuWaNSoUUqbNq0KFiyoGTNm6MKFC3J2dtacOXPUsmVLtWrVStKr/yeMHDlS//vf/3Tt2jV98sknkt7cjzJkyCDp1f+z3mZORgAAAFhekg+gnJ2dNWjQoEjLra2tzX5v3ry5MQwoc+bMWr9+vWrXrm38pVd69Zf0sWPHatmyZSpXrpyqVKmiBg0axCp8ClewYEHjz+F/yX/+/HmU665du1ZFixZVvnz5JEnFihVTvnz5tGrVKnXq1MkIYt4k/Mvn6NGjNX36dJUvX17VqlVTvXr13rhd3rx5jT+H312wZcsW/fnnn7py5YrOnTun27dvRzsELyJnZ2edOnVK7u7uunz5si5fvqyLFy8agVFczJs3Tzly5NDjx481b948nTp1Sj169JC9vb2xjp+fn65cuRLlv9wHBAQYX+bD/xvO0dHRuOvn/PnzqlSpktnr9vb2srGx0blz54ygKGI7xUZs95vQout3fn5+kqQ2bdqYrf/8+XN99NFHkqS2bdtqx44dqlatmgoXLqxKlSrpiy++UJYsWaI8VkzrN2rUSAcOHNDkyZMVGBioS5cu6fLly0ZwE9Hdu3d18+ZN/fTTT3J3dzeWh4WFKSQkRNeuXTOGDjZv3lyffPKJKlWqpJo1axpDZ2MSl/4dXTuGh2fhoa0kZc2aVXny5IlVDeE+/fRT489p06aVJLN9pEmTJtL1ImI/TpkypYoVK2YW5r3eR8+fP2+EE+HCg4Tz58/rs88+U+PGjeXj46NevXrJz89PFy9e1KxZs6KtO2K7SK/aJrzOM2fO6PPPPzd7vWzZstEGUPfu3dOtW7dUokQJs+VdunSRJLm5uSlfvnxmcxKlSZNGDg4OZuf96aefKmXKlFHWFN8+Ey5i24a/XxHfwzRp0hhhv5+fny5cuBDpuhQSEqKAgIAo9xmVN32+YvN5CR+yHJf/F8V07tbW1sqaNavRBuHnHj7Ezs/PT3/++afZXa7hdw4GBAQYAdSb+hEAAAD++5J8AJUuXbpYhQTVq1dXxowZ5evrq3r16mnv3r2RhmO0bdtWdevW1Z49e3Tw4EFNnz5ds2fP1vr165U1a9ZY1RPVhMNRDcHz9/eXn5+frKysVKRIEWN5WFiYTCaTDhw4ECnICPf6UK5BgwapTZs2Rt2jR4/WggULtH79+mgnQI74L8xPnz5Vu3bt9OzZM9WtW1dNmjSRg4OD2rZtG6tznjdvnn7++Wc1adJEFSpUUMeOHbVz505t3rw5VttH9PHHHxtfVn766Sd17txZXbt2lbe3t/E+h4WFqWHDhsYdUBFF/NIacc6o8O3Cw8TohkWaTCazL7Vx/Zf42O73dS9evIjTcV4XXb8Lr2fp0qWR7qYKb4t8+fJp27ZtOnLkiPbv36/du3dr/vz5GjdunJo0aRJpvzGt/8MPP2jr1q1q3LixnJ2d1bNnT3l4eJjNzxMuPABydXU1u9MsXK5cuZQqVSp5enrKz8/PeELiN998o8aNG5s9ySs6cenf0bVjeBj8emD1eh+LSVR9IKaA+/VjvHz50myb1/toVH0wvO7wfTVp0kQzZ87U6dOn9euvv6pUqVJvvI6+6bqWIkWKWAXV4d70OYiufunVOURsizdN7p46deo495mohshG9f5G9w8DYWFhKl++vEaMGBHptYh3gMZ0TXnT5yt8yN6bPi///vuvpNj/vyg6r5/7m/ppWFiYOnfuHOX1IuJdVvGtCQAAAImLOaBiKUWKFPryyy/l6+urLVu2RJrv5M6dOxo1apSeP3+upk2batKkSdq4caNu3bqlI0eOJHg9a9asUcqUKbVs2TKtX7/e+Fm+fLlSpkxpTBgb/mUt4gTb4ZMUS9KlS5c0YsQIZcmSRa1bt9b06dO1YMECBQQEmE3a+yb79u3TmTNn5OnpqT59+qh+/fpKnz697ty5E6svB3PmzFHPnj3l5uamr776SiVLllRgYGC8v1gkT55c48ePV7JkyTRkyBDjS26hQoV08eJF5c2b1/h58eKFxo0bp7///tvY/vTp02b7O378uBH22dnZRZog3t/fX48fP470r/QRxXRXWmz2mzJlSrP38/Hjx2YTGcfmzrfYKlSokKRXc2lFbC9vb29jol9PT09t27ZNlSpV0uDBg+Xj46MKFSoY82W97k3r37t3TytXrtSIESPk6uqqpk2bqnDhwrp06VKU/SFLlizKnDmzgoKCzOqLOJ/Pnj17NHPmTBUpUkRdu3Y1+ml09b0uvv1bkjEs7/jx48ayhw8fms2jZCkR+3FoaKjOnDmjokWLRru+nZ2dWZ2SjPmDwvtg7ty55eTkpK1bt8rX19cYHvY27O3tderUKbNlJ06ciHZ9GxsbZc+ePdLns0+fPho3bpzs7OwUGBho9pkICQnRX3/9pc8++yxWNcXUZ2K6rr6NQoUKKSAgQLly5TL6cYYMGTR27Nhoh59G5U2fr9h8XmIjIa8x0qtzv3z5sllNN2/e1MSJE/XkyZNEqQkAAAAJL8kHUM+ePdOtW7ei/Hn9KVnNmzfX8ePHtXr1ajVr1szsL7wZMmTQ7t27NWzYMJ09e1ZBQUFasWKFMeQlIYWGhsrHx0d16tRRqVKlZGtra/w4OjqqQYMG2rlzp27duqWSJUvKysrKeEKar6+v1q1bZ+wrU6ZM2rx5s3744QcFBATo8uXLWrdunTJkyKACBQpIenWXWGBgoG7fvh1lPTlz5pQkbdy4UdevX9exY8fUo0cPPX/+PFZPGsuVK5f279+vixcv6tKlS5o6daq2bdtmtu2jR4/iNLl6uBw5cmjw4ME6ceKEli5dKunV3CR+fn4aOXKkAgICdOLECQ0cOFCBgYHGcEZJ2rx5s5YuXarAwEAtWLBA27dvN+bK+frrr3Xu3DmNHj1aAQEBOnz4sAYNGqQiRYqoQoUK0dZjbW2tBw8e6PLly1EOHYnNfkuWLKlff/1Vx48f18WLF/Xdd98pefLkZseQXg2XevToUZzbLKJChQqpRo0aGjFihH777TcFBQVp/vz5mjt3rjGU6O7duxo1apR27typ69eva+/evTp79my0kxO/af306dPLxsZGO3fuNIa6DR8+XGfOnImyL1lZWalLly5asmSJvLy8dPXqVW3fvl1ubm5KkyaNUqVKpZQpU+rnn3/WokWLFBQUpL/++ku7d+82q+/WrVvRftGNb/+WXg27qlu3rkaNGqUDBw7o/PnzGjx4cJyexPe2pk2bpt27dxt9JTg4WC1btox2/c6dO2vbtm2aNWuWLl++rF27dmn06NGqUaOGWbjapEkTLVu2TPfv349xyO6bdOnSRVu2bNEvv/yiwMBArV27Vl5eXm/cpmvXrlq8eLE2bNigq1evytPTUzt37lTNmjXVsGFDZcyY0Zj03d/fX4MGDdLTp0/11VdfxaqmmPpMTNfVt9GmTRs9evRIgwYNkr+/v/z9/dW/f3+dPn1atra2sd7Pmz5fsfm8xEb4Neavv/4yno4YH126dNHWrVs1c+ZMXb58WQcPHpSrq6sePXr0xnmmoqrJ398/1qEVAAAA3q0kPwTP19dXvr6+Ub7m7u6uunXrGr8XLFhQDg4OOnXqVKQncqVIkULz58/XhAkT1LFjRwUHB6tw4cKaN2+e2ZwfCWHXrl26f/9+tEPcOnbsqHXr1mn16tXq0aOHRo4cqblz52rZsmUqXbq0Bg8erCFDhkh6FUDNnz9fU6ZMUcuWLfXy5UuVLFlSv/zyizHhbvjj3y9cuBDlY78dHBzk6uqqRYsWadq0acqRI4fq16+vXLlyRbpLISoTJ07UqFGj1KxZM6VLl04lSpTQyJEj5ebmphs3bujjjz/WmDFjdOTIkVg9Ve91LVq00KZNm/TTTz+pZs2aKlmypBYsWCB3d3c1adJE1tbWqlChgoYMGWL2BaxJkybavn27xo8fr3z58mnatGnGHEwlSpTQggULNG3aNDVu3Fjp06dXrVq1NHDgwDcOEfr888+1atUqffnll/Ly8oo0j01s9jtgwADdv39fX3/9tWxsbOTi4qKHDx8a+8iUKZOaNWumiRMn6sqVK6pdu3ac2yyiqVOnaurUqfrhhx/04MEDffrppxozZowxXKZXr156/vy5fvzxR926dUvZsmVT69at1a1btyj396b1kydPLnd3d40fP14NGzZUhgwZ5OTkpAEDBmju3LkKDg6OtD8XFxelTp1aS5Ys0fjx45U1a1a1bNlSffr0kfRqoucxY8Zo4cKFmjp1qtKkSaNq1app6NChxj7CJ5zv3bt3pP3Ht3+HmzBhgiZMmKD+/fsrLCxMX3311VuFqnHVunVrTZgwQTdu3FCJEiW0ZMmSKB9qEK5OnTr66aefNHv2bM2aNUuZM2dWgwYNjPaMuN6oUaNUq1atOE/OHVHVqlU1atQozZ07V1OmTFGxYsXUunXrN4ZQ4UMi3d3ddevWLeXLl09Tp0415qry8vLS+PHj1bFjR0lS6dKltXz58ljPuRVTn8mTJ88br6tvI0+ePPLy8tKUKVPUunVrJU+eXKVKlZKnp6fZ0OCYxPR5jOnzEhvly5dXiRIl1KpVK+NhHfFRt25dTZ06VXPnztWcOXOUMWPGaOdnjI6tra2qVaumfv36acCAAbF6AigAAADeLSsTEygAkTg7O6tJkyZRBhL48Pj6+iooKEhdu3ZN7FISzLVr11SzZk15enpGmlD/v+TIkSPKmjWrccel9GpY7po1ayI90Q+whPAg+cDztbr52PLDYgEAQMLKmf5TdSvllthl/Cc9ffpUZ8+eVeHChSM9aC2hhP9dKuIDl6KT5IfgAUjawsLCtHjx4njfKYa3s2/fPnXq1EmHDh3SjRs3tHPnTi1evFiNGjVK7NIAAAAAJKAkPwQPQNKWLFkyeXp6xnr+GySsXr166enTpxo8eLDu3r2rXLlyqWPHjsZ8awAAAAA+DARQQBTeZq4pvL8+xPDpk08+0blz5xK7jBilSpVKw4YN07BhwxK7FAAAAAAWxBA8AAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAAAAAABZFAAUAAAAAAACLIoACAAAAAACARRFAAQAAAAAAwKIIoAAAAAAAAGBRBFAAAAAAAACwKAIoAAAAAAAAWBQBFAAAAAAAACyKAAoAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALCoFIldAAAAQGLLZv1xYpcAAADeAv8Pf38QQAEAgCSvqX3XxC4BAAC8pTBTmJJZMcDrv453CAAAJGmhoaEKDg5O7DLea8HBwfLz86Md44E2TBi0Y/zRhvFHGyaMuLQj4dP7gXcJAAAkeSaTKbFLeK+ZTCYFBwfTjvFAGyYM2jH+aMP4ow0TBu344SGAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIuyMplMpsQuAgAAIDEcP35cJpNJKVOmlJWVVWKX894ymUx6/vw57RgPtGHCoB3jjzaMP9owYdCO8fcu2jA0NFRWVlYqVapUjOumsEgFAAAA74Hwv4zxF9v4sbKyUqpUqRK7jPcabZgwaMf4ow3jjzZMGLRj/L2LNrSysor136O4AwoAAAAAAAAWxRxQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFkUABQAAAAAAAIsigAIAAAAAAIBFEUABAAAAAADAogigAAAAAAAAYFEEUAAAAAAAALAoAigAAAAAAABYFAEUAAAAAAAALIoACgAAfDDCwsI0ffp0ValSRSVLllSXLl0UFBQU7fr37t3TwIEDVbZsWZUrV04jR45UcHCw2Tq+vr6qX7++HBwc1LhxYx08eNDSp5HoLNGOn3/+uezs7Mx+hg4daulTSTRxbcOI23Xu3FkzZsyI9FpS64uWaMOk1g+luLfjhQsX1LVrVzk5OalChQrq06ePbty4YbbO0qVLVbNmTTk4OKhNmzby8/Oz9GkkqoRuw5cvX8rBwSFSX4yqz34o4tqGZ86c0f/+9z85OjqqfPny+uGHH/To0SOzdZLaNVGyTDu+0+uiCQAA4AMxY8YMk5OTk2nXrl2ms2fPmlxcXEyff/65KSQkJMr127VrZ2rWrJnpr7/+Mh04cMBUo0YN0+DBg43XDx48aCpatKhp8eLFposXL5rGjx9vKlasmOnixYvv6pQSRUK345MnT0z29vamXbt2mf7991/j5+HDh+/qlN65uLahyWQyhYSEmIYMGWKytbU1TZ8+3ey1pNgXE7oNk2I/NJni1o537941VapUydS7d2/TuXPnTKdPnza1bdvWVK9ePdOzZ89MJpPJ5O3tbXJwcDBt2LDBdOHCBdO3335rKleunOnOnTvv+tTemYRuw4sXL5psbW1NZ8+eNeuLjx8/ften9s7EpQ1v3bplKlu2rMnV1dV06dIl0x9//GGqX7++qUePHsY6SfGaaDIlfDu+6+siARQAAPgghISEmBwdHU1Lly41lj148MDk4OBg8vHxibT+8ePHTba2tmZ/Wd27d6/Jzs7OdPPmTZPJZDK5uLiY+vbta7bdV199ZRo+fLhlTuI/wBLteOrUKZOtra3p/v37lj+B/4C4tqHJZDL98ccfpi+++MJUs2ZNU5kyZSKFJ0mtL1qiDZNaPzSZ4t6Oq1atMjk6OpqCg4ONZTdu3DDZ2tqaDhw4YDKZTKbPP//cNHHiROP158+fm6pVq2aaM2eOBc8k8ViiDTdv3mwqVaqU5Yv/j4hrG548edLUv39/0/Pnz41lixYtMpUoUcL4PaldE00my7Tju74uMgQPAAB8EPz9/fXkyRNVqFDBWPbRRx+pSJEiOnr0aKT1jx07pmzZsqlgwYLGsnLlysnKykp//PGHwsLCdPz4cbP9SZKTk1OU+/tQJHQ7StK5c+eUNWtWZciQwfIn8B8Q1zaUpD179qhKlSpav369bGxszF5Lin0xodtQSnr9UIp7O1aoUEGzZs1SmjRpjGXJkr36yvjw4UPduXNHgYGBZvtLkSKFypQpQ1/8/2JqQ+lVX4x4zfzQxbUNS5QooZ9++kkpUqSQJAUEBGjDhg2qVKmSpKR5TZQSvh2ld39dTPFOjgIAAGBhN2/elCTlypXLbHn27NmN1yL6559/Iq2bKlUqZcyYUX///bcePnyop0+fKmfOnLHa34ciodtRevUXXGtra/Xp00fHjx9XpkyZ1KxZM3Xo0MH4YvYhiWsbSlL//v2j3V9S7IsJ3YZS0uuHUtzb8ZNPPtEnn3xitmzevHlKkyaNypYta3ymo9qfv79/Qpb+n5HQbShJ58+f14sXL9SpUyf5+/srR44c+t///qdGjRpZ6CwS19t8nsPVqVNHgYGByp07t2bOnCkpaV4TpYRvR+ndXxc/zCstAABIcsInvU6VKpXZ8tSpUyskJCTK9V9fN+L6z549i9P+PhQJ3Y7Sqwl5Hz58qDp16sjDw0OtW7eWu7v7BzvhblzbMCZJsS8mdBtKSa8fSvFvxyVLlsjLy0uDBg1S5syZLfK+/NcldBtKr/ri/fv31b59e3l4eKhOnTpydXXVmjVrEv4E/gPi04aTJ0/WkiVLlCVLFnXo0EFPnjxJktdEKeHbUXr310XugAIAAB+E8OEOoaGhZkMfQkJClDZt2ijXDw0NjbQ8JCRE1tbWSp06tbG/11+Pan8fioRuR0maP3++QkJCjGFRdnZ2evz4sWbPnq3evXt/cHefxLUNY5IU+2JCt6GU9Pqh9PbtaDKZ5O7urtmzZ6t79+5q3759pP1FRF+MLLo2lKRNmzbp5cuXSpcunSTJ3t5eN27ckIeHh5o3b26hM0k88fk8Fy9eXJI0c+ZMVatWTdu3b1e1atWM/UX0IfdDKeHbsXHjxu/8uvjhXWUBAECSFH5L+r///mu2/N9//1WOHDkirZ8zZ85I64aGhur+/fvKnj27MmbMKGtr61jv70OR0O0ovfrX2tfn5LG1tdXTp0/14MGDhCz/PyGubRiTpNgXE7oNpaTXD6W3a8fnz5/r22+/1Zw5c+Tq6qp+/frFa3/vu4RuQ+lVkBAePoWztbX9YIePxbUNL126pN27d5sty5EjhzJmzKh//vknSV4TpYRvR+ndXxcJoAAAwAfB3t5e6dOn1+HDh41lDx8+lJ+fnzHvRkRly5bVzZs3deXKFWPZkSNHJEmlS5eWlZWVSpUqZSwLd/jwYZUpU8ZCZ5H4ErodTSaTatWqZTbnhCSdPn1a2bJlU6ZMmSx0Joknrm0Yk6TYFxO6DZNiP5Terh0HDx6sLVu2aMqUKerYsaPZa1myZFH+/PnN9vfixQsdO3bsrd6X90FCt+HDhw9Vrlw5eXt7my0/ffq0ChUqlOD1/xfEtQ0PHDigPn36GJO2S9LVq1d17949FSxYMEleE6WEb8fEuC4yBA8AAHwQUqVKpXbt2mny5MnKnDmzcufOrUmTJilnzpz6/PPP9fLlS929e1c2NjZKkyaNSpQooVKlSql///5yc3PT06dP9cMPP6hx48bGvyR+/fXX6tq1q4oUKaKqVatq7dq1Onv2rMaMGZPIZ2s5lmjH2rVry8PDQwUKFFCxYsV08OBBLViwQN9//30in61lxLUNYyOp9cWEbkMrK6sk1w+luLejt7e3fv31Vw0ePFjlypXTrVu3jH2Fr+Pi4qIxY8Yob968Kl68uObNm6dnz559kEPHpIRvw48++kjly5fX1KlTlSVLFuXNm1fbtm3Txo0bNXfu3EQ8U8uJaxs2aNBA8+bN07fffqtBgwbpwYMH+vHHH+Xg4KAaNWpISnrXRCnh2zFRrosmAACAD8SLFy9MEydONJUvX95UsmRJU5cuXUxBQUEmk8lkCgoKMtna2prWrl1rrH/79m1T7969TSVLljQ5OTmZRowYYXr27JnZPtetW2eqXbu2qXjx4qYmTZqYDhw48E7PKTEkdDs+f/7cNHPmTFPNmjVNRYsWNdWpU8e0cuXKd35e71Jc2zCiGjVqmKZPnx5peVLriwndhkmxH5pMcWvHr7/+2mRraxvlT8S2XrBggalq1aomBwcHU5s2bUx+fn6Jcm7vSkK34aNHj0xjx441VatWzVSsWDFTo0aNTNu3b0+083sX4vp5vnTpkqlr166m0qVLm8qVK2dydXU1PXjwwGyfSe2aaDIlfDu+6+uilclkMlkm2gIAAAAAAACYAwoAAAAAAAAWRgAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAfABMJtN7sU8ASRMBFAAAAIAk7fz58+rfv78qVaqkYsWKqXLlyurXr5/8/f3jtJ8ZM2bIzs7ujescPnxYdnZ2Onz4cHxKjmT16tWaMGGC8bu3t7fs7Ox07dq1WG3/el03b95U165ddf369QStE0DSRQAFAAAAIMm6cOGCvvrqK92/f1/Dhg3TwoULNXjwYN24cUMtW7bUyZMnE/R4RYsW1cqVK1W0aNEE3e/s2bN1//594/fq1atr5cqVyp49+1vVdeDAAe3ZsydBawSQtKVI7AIAAAAAILH88ssvypQpk+bPn68UKf7v61GtWrVUt25dzZo1S/PmzUuw46VPn14lS5ZMsP1FJ3PmzMqcOXOs139XdQFIurgDCgAAAECSdfv2bZlMJoWFhZktt7a21nfffad69epJkpydnTV06FCzdaIb5rZjxw7VqVNHxYsXV4sWLXTw4EHjtaiG4J0/f17dunVTqVKlVKpUKfXs2VNBQUFm+/z33381ZMgQVahQQY6OjmrXrp1OnDhh1Hb9+nWtW7fOqCdibT4+PrKzs9P58+cj1WlnZyc/Pz+zury9veXq6ipJqlmzpoYOHaoJEybIwcFBjx49MtvHrFmzVLp0aQUHB8e6zQEkTQRQAAAAAJKs6tWr68aNG2rVqpWWLl2qgIAAY+LtunXrqkmTJnHe5/fff68OHTpoxowZSpcunbp06aLTp09Hue7ly5fVqlUr3blzRxMmTNCYMWMUFBSk1q1b686dO5KkJ0+eqHXr1jp8+LC+/fZbzZw5U6lTp5aLi4sCAwM1c+ZMZcuWTdWqVYty2F2tWrVkbW2tzZs3my3ftGmTChUqpCJFikRqk+7du0uSZs6cqR49eqh58+YKCQnRli1bzNbdsGGD6tevr7Rp08a5nQAkLQRQAAAAAJKsNm3aqEePHrp48aJGjRql+vXrq0KFCho0aJD+/PPPt9rnyJEj1bZtW1WvXl1z585VxowZNX/+/CjXnTlzptKmTatFixapdu3aqlevnjw9PfXs2TMtWLBAkrRu3Tpdv35ds2fPVtOmTVWpUiXNnDlT2bNn19GjR1WkSBGlSpVKmTNnVsmSJZUqVSqzY6RNm1Z16tTRr7/+aix78uSJdu3apS+//DJSTZkzZ9ann34qSSpcuLA+/fRTFSxYUI6OjtqwYYOx3vHjxxUYGKimTZu+VTsBSFoIoAAAAAAkaX379tXevXs1ZcoUNW/eXOnTp5ePj49atmwpT0/POO0rZcqU+vzzz43fU6dOrapVq+ro0aNRrn/o0CGVK1dOadKk0YsXL/TixQulT59eZcqU0YEDByRJf/zxhz755BMVLlzY2C5t2rTaunWrWrRoEau6GjVqpKtXrxqh2s6dOxUaGhplABWdZs2a6dixY8aT8datW6f8+fPL0dEx1vsAkHQRQAEAAABI8jJkyKAGDRpozJgx2rFjh9atW6eCBQtq0qRJunfvXqz3kylTJiVLZv41K0uWLHr48GGU69+/f1+//vqrihYtavaza9cu/fvvv8Y6WbJkefuTk+Tk5KQcOXIYw/A2b96scuXKKWfOnLHeR/hQuw0bNigkJES+vr7c/QQg1ngKHgAAAIAk6Z9//lGzZs3Ut2/fSHcSFSlSRP379zebEPzly5dm6zx9+jTSPh89eiSTySQrKytj2e3bt6N9Ip2NjY0qVqyor7/+OtJr4U/ls7GxiTTRufRqCFyGDBlUsGDBGM5USpYsmRo2bKhNmzbpm2++0f79+zVq1KgYt4soXbp0qlu3rnx9fWVra6unT5+qUaNGcdoHgKSLO6AAAAAAJElZs2ZVihQptGzZMoWEhER6/dKlS0qdOrXy5s2r9OnT6+bNm2av//HHH5G2CQ4O1qFDh4zfnzx5ot27d8vJySnKGsqVK6eLFy+qcOHCKl68uIoXL65ixYpp0aJF2r59uySpTJkyCgoK0oULF4ztQkJC1Lt3b61Zs0aSIt11FZVGjRrp5s2b+vnnn5U8eXKzoYKvi25/zZs31/nz57V48WJVrFhROXLkiPG4ACARQAEAAABIopInTy43NzedP39ezZo10/Lly3XkyBHt2bNHY8eOlbu7u3r16qUMGTKoRo0aOnr0qObOnatDhw5p7NixZkFTuJQpU+q7776Tj4+Pdu3apc6dO+vZs2fq0aNHlDX06NFDV69eVbdu3bRjxw7t3btXvXv31ubNm2Vvby9Jatq0qfLkyaPu3btr48aN2rt3r3r16qXnz5+rTZs2kqSPPvpIfn5+OnLkiJ49exblsWxtbVW4cGEtW7ZMtWrVUvr06aNtm48++kiStH37dgUEBBjLS5curfz58+vIkSMMvwMQJwRQAAAAAJKs6tWra9WqVbK1tdWcOXPUqVMnDRgwQGfPntXUqVPVtWtXSVK3bt3UokULeXh4qHv37rp165bGjBkTaX+ZM2fWwIEDNXXqVPXp00fJkyeXl5eXChQoEOXx7e3ttXTpUllZWWnw4MHq06ePbt26pZ9//tm4Qyl9+vTy8vJSiRIlNHr0aPXr109hYWHy9PRUnjx5JEkuLi66ffu2OnXqpL/++iva823UqJFevnwZ4+TjTk5OqlixoqZMmaIJEyZEarMMGTKoVq1ab9wHAERkZTKZTIldBAAAAAAkBb///ru6dOmi1atXy8HBIbHLiTOTyaQvvvhClStX1nfffZfY5QB4jzAJOQAAAAC8A9u3b5ePj4+SJ0+uTz75JLHLiZPHjx9r0aJFOn36tIKCgtS+ffvELgnAe4YACgAAAAAsLDQ0VG5ubgoLC9OAAQOifSref1WaNGm0YsUKhYWFaezYscbQPwCILYbgAQAAAAAAwKKYhBwAAAAAAAAWRQAFAAAAAAAAiyKAAgAAAAAAgEURQAEAAAAAAMCiCKAAAAAAAABgUQRQAAAAAAAAsCgCKAAAAAAAAFgUARQAAAAAAAAsigAKAAAAAAAAFvX/AAK6vhlLeRh7AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Set plot style\n", - "sns.set(style=\"whitegrid\")\n", - "\n", - "# Create a figure and axes\n", - "fig, ax = plt.subplots(2, 1, figsize=(12, 12)) # Increase figure height\n", - "\n", - "# Plot polarity (horizontal bars)\n", - "sns.barplot(x='polarity', y='title', data=sentiment_df, ax=ax[0], palette='viridis', hue='title', legend=False)\n", - "ax[0].set_title('Sentiment Polarity of Articles')\n", - "ax[0].set_xlabel('Polarity')\n", - "ax[0].set_ylabel('Article Title')\n", - "\n", - "# Plot subjectivity (horizontal bars)\n", - "sns.barplot(x='subjectivity', y='title', data=sentiment_df, ax=ax[1], palette='viridis', hue='title', legend=False)\n", - "ax[1].set_title('Sentiment Subjectivity of Articles')\n", - "ax[1].set_xlabel('Subjectivity')\n", - "ax[1].set_ylabel('Article Title')\n", - "\n", - "# Adjust layout\n", - "plt.tight_layout()\n", - "plt.show()\n" - ] - }, - { - "cell_type": "markdown", - "id": "2d6748a7-f128-40f2-b7ed-b11f6ddd8a60", - "metadata": {}, - "source": [ - "The overall goal of this code is to analyze sentiment scores (polarity and subjectivity) of articles and aggregate these scores by the year of publication. \n", - "It defines a dictionary data with sample data, including article titles, authors, publication dates, content, polarity, and subjectivity scores and converts the **data** dictionary into a pandas DataFrame named **sentiment_df**.\n", - "It defines a function **parse_date()** that attempts to parse date strings into datetime objects using dateutil.parser.parse with the fuzzy=True option to handle various date formats. It applies the **parse_date()** function to the **publication_date** column in the DataFrame to convert date strings to datetime objects. Then it extracts the year from the parsed **publication_date** column and stores it in a new column named **year**. Then, it prints the **publication_date** and **year** columns to check for any missing values in the year column. After printing the polarity and subjectivity columns, it groups the DataFrame by the year column and calculates the mean polarity and subjectivity scores for each year.\n", - "\n", - "Finally, it prints the stored **yearly_sentiment** DataFrame to display the average polarity and subjectivity scores for each year." - ] - }, - { - "cell_type": "code", - "execution_count": 95, - "id": "a493e974-a1d9-4eb9-88d8-bb6fd1d39e54", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " publication_date year\n", - "0 2024-02-23 00:00:00 2024\n", - "1 2022-07-27 00:00:00 2022\n", - "2 2024-04-10 00:00:00 2024\n", - "3 2020-08-19 13:56:00 2020\n", - " polarity subjectivity\n", - "0 0.002210 0.187689\n", - "1 0.102000 0.283466\n", - "2 0.181563 0.347917\n", - "3 0.011245 0.306212\n", - " year polarity subjectivity\n", - "0 2020 0.011245 0.306212\n", - "1 2022 0.102000 0.283466\n", - "2 2024 0.091886 0.267803\n" - ] - } - ], - "source": [ - "import pandas as pd\n", - "from dateutil import parser\n", - "\n", - "# Sample data as a dictionary\n", - "data = {\n", - " 'title': [\n", - " 'Most Australians think there are too few publi...',\n", - " 'Why Australian consumers are charging toward e...',\n", - " 'EVs face future challenges despite increasing ...',\n", - " 'EVs in Australia: Report outlines sales, and i...'\n", - " ],\n", - " 'author': [\n", - " 'Jennifer Dudley-Nicholson',\n", - " 'Neal Johnston, Glenn Maris, Damien Smith, Neal...',\n", - " 'Harrison Vesey',\n", - " 'Mike Costello'\n", - " ],\n", - " 'publication_date': [\n", - " 'February 23, 2024',\n", - " '27 Jul. 2022',\n", - " '10 April 2024',\n", - " '19 August 2020, 1:56pm'\n", - " ],\n", - " 'content': [\n", - " 'australian think nation public charg station s...',\n", - " 'ceo imper strategi set takeoff clever govern c...',\n", - " 'professor david hensher one three australian c...',\n", - " 'guest user australia electricvehicl penetr wel...'\n", - " ],\n", - " 'polarity': [0.002210, 0.102000, 0.181563, 0.011245],\n", - " 'subjectivity': [0.187689, 0.283466, 0.347917, 0.306212]\n", - "}\n", - "\n", - "# Create a DataFrame\n", - "sentiment_df = pd.DataFrame(data)\n", - "\n", - "# Define a function to parse dates with different formats\n", - "def parse_date(date_str):\n", - " try:\n", - " return parser.parse(date_str, fuzzy=True)\n", - " except ValueError:\n", - " return pd.NaT\n", - "\n", - "# Apply the parsing function\n", - "sentiment_df['publication_date'] = sentiment_df['publication_date'].apply(parse_date)\n", - "\n", - "# Extract year from publication_date\n", - "sentiment_df['year'] = sentiment_df['publication_date'].dt.year\n", - "\n", - "# Check for missing values in 'year'\n", - "print(sentiment_df[['publication_date', 'year']])\n", - "\n", - "# Check for missing values in sentiment scores\n", - "print(sentiment_df[['polarity', 'subjectivity']])\n", - "\n", - "# Aggregate sentiment scores by year\n", - "yearly_sentiment = sentiment_df.groupby('year').agg({'polarity': 'mean', 'subjectivity': 'mean'}).reset_index()\n", - "\n", - "# Display the aggregated sentiment scores\n", - "print(yearly_sentiment)\n" - ] - }, - { - "cell_type": "markdown", - "id": "c0c41a73-9458-46c3-9f0e-816db6f65144", - "metadata": {}, - "source": [ - "This code generates a line plot to visualize the average sentiment scores (polarity and subjectivity) of articles over time. It uses the **yearly_sentiment** DataFrame, which contains the aggregated sentiment scores by year, and plots these scores with markers for each year. The plot includes a title, axis labels, a legend to differentiate between polarity and subjectivity, and a grid for better readability. Finally, it displays the plot, allowing for a clear visual comparison of how sentiment has evolved over the years." - ] - }, - { - "cell_type": "code", - "execution_count": 96, - "id": "abc62267-805b-4255-bf29-5c054cb5b4c6", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1oAAAImCAYAAABKNfuQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTB0lEQVR4nOzdd3xUVf7/8ffMJJNeSIBQEroh9JKEItKLrrKK4Lqui6IIrouKFYWvrqtrAUFFAbFQ7P5cUUCsixhAlGYAFWlK01BCIJAE0iYzc39/hAwZEkISZpgEXs/Hg0eYc8uce4xh3jn3fo7JMAxDAAAAAACPMfu6AwAAAABwoSFoAQAAAICHEbQAAAAAwMMIWgAAAADgYQQtAAAAAPAwghYAAAAAeBhBCwAAAAA8jKAFAAAAAB5G0AIA1CqGYfi6C2dVG/oIAPAughYAnIMHHnhArVu31vz5833dlfPObrfrzTff1LXXXqvOnTurS5cuuvbaazV//nzZbDavvOeGDRt0++23u17v27dPrVu31sKFC73yftXxzTff6OGHHz7rfseOHdPkyZM1aNAgtW/fXt26ddOoUaP09ddfn4deete6devUunVrrVu3zmPnPHr0qHr27KnBgweroKCg3H3uv/9+tW/fXtu3b/fY+wJAdRG0AKCajh8/rmXLlik+Pl7//e9/L7pZjH/961+aOXOmrrjiCr388suaMWOG+vTpoxdffFH33XefV95zwYIF2rVrl+t1/fr19d///lf9+vXzyvtVx5tvvqmDBw9WuE9BQYH+/ve/a8WKFbr99ts1b948PfPMM6pbt67uuusuvfXWW+ept7VHVFSU/vWvf+mPP/7QSy+9VGb7N998o88//1zjx49XQkKCD3oIAO78fN0BAKitPvvsM0nSI488olGjRmnt2rXq2bOnj3t1fhw4cECLFi3Sf/7zH11//fWu9t69eysqKkrPPPOMfv75Z3Xs2NGr/bBarercubNX38MbvvrqK+3atUv/+9//1KxZM1f7oEGDVFBQoBkzZmjkyJGyWCy+62QNdOWVV+rLL7/UW2+9pauuukrt27eXVPxLj8cff1xdunTRmDFjfNxLACjGjBYAVNPHH3+snj17qkePHmratKk++OAD17bRo0dr+PDhZY4ZN26crr76atfr1NRUjRw5Up06dVK3bt308MMP6+jRo67tCxcuVNu2bbVgwQL16tVL3bp1086dO+VwOPT6669r6NCh6tixozp37qwbbrhBa9eudXu/FStWaPjw4erYsaMuv/xyffbZZxo8eLBmzpzp2icrK0uPPfaYLr30UnXo0EHXX3+91qxZU+G1HzlyRIZhyOl0ltn25z//Wffff7/Cw8Or9B6tW7fWe++9p0ceeUTdunVTly5ddM899+jIkSOSpIkTJ2rRokXav3+/63bB028dXLhwoTp06KDU1FSNGDFCHTp00OWXX66UlBTt3r1bo0aNUqdOnTR48GB9/vnnbu9/4MAB3X///erWrZs6deqkUaNGaevWra7tJe/15Zdfavz48erSpYu6deumRx99VHl5eZKkm266SevXr9f69esrvHWu5JrKG79//OMfGjdunNvtlz/++KNGjx6trl27qkePHrr//vt16NAh1/aMjAxNmjRJffv2VceOHXXdddfpm2++KTO+s2bNcn0/zJo1q1LXLRX/UuHqq69Wx44d1aNHDz344INu738mO3fu1I033qgOHTpo8ODBeuedd1zbxo8frz59+pQZg0ceeUSXX375Gc/573//W2FhYXrkkUfkcDgkSdOmTdOJEyc0depUmc3FH22WLVum4cOHq0OHDurVq5eeeuop13+nEsuWLdONN96oLl26qH379rriiiv03nvvubaX3AL5wQcfqH///uratau+//77s143AEiSDABAlf36669GfHy88eWXXxqGYRgvv/yy0a5dO+Pw4cOGYRjGokWLjPj4eGPv3r2uY7Kzs4127doZc+fONQzDMNavX2+0a9fOuO2224yUlBRj0aJFRr9+/YyrrrrKyM/PNwzDMD7++GMjPj7euOKKK4zly5cbCxcuNJxOpzFlyhSjU6dOxttvv22sW7fOWLJkiXH55Zcb3bp1M/Ly8gzDMIw1a9YYbdq0McaNG2esWLHCeOutt4yuXbsa7dq1M2bMmGEYhmEUFBQYV199tXHppZcaH374obFixQrj7rvvNtq2bWusXr36jNdfWFho9O3b1+jYsaPx+OOPGytXrjSOHz9e7r6VfY/4+HgjMTHRmDhxorFq1Srj/fffNzp06GDcd999hmEYxu+//26MHTvW6NWrl7Fp0yYjMzPTSEtLM+Lj442PP/7YNV4JCQlGnz59jA8//NBYtWqVcc011xhdunQxBg8ebMyfP99YvXq1ceONNxrt2rUzDh48aBiGYWRmZhq9e/c2hgwZYixZssT4+uuvjZEjRxqdO3c2du7caRiG4Xqv5ORkY8qUKcbq1auNV1991WjdurXx3HPPGYZhGL/99psxbNgwY9iwYcamTZvOOCbbt2832rZta1x22WXGzJkzjU2bNhk2m63cfbds2WK0a9fOuPHGG42vv/7a+Oqrr4zBgwcbV111lVFUVGQcPnzY6N27tzFo0CBj0aJFxooVK4zx48cbrVu3Nj755BO38W3Xrp0xf/58Y/ny5cavv/5aqetOTU012rRpY8ycOdNYu3atsXjxYqNXr17G3//+9zN+f6xdu9b1fs8++6yxatUq44knnjDi4+ONN9980zAMw1i5cqURHx/v9j2Qn59vdO3a1XjllVfOeG7DMIwlS5YY8fHxxttvv21s2rTJaN26tfHee++V2f7AAw8YK1euNN5//30jOTnZGDVqlOF0Og3DMIzly5cb8fHxxlNPPWWsXr3aSElJMcaMGWPEx8cbP/74o9t19OrVy/jyyy+NRYsWGbm5uRX2DQBKELQAoBomT55sdOvWzSgsLDQMwzAOHDhgJCQkuD4g5ubmGp07dzZmzZrlOmbBggVGQkKCkZ6ebhiGYfz1r381hg4datjtdtc+u3fvNtq0aWO8++67hmGcClqLFy92e//777/f9YG1xP/+9z8jPj7e2LRpk2EYhnHjjTcaV199teuDpWEYxmeffWbEx8e7gtZ///tftw+WhmEYTqfT+Pvf/24MHz68wjHYsWOHcc011xjx8fFGfHy8kZCQYIwYMcKYO3euKyhW5T3i4+ONv/3tb27vMXHiRKNz586u1w8//LDRv39/1+vyglZ8fLzx/vvvu/b5/PPPjfj4eOPFF190tW3evNmIj483vv76a8MwDOOFF14wOnToYOzbt8+1T2FhoTFw4EDj7rvvdnuvBx980K2PN910kzF06FDX65EjRxojR46scOwMo/i/16WXXuoav44dOxqjR482vvjiC7f97r77bqNXr15GQUGBq23jxo1G//79ja1btxpTp0412rVr59Z3wzCMUaNGGb169TIcDodhGMXjO2rUKLd9KnPdr732mtGlSxfX97phGMaKFSuMmTNnun1vlVYSUJ544gm39nHjxhk9e/Y0HA6H4XA4jD59+hgPPfSQa/uSJUuMhIQEVwCuyB133GEkJycbQ4cONUaPHu1qdzqdRp8+fYzbbrvNbf/Vq1cb8fHxxvLlyw3DMIw5c+YYDz/8sNs+x44dM+Lj443XXnvN7Tpefvnls/YHAE7HrYMAUEVFRUVasmSJ63manJwchYSEKDExUR9++KGcTqeCg4M1aNAgffHFF67jPv/8c/Xs2VMxMTHKz8/XTz/9pL59+8owDNntdtntdsXFxally5Zlbk9q06aN2+vnn39eo0aN0tGjR5WamqqPP/5YS5YskSTZbDbZbDZt2rRJQ4YMkclkch13xRVXyM/v1OO5a9asUb169dSuXTtXHxwOh/r3769ffvlF2dnZZxyH+Ph4LV68WB999JHuvfdede/eXb/99pumTp2qa6+91nULZFXe4/TnrRo0aKD8/PxK/pc5pUuXLq6/R0dHS5I6derkaouMjJQk5eTkuPrYpk0bxcTEuPpoNpvVp08frV692u3c5fXx9FvSKmPIkCFasWKF5s6dq9GjR6tly5ZavXq17r33Xo0fP95VXGXDhg3q06ePAgIC3K4vJSVFbdq00fr169WlSxc1btzY7fxXX321Dh8+rN27d7vaTv8+qsx1JycnKz8/X0OHDtXzzz+v1NRUXXbZZbrrrrvcvrfKc+WVV7q9Hjx4sDIzM7V7926ZzWZde+21Wrp0qeu/8aJFi3TppZeqQYMGZx2/J554QoZhKD09Xc8884yrfffu3UpPT9eAAQNc12S325WcnKzQ0FDX/1tjxozRlClTlJubq19++UVffPGFXnvtNUkqUzXz9HEDgMqgGAYAVNGKFSuUmZmpjz76SB999FGZ7atWrVLfvn11zTXXaMmSJdq+fbvq1q2rdevWuT4Q5uTkyOl0as6cOZozZ06Zc5T+UC1JwcHBbq83b96sJ554Qps3b1ZQUJBatWqlRo0aSSpewykrK0sOh8MVMkpYLBZXyJCKn506fPiw2rVrV+61Hj58WBERERWOR4cOHdShQwf985//VH5+vubPn68ZM2Zozpw5evjhh6v0HkFBQW7bzGZztao5hoaGlmk7/dylZWVl6ffffz9jH0uHPU/1UZL8/f3Vu3dv9e7dW5J06NAhPfXUU/rf//6nFStWqH///srKyirz37G07OxsxcXFlWmvW7eupFNhUir7fVSZ6+7SpYtef/11vfnmm3rjjTf0+uuvq27durrjjjt00003VXh9JX0oUXIdJeF6xIgRevXVV7V06VL16NFDa9as0XPPPVfhOUvUr1/fVV0wJibG7Zqk4iD2xBNPlDkuIyNDUnG5+H//+99atmyZTCaTmjZtqqSkJEll10E7fdwAoDIIWgBQRR9//LHi4uL09NNPu7UbhqG77rpLH3zwgfr27auePXuqXr16+vLLL1WvXj0FBARoyJAhkqSQkBCZTCbdcsstuuqqq8q8R0Wh4MSJExozZoxat26tzz//XC1atJDZbNbKlSv1v//9T1LxB1p/f39X0YUSTqfT9UFUksLCwtSsWbMzfriNjY0tt/3ZZ5/V8uXL9dVXX5Xp95133qmlS5dq586d5/Qe51NYWJi6deumhx56qNztVqvVo+93ww03qHnz5po8ebJbe0xMjJ5++mnX+PXv319hYWFuBVJKrFy5Um3atFFERIQOHz5cZntJW506dc7Yj8ped0kYzM/P19q1a/X222/rqaeeUqdOnSqsLHn6jGjJ92NJ4IqLi1O3bt305ZdfKisrS6GhoRo0aNAZz1cZJUVYHnroIXXr1q3M9pJQ/+CDD2r37t1688031aVLF1mtVuXn5+vDDz88p/cHgBLcOggAVXD48GGtWrVKV111lbp37+72p0ePHrriiiu0cuVKHTp0SBaLRX/+859dgWTQoEGu34yHhoaqbdu22r17t2tGqEOHDrrkkks0c+bMChd63b17t7KysnTzzTerVatWripr3377raTiMGWxWNS1a9cyledSUlJkt9tdr7t166aDBw8qOjrarR/ff/+95s6de8by4s2bN9eePXvcbo0skZubq4yMDMXHx5/Te5Sn5Fo9rVu3btqzZ4+aN2/u1sdPPvlEH330kcf72LhxY3311VdKS0srs23Pnj2S5Bq/pKQkff/99263s23dulW33367tmzZouTkZG3atEn79+93O8+SJUtUr149NW3a9Iz9qMx1P/vssxoxYoQMw1BQUJD69+/vWpD5wIEDFV7nihUr3F5//vnnatiwoVufrrvuOq1evVqfffaZrrzyyjKzuVXVokULRUdHa9++fW7XFBMTo+eff95VUXHDhg0aMmSIunfv7gqUpf8fAoBzxYwWAFTB4sWLZbfby52FkqRhw4ZpwYIF+vDDD3X33Xfrmmuu0fz582U2m8vcInj//ffr9ttv1wMPPKCrr75aDodD8+fP108//aRx48adsQ/NmzdXaGioXn31Vfn5+cnPz0//+9//XLcxltzmNn78eN10000aP368rrvuOh04cMC10GvJszXDhw/Xu+++q1tvvVV33HGHGjZsqNWrV2vOnDkaOXKk/P39z3idn376qR566CGtW7dOffv2VXh4uPbu3au3335bgYGBGj169Dm9R3nCw8N15MgR12yOp9xyyy365JNPdMstt2j06NGqU6eOvvjiC3344YeaNGlSlc4VHh6uTZs2ac2aNWrbtm25t17ed999Wrduna677jrdfPPN6tKli8xmszZv3qz58+erT58+6tOnj6TiJQH++te/6h//+IduvvlmFRQU6MUXX1THjh3Vq1cvtW/fXkuWLNEtt9yiu+66S5GRkVq8eLHWrl2rZ555psLgV5nr7tGjh9544w1NnDhRV199tYqKijR37lxFRkaqR48eFY7FO++8o5CQELVt21aff/65Vq1apalTp7o923X55ZfrySef1M8//6x//etfVRrr8lgsFt1333167LHHZLFY1L9/f+Xk5Gj27Nk6dOiQ6zbJjh076tNPP1W7du3UoEEDbdy4Ua+//rpMJlO1ngsEgNMRtACgChYuXKhLLrnENdtwusTERMXGxmrBggUaN26cEhISFB8fr2PHjpVZzPiyyy7TvHnzNGvWLI0fP17+/v5q166d3njjjQoX4Q0LC9Ps2bM1depU3XPPPQoJCVGbNm307rvvauzYsUpNTdWAAQOUlJSkmTNn6qWXXtK4cePUuHFj/etf/9J9992nkJAQScXPnrz33nt6/vnnNW3aNB0/flyNGzfWAw884ApK5bFarZo3b57efvttffXVV/r8889VUFCg+vXra8CAAfrnP//puj2suu9RnuHDh2vlypW68847NX78+DLFFqorJiZGH3zwgZ5//nk9/vjjKiwsVLNmzfT000/ruuuuq9K5/v73v+uXX37R2LFjNXnyZP35z38us09sbKwWLVqk1157TZ9++qnmzJkjwzDUtGlT3Xbbbbr55ptdYaRt27Z655139Pzzz+vee+9VaGio+vbtqwcffFBWq1X16tXT//t//0/PP/+8nnrqKRUVFSkhIUGzZ8/WwIEDz/m6+/btq+eee07z5893FcBITEzU22+/7fa8X3meeuopzZ07Vy+++KLi4uL0wgsvlPklRUBAgHr06KHdu3d7bIHrv/zlLwoJCdHcuXP13//+V8HBweratauee+451/NsU6ZM0ZNPPqknn3xSktSsWTM98cQTWrJkiVJTUz3SDwAXN5NR3Sd4AQA12jfffKMGDRq4FTr47bffNHTo0Ep9CAfOh4KCAvXt21fjxo3TqFGjfN0dAPAYZrQA4AL13Xff6YsvvtCDDz6o5s2b69ChQ3rllVfUokULXXbZZb7uHi5y+/fv16JFi7R69WqZTCaNGDHC110CAI8iaAHABerhhx9WYGCgXnnlFWVkZCgyMlK9e/fWAw88cM4FB4BzZTabXc9wTZ8+vdyS/ABQm3HrIAAAAAB4GOXdAQAAAMDDCFoAAAAA4GEELQAAAADwMIphVMKmTZtkGEaVFtUEAAAAcOEpKiqSyWRSly5dKtyPGa1KMAxDNaVmiGEYstlsNaY/FxrG17sYX+9ifL2L8fUuxte7GF/vYny9q6aNb2WzATNalVAyk9WhQwcf90TKy8vTtm3b1KpVKwUHB/u6Oxccxte7GF/vYny9i/H1LsbXuxhf72J8vaumje/mzZsrtR8zWgAAAADgYQQtAAAAAPAwghYAAAAAeBhBCwAAAAA8jKAFAAAAAB5G1UEAAADgJIfDoaKioiodU1hY6PpqNjOP4Wnnc3z9/f1lsVg8ci6CFgAAAC56hmEoPT1dWVlZVT7W6XTKz89PBw4cIGh5wfke38jISDVo0EAmk+mczkPQAgAAwEWvJGTVr19fwcHBVfqQ7XA4VFhYqICAAI/NhuCU8zW+hmEoLy9PGRkZkqSGDRue0/kIWgAAALioORwOV8iKjo6u1vGSFBgYSNDygvM5vkFBQZKkjIwM1a9f/5zej7lNAAAAXNRKnskKDg72cU9QE5R8H1T1Wb3TEbQAAAAA6ZyfycGFwVPfBwQtAAAAAPAwghYAAABwgRgwYIBat27t+pOQkKCuXbtq5MiR+uGHHyp1joULF6p169bn1I9169apdevW2rdvnyTp2LFjWrBgwTmds7YhaAEAAAAe5HAa2rzziFZu3KfNO4/I4TTO6/uPHj1a3333nb777jt9++23+uCDDxQaGqoxY8bowIED56UPXbp00Xfffeeq3Dd16lQtWbLkvLx3TUHVwVrEcDh0fOs2ObZs0XFDCurSWSYq2wAAANQYq38+oNcXb1ZmdoGrLToiULcP66BLOzY6L30IDg5WvXr1XK/r16+vJ554Qn369NHXX3+tUaNGeb0PVqvVrQ+GcX7DZk3AjFYtkblmrVLH/lM7n3xGRQs/0c4nn1Hq2H8qc81aX3cNAAAAktZsPqjJb/3gFrIkKTO7QJPf+kGrfz4/s0nl8fMrnl+xWq0qKCjQiy++qIEDB6pDhw665ppr9L///e+Mxx44cED33XefevbsqXbt2qlPnz6aNm2anE6npOJbDQcPHqynnnpKiYmJGjdunNutgxMnTtSiRYu0fv16tW7dWsuWLVNCQoL279/v9j5//etf9eyzz3pvEM4zZrRqgcw1a7V9yrQy7bbMTG2fMk0JEycoumcPH/QMAADgwmUYhgptjrPu53A6lFdg15xPfqlwv9cXb1anS+rJYq5cVbsAq8UjFfAOHTqkZ555RsHBwerbt6/uv/9+bd26VY8//riaNm2qzz77TPfcc49mzZqlQYMGlTn+n//8p+rVq6c33nhDISEh+uabbzR58mR16dLFtf8ff/yhjIwMLV68WAUFBTp69Kjr+EceeUQFBQVKT0/XzJkzVadOHUVFRemTTz7RuHHjJEl79uzRjz/+qKeffvqcr7emIGjVcIbDod1z5le4z+658xXVLZnbCAEAADzEMAw9POs7bdt79Ow7V1JmdoFuePSLSu/fplmUnr3rsiqHrddee03z5xd/frTb7bLZbGrZsqVefPFF5efn65tvvtGrr76qfv36SZLuvvtubd++Xa+++mqZoFVQUKBrrrlGf/rTn1zPW91yyy2aM2eOduzY4bb/uHHjFBcXJ6m4GEaJsLAwBQYGyt/f33U74TXXXOMWtBYvXqwOHTqoVatWVbrWmoygVcPlbN0mW2ZmhfvYjmTqwJLPFNmlk/wj68g/LJTQBQAAcJG64YYbdNNNN0mSzGazIiMjFRYWJkn64ovioJeYmOh2THJysl544YUy5woMDNTIkSP11Vdf6eeff9bvv/+uHTt26MiRI65bB0s0a9as0n0cMWKE5s+fr59++kkdO3bUkiVLNHbs2KpcZo1H0KrhbMeOVWq/vW++Lb158oXZLP+IcFkj68g/MkLWOpHyjyz+Y42MlH+dSFkjI+QfWUd+YaEszgcAAHAak8mkZ++6rNK3Dm7anq5n3/3xrPs+PqaH2rWIrlQfqnvrYEREhJo2bVqlYwzDcD3HVVpeXp5GjhypgoICXXHFFbr22mvVsWNH/f3vfy+zb2BgYKXfr1WrVurUqZOWLFmigoICHTlyREOHDq1Sn2s6glYNZ61Tp1L7BdSvJ0dBoew5OZLTqaJjWSo6lnXW40wWi/xPhi5rZMTJEFYqmNWJLA5rkXVkCQkmlAEAgIuGyWRSYMDZPy47HCZ1ahWt6IjAMoUwSqsbGaTOretX+hktbyhZH2vDhg3q37+/qz01NbXc2/a+++47bdmyRd9//73q1q0rScrKylJmZmaVKgmW9xlyxIgRmj17tpxOpwYNGqTw8PCqXk6NRtCq4cLbtpE1OrrC2wetdaOV+OrLMlksctrtKsrOUVFWlmzHjqkoK7v471nFwcuWlaWirCwVZWXLfuKEDIdDtsyjsmUeVe5Z+mLy9z85E3b67Jh7KPOPrCNLUCChDAAAXDTMZpPGXN1Oz76z4Yz7jL2mvU9DliS1bNlS/fv31xNPPCGTyaSmTZvq888/1zfffKMXX3yxzP4NGjSQJC1ZskSXX365Dh48qBdeeEFFRUWy2WyVft/g4GBlZGQoLS3N9RzXVVddpcmTJ2vhwoWaOXOmR66vJiFo1XAmi0Utxo4ut+pgiRZjRrueyTL7+SkgOkoB0VFnPbezqEhFWdmu8GU7VhLCTv3ddjKUOfLyZBQVqfDwERUePnLWc5ut1gpnx07dvhgpSxWmmQEAAGqqnh0aatKo5DLraNWNDNLYa9qft3W0zuaFF17QCy+8oEceeUQ5OTmKj4/XzJkzNXjw4DL7duzYUZMmTdKbb76pF198UTExMbryyivVsGFDbd68udLvOWzYMH399dcaOnSoli5dqpiYGIWGhmrQoEFav369evXq5clLrBFMho9XD3M6nZo1a5YWLFig48ePKzk5WY899pgr6Z5uy5Ytmjp1qn7++WcFBARoyJAhmjBhgusBP0n68ssvNXPmTO3bt08tWrTQww8/rJ49e1a7jyXfRB06dKj2Oc5V5pq12j1nvtvMlrVutFqMGX1eSrs7CgsrmB0rFcyOZclZWFilc5sDA13PkZU3O1b6lkaz1eqlKyyWl5enbdu2qU2bNgoODvbqe12MGF/vYny9i/H1LsbXuxjfihUUFGjPnj1q3rx5lZ4zKuFwOFRQUKDAwEBZLBY5nIa27s7U0ZwCRYUHqm2LaJ/PZNVUN910k7p27ar77rvvjPucPr7edrbvh8pmA5/PaM2ePVvvv/++pkyZogYNGmjatGkaM2aMPv30U1lP+1B95MgR3XrrrRo0aJAef/xxHTt2TP/61780ceJEvfzyy5KktWvXasKECXrooYfUq1cvffTRR7r99tu1ePFitWzZ0heX6BHRPXsoqluyMjb9qN+3bFHTdu1Uv0vn81Zd0BIQIEtMfQXG1D/rvo78fNlOhrKys2Mlr4u3O202OQsKVHAwXQUH08/ej5Bg91my0sU96tSRf0SErHXqyD8iXGZ/f09cOgAAQJVYzCZ1aFXX192o0ZYtW6Zt27bpxx9/1NSpU33dHa/wadCy2WyaP3++HnzwQVcd/+nTp6t3795aunRpmcoj+/fv12WXXab//Oc/8vPzU/PmzXX99ddr+vTprn3mzJmjQYMG6eabb5YkPfzww9q0aZPeeust/ec//zlv1+YNJotFYW3byGKSwtq0qbEl3C1BQQoKClJQwwYV7mcYhhz5+Sdnx4qfJys9M1aUXTJzVhzKDLtdjtw85efmKX//2VdW9wsLlX/EydmxOpGn/h55MoyV3MYYEV5jxxIAAOBCNHfuXO3Zs0dPPvmka32uC41Pg9b27duVm5vrdltfeHi42rZtqx9++KFM0OrUqZNbff9du3bpk08+cd3T6XQ6tXHjRk2cONHtuO7du2vp0qVevBJUh8lkkl9wsPyCgxXUuOJ7lg3DkCM31z2IlbqNsSj71EyZLStLcjplP35C9uMnlL9v39k6Iv/wsOLnxcLCZDNJ+zdsUnC9em6hjDXKAAAAPOODDz7wdRe8zqdBKz29+Fax01Ns/fr1XdvO5PLLL9fevXvVuHFjzZo1S5KUk5OjvLw8V3WUqpzvbAzDUF5e3jmdwxPy8/Pdvl5UzGYpOkr+0VGq6KZAw+mU40SuirKzZD9ZgdHta3a27NnZxZUXc3Ikwyiu1Jid4zpHxuYt5Z/cZJJfRLj8IyLkFxFR/DXytK8REfKPjJAlJEQms9mzY1DLXdTfv+cB4+tdjK93Mb7exfhWrLCwUE6nUw6HQw7H2dfNOl1JyQPDMKp1PCp2vsfX4XDI6XQqPz+/zKLMJf2oTHVtnwatkv/ZT38WKyAgQNnZ2RUe+9xzzyk/P1/Tpk3TzTffrE8++UQFBQVnPF9hFQs0nK6oqEjbtm07p3N40t69e33dhdrBUhzOVE4VRj9JFqdTysuTcSJXRm6udPKrceJEmdfKy5cMQ/asbNmzKv7+lFQcDENCZAoNkenkV4WEyhQaLFNoqNs2BV5c5fD5/vUuxte7GF/vYny9i/E9Mz8/v3P+vHiux6Ni52t8CwsLZbfbtXv37jPuc3reKI9Pg1ZJFQ+bzeZW0aOwsFBBQUEVHltS5WPWrFnq27evvv76a/Xt29d1vtIqc76z8ff3L3cRt/MtPz9fe/fuVbNmzc75mlBWReNr2O2y5xxXUXZ28axY1mlfS82UOXJzJadTOn5cxvHjOltpT5Ofn/uM2JlmyiIiZK7Fa5Tx/etdjK93Mb7exfh6F+NbscLCQh04cEABAQHVqjpoGIYKCwsVEBBQa/+Nrsl8Mb5+fn5q0qSJAgICymzbuXNn5c7h6U5VRcktgxkZGWrSpImrPSMjw7VqdWm7d+/WH3/84SqcIUkxMTGKjIzUoUOHFBkZ6VoMrbSMjAzFxMScU19NJlONKocaFBRUo/pzoTnj+IaHS7GNz3p8hWuUZbkX+XDk5cmw21V0JFNFR868MHUJs9VaqgR+OWuURUa4ttXUNcr4/vUuxte7GF/vYny9i/Etn9lsltlslsViqVb58JLb2Uwm03kpP36xOd/ja7FYZDabFRQUVG7wrmzY82nQSkhIUGhoqNatW+cKWjk5Odq6datGjhxZZv/Vq1dr6tSp+u677xQeHi5J+uOPP3Ts2DG1bNlSJpNJXbt21fr16/WXv/zFddy6deuUlJR0fi4KkGT291dAvboKqHf20q5l1ihzK4F/zK3Ih7OgQE6bTYUZGSo87RcK5fYjMNC9BL5bEDu/a5QBAABcTHwatKxWq0aOHKnnnntOUVFRaty4saZNm6YGDRpoyJAhcjgcOnr0qMLCwhQYGKihQ4fq9ddf14QJE/Tggw8qOztbTz31lDp27Kj+/ftLkm699Vbdfvvtatu2rfr06aOPP/5Y27Zt09NPP+3LSwXO6JzWKHObHXMvke9aoyw9XQWVKAZjCQl2L4FfOpSxRhkAAECV+HzB4vHjx8tut+vRRx9VQUGBkpOTNW/ePPn7+2vfvn0aOHCgJk+erOHDhysyMlJvvfWWpkyZor/97W+yWCwaOHCgJk6c6JpGvOyyy/TMM89o9uzZmj59ulq1aqVXX321Vi9WDJSo3hplWactHp1dZt2ykjXKHLl5KjhQxTXKTs6UlZ4dc61bFhlBOXwAAHBR8nnQslgsmjBhgiZMmFBmW2xsrHbs2OHW1rx5c7322msVnnPYsGEaNmyYJ7sJ1CrVWqOsZHbstHXJirKOFc+YHctSUXa2DIejWmuU+UdGyhwaqiKHQ4d27lZI/Xruz5qFhRHKAAAXBMPhUM7WbbIdOyZrnToKb9vmvP8bt2TJEr377rv69ddfZTKZ1KJFC/3lL3/RDTfcUKnjFy5cqEmTJpX5LF7agAEDdO211+ruu+/2SJ+XL1+uuLg4tWrVSuvWrdPNN9+sb7755qwLGpfeNzY2VseOHdOyZcvcHiXyBZ8HLQC+ZTKZ5BcaKr/QUCk2tsJ9DadT9hMnKpwdc23LyZGczlNrlP3+h+s8B9auK3tys1n+4eGVKvLhFxrKGmUAgBopc81a7Z4zX7bMUwWurNHRajF2tKJ79jgvffjoo4/09NNP65FHHlFiYqIMw9D333+vp556SkeOHNFdd93lsfcprypfdezfv1933HGH3n77bbVq1UpdunTRd999p6ioskv0nO70fadOnap9+/YRtADUHqaTYcg/PFzBpSqFlsdwOFR0/Lhb1cXcjMM6tHuPwi0WOU8GtqKsLBXlHC8OZSdfn7UfFov8IyIqVeTDEhJCqV0AwHlxdO06/Tr1+TLttsxMbZ8yTQkTJ5yXsPX+++9rxIgRuu6661xtLVq00KFDh/T22297LGhVJgRVVsmixCWsVqvq1asnSWddpLj0vuWdy1cIWgC8wmSxyBpZHHZCmhW35eXl6ei2bWrWpo1beWGn3X5y5ivr1HNl5RX5yM6S/fgJGQ6HbEePynb0qHLP1g8/vwpmx04rhx8URCgDALgYhiFnJRbJdTgcsufla8/cNyrcb/eceYro1LHSd2WYq7lulNls1qZNm5Sdna2IiAhX++23364RI0ZIKv+2v/LaPvzwQ82cOVM5OTnq2bOn/vWvf6lx48bl7r98+XLNnDlTO3fuVExMjK666iqNGzfOtbhvbm6uXnjhBf3vf/9Tbm6u2rVrp4kTJyoyMlIDBw6UJN18882666671K1bN9ftgB9//LE+/PBDrVixwlWXIT8/X5deeqn+7//+T02aNHHtO2vWLC1atEiS1Lp1a7388su666679M0337j6LUl//etf1bVrVz388MNVHt/KImgB8Dmzn58CoqMUEH3234w5i4pUlJ0j27FjxYtHHztW/m2M2Vly5BavUWY7ckS2I0fO3g+3NcrKKfJR6pbGmrpGGQDAMwzD0OaJj+j49jM/o1RVtsyjWve3myq9f1ibBHWY/FSVw9aYMWN03333qU+fPurevbuSkpLUo0cPdejQwbVEUmW98847eumll2S1WvXkk0/qzjvv1KJFi8r06dtvv9W9996rSZMm6dJLL9Uff/yhJ598Unv27NFLL70kSbr33nu1d+9eTZ48WU2aNNGrr76q0aNH63//+58WLFigv/zlL5o5c6Z69eqlX375xXXuYcOG6ZVXXtG6det02WWXSZKWLVsmwzD0pz/9SVu2bHHt+8gjj6igoEDp6emaOXOm6tSpo6ioKH3yyScaN26cJGnPnj368ccfvV6VnKAFoFYx+/sroG60AupGn3Vfp81WQQn8U0U+PL9GWelgFiGLh+5fBwCcZ7X0LocrrrhCDRo00Ntvv63vv/9eK1eulCQ1a9ZMzzzzjBITEyt9rmnTpikhIUGS9Oyzz+ryyy/XmjVrdOmll7rt9+qrr+r66693Fdto0qSJnnjiCY0aNUr79u2TzWbTt99+q3nz5rnC0uOPP67w8HBlZ2e7bkOMiIhQSEiI27ljY2OVmJiozz77zHXsp59+qkGDBik0NNRt35Jlofz9/V23E15zzTVuQWvx4sXq0KGDWrVqVelxqA6CFoALltlqVWD9+gqsX4k1ygoKzl7k42Roq/IaZcHBFRb3OBXMIlijDABqCJPJpA6Tn6r0rYNHfvxZe6Y+d9Z92zz2iCLata1UH6p766Akde7cWZ07d5bT6dT27du1cuVKvfvuuxo7dqy+/vrrSp0jJCTEFbKk4qAWERGhX3/9tUzQ2rp1q37++Wd99NFHrraSZ6V27dql/Px8V79KBAQEaNKkSZKkfWepZHz11Vdr6tSpeuKJJ5Sbm6vvv/9ec+bMqdR1jBgxQvPnz9dPP/2kjh07asmSJRo7dmyljj0XBC0AkGQJDJSlQQMFNqjkGmVZ5ZfAP33dMsNulyMvT468Sq5RFhrqmglzmx1jjTIAOO9MJlPlbhV3OBTesb2s0dFu1QZPZ60brTqdO3n153d6erpee+01/eMf/1CDBg1kNpvVtm1btW3bVoMGDdLQoUP1ww8/lHus3W53e20pp59Op9P1zNXp7WPGjNG1115bZlu9evW0evXqal5RsYEDB2rKlClavny5jhw5onr16qlHj8oVFmnVqpU6deqkJUuWqKCgQEeOHNHQoUPPqT+VQdACgCpwW6OsUWXWKMsrnh0r9/bF0sHs5BplJ07IfqJya5T5hYUVh7GICFnr1JFCQmS3FSrzcKYKY+qzRhkAnEcms1nNbrul3KqDJVqMGe31n8dWq1ULFixQw4YNdfvtt7ttK3k+q27duvL399eJEydc206cOKHM00JiTk6O/vjjDzU5WWl4x44dOn78uOLj48u87yWXXKI9e/aoadOmrrZ169bp7bff1uOPP66WLVtKkjZv3qyePXtKKg52Q4YM0UMPPaQOHTpUeF1BQUG64oortHTpUh08eFDXXHONzGcoKlLeLOCIESM0e/ZsOZ1ODRo0qMrPqlUHQQsAvKR4jbIQ+YWGVHKNstxyZ8fK3L6YXbxGmT0nR/acnDLn+mNZintD6TXKIiLkX+dUkQ//iFOLRlvrsEYZAJyLqB7dlTBxQtl1tOpGq8WY87OOVlRUlMaMGaOXXnpJubm5uuKKKxQaGqqdO3dq9uzZruIYnTt31hdffKHLL79c4eHhmjFjRpkZLLPZrHvvvVePPfaYJOnf//63unXrpqSkpDLvO3bsWN17772aNWuWrrrqKqWnp+uRRx5RbGys6tWrp3r16mnIkCF64okn9PjjjysmJkavv/66CgsL1a1bN1c4+vXXX9W2bfm3Vg4bNkx33HGHCgoKNGXKlDOOQXBwsDIyMpSWlqa4uDhJ0lVXXaXJkydr4cKFmjlzZrXGtqoIWgBQAxSvURYm//AwBVe8RNnJNcpOlJodK/6ad/iwjvyRphDDkOPkGmYeXaPstFDGGmUAUFZ0zx6K6pasnK3bZDt2TNY6dRTets15vbPg3nvvVbNmzfThhx/qvffeU0FBgRo1aqQ//elP+sc//iFJuv/++5WVlaVbb71VYWFhGj16tHJO++VdVFSUrrnmGo0bN075+fnq37+/Hn300XLf84orrtD06dP12muv6dVXX1VkZKQGDBigBx980LXPM888o6lTp+qee+6RzWZTp06dNG/ePFchjBEjRmjq1Kn6/fffNXjw4DLvkZSUpHr16ik6Otpt5ux0w4YN09dff62hQ4dq6dKliomJUWhoqAYNGqT169erV69eVR7T6jAZNWVFrxps8+bNknTWKc3zIS8vT9u2bVOb09Yhgmcwvt7F+HpXeeNrOBzF5fBPC2UlJfBLz5zZj584yzu4c61R5iqBf4YiH3UujDXK+P71LsbXuxjfihUUFGjPnj1q3ry5AquxfIfD4VBBQYECAwPLfa7pQtWnTx/deOONuuOOO7z6Pp4a35tuukldu3bVfffdV+F+Z/t+qGw2YEYLAC5gJotF1qg6skbVOeu+JWuUnaqweIYiH1nVX6PsjEU+WKMMAGqNo0ePaufOncrMzFSDsxSRqgmWLVumbdu26ccff9TUqVPP2/sStAAAkqq5Rtnps2OnFfmwHTuHNcrOMDvmizXKDIdDx7duk2PLFh03pKAunSkwAuCitWTJEr344ovq2bOnBg0a5OvunNXcuXO1Z88ePfnkk2rYsOF5e1+CFgCgyqq1RtkZSuC71i07lzXKXLcvus+OeWKNssw1a90ebN+58BP9ER2tFmPPz4PtAFDT3HLLLbrlllt83Y1K++CDD3zyvgQtAIBXVW2NsoIzlsA/fd0yo6jIM2uUlQpl/pGR8o8Il9mv+J/HzDVrtX3KtDLnsmVmavuUaUqYOIGwBQAoF0ELAFAjFK9RFiS/4KCqrVFWKpSder7Mfd2yKq1RJskvPFz+EeEqSD9U4X67Xpur8Hbt5BcaQll8AIAbghYAoNap3hplZ1ibrPTti2dZo+x0RceOaf1Nt0gmkyzBwfILCZFfSIgsIcHyCw09+TpYlpPtfqEl20Nc+/qFhsgcGFjrqzICFwKKcUPy3PcBQQsAcEFzX6MsrsJ9T61RlqUjq77Tvo8WVu5NDEOO3Fw5cnNVWJ1Oms2lQtqpQFY2tJ18HRLiarOEBMtstRLUgHPgf/IZzry8PAUFBfm4N/C1vLw8Sae+L6qLoAUAwEkmi0XWyAhZIyNkP368UkGr7eP/UkjzZrKfOCFHbp7submyn8iV/WTwspf8OeH+2nGyzXA4imfRjh+X/fjx6vXbz881O1Z6tqxsaCueYTsV0opfV7dQCHChsFgsioyMVMbJyqjBwcFV+uWFw+FQYWGh61zwrPM1voZhKC8vTxkZGYqMjDzn9yJoAQBQjvC2bWSNjnZVGyyPtW60Ijt2OBnQIqv8HoZhyGmznQxpubKXCmqO3BNnfH0qsOVJTqcMu11F2dkqys6u1rWaAwLcZ8tOzpiVfl1+aCsOapS6x4WgZD2ojEosQ3E6p9Mpu90uPz8/mXle0+PO9/hGRkZ6ZH0wghYAAOUwWSxqMXZ0uVUHS7QYM/qcQobJZJIlIKB4PbDos69fdjrD6ZSjoKCCmbO8UiGt+LWj9H4nb49xFhbKVlgoHT1areuwBAWdcbbsbKHNEhREIRHUCCaTSQ0bNlT9+vVVVFRUpWPz8/O1e/duNWnShFsPveB8jq+/v7/HZs0IWgAAnEF0zx5KmDjBbR0tqXgmq8UY36+jZTKb5RccLL/gYAXUq1fl4w2HQ478/Crc7phXXL3xZGhzFhRIkhz5+XLk58t2pDoXUVxIxBIcpCKLRb9FRckaHl5O8ZDSoe3UbBqFROBpFoulyh+0nU6nJCkgIECBgYHe6NZFrbaOL0ELAIAKRPfsoahuycrY9KN+37JFTdu1U/0unS+I2+VMFkvxDFRoqBRT9eOddrsceSXhK6/CkFZeaHPabG6FRCTpxFlK6pd3DaWD2NkqPJap+Gi1Vv3CAaASCFoAAJyFyWJRWNs2spiksDZtLoiQ5QlmPz+Zw8PlHx5ereOdNpsreOVmHtWe7dvVKCpaFnvRqcIiubnuhUZOKyRiOByVLsdfHpO/v3sZ/tDQyoe2YAqJADgzghYAAPAJs9Uqq9Uqa506UlSULPYiRbVpo+Dg4LMeaxiGnIWFbsHLLYiVus3RvdDIqdAmw5BRVORaU61a13CykEjZio9nWkst9NTrYAqJABcyghYAAKh1TCaTLIGBsgQGnnshkTIhrZxn1k64h7jTC4nYzqGQSHm3NJ45tJ2qDkkhEaBmI2gBAICLjicKidjz8txmyxwnZ8zKlOEvU2ikbCERHa5GJZGT1+Belr/8tdQcfn5yHj6s/NBQWerWlV9IiMwBARQSAbyIoAUAAFBFJotF/mFh8g8Lq9bxzqKi4kIipW5zLB3EToW2smX57SdOyLDbixe6PnFC9hMnVFjJ991+2jWULctf+bXUKCQCVIygBQAAcJ6Z/f1ljoiQf0REtY4vXUik4jL8xa9tOTnKz8qSpai4UqTHComUWcS6orXU3KtDmv34GIoLG9/hAAAAtYxbIZFKyMvL07Zt29SmTRsFBQUVFxKp1Npppz/DdlohkWNZKjqWVb1rCAx0r/BYJrSVV/GxOMhZgoIoJIIaj6AFAABwESldSCSgbjULiZxc6NpRqpqj2+sKQpsjP1+S5CwokK2gQLbMahYSCQ4+c1n+s5TptwQF8XwavI6gBQAAgEozmc2umafqKFNI5Cxl+E+fWXMWFj+R5sg7Wf3xHAqJuBcPKR3aKijLTyERVBJBCwAAAOeNxwqJVKYsv1uhkbxyC4lU6xr8/NyClykwUDaHQ380XKPAiIhShUVCS82knXpejYWuLw4ELQAAANQaHikkcnpIq0Jok9Mpw25XUXaOirLdC4lkbt1WuWuwWktVdAyVX2hwuWX5y3ttCQ6mkEgtwX8lAAAAXDTMVqusUVZZoypXSKQ0wzDkLCgos3Za3rFj2r97t+qFhctUKsiVKTSSlycZhpw2m5w227kXEilTlv9kSf4zhDTXQte1qJCI4XDo+NZtcmzZouOGFNSlc63pP0ELAAAAqASTySRLUJAsQUFuhUQC8/J0qG60GrRpo+Dg4DMeX7qQSMVl+UuvnXbC9dojhURMJlmCg8qW5Q8JLRXKSgqJFM+2ndo3VJagwPP2fFrmmrXaPWe+bJmZkqSdCz/RH9HRajF2tKJ79jgvfTgXBC0AAADgPHArJFK/6seXFBI5PaRVZi01VyERw5AjN0+O3DwV6nDVO2E2l63oeJbbHYufZyt+Xs1stVYqqGWuWavtU6aVabdlZmr7lGlKmDihxoctghYAAABQC3iikIjbbFml1k4rp5DI8ROyHz/XQiKnVXcsFdLMQUFKe/+DCs+ze+58RXVLrtG3ERK0AAAAgIuA2d9f1sgIKbLqhUSMk8+WVbx22pnL8ttzcyssJFJVtiOZytm6TREd2p/TebyJoAUAAACgQiaTSZaAAFkCAs69kIjb2mlly/Dn/v67cnfuOus5bceOVedSzhuCFgAAAACvOlMhkfJkb/5Fvzz677Oe01qn6oHvfDL7ugMAAAAAUCK8bRtZoysOY9a60Qpv2+Y89ah6CFoAAAAAagyTxaIWY0dXuE+LMaNrdCEMiaAFAAAAoIaJ7tlDCRMnlJnZstaNrhWl3SWe0QIAAABQA0X37KGobsnK2PSjft+yRU3btVP9Lp1r/ExWCYIWAAAAgBrJZLEorG0bWUxSWJs2tSZkSdw6CAAAAAAeR9ACAAAAAA8jaAEAAACAhxG0AAAAAMDDCFoAAAAA4GEELQAAAADwMIIWAAAAAHgYQQsAAAAAPIygBQAAAAAeRtACAAAAAA8jaAEAAACAhxG0AAAAAMDDCFoAAAAA4GE+D1pOp1MzZsxQ79691blzZ40dO1ZpaWln3P+3337T7bffru7du6tnz54aP368Dhw44NrucDjUsWNHtW7d2u3PzJkzz8flAAAAAIDvg9bs2bP1/vvv68knn9QHH3wgp9OpMWPGyGazldn32LFjuvXWWxUYGKh33nlHc+bM0dGjRzVmzBgVFhZKkvbu3avCwkJ98skn+u6771x/Ro8efb4vDQAAAMBFyqdBy2azaf78+Ro/frz69eunhIQETZ8+Xenp6Vq6dGmZ/ZctW6a8vDxNnTpV8fHxat++vaZNm6Zdu3Zp48aNkqQdO3YoNDRUCQkJqlevnutPSEjI+b48AAAAABcpnwat7du3Kzc3Vz179nS1hYeHq23btvrhhx/K7N+zZ0/Nnj1bgYGBrjazufgScnJyJBUHrZYtW3q55wAAAABwZn6+fPP09HRJUsOGDd3a69ev79pWWmxsrGJjY93aXn/9dQUGBio5OVmS9Ouvv8put+u2227T9u3bFRMTo1GjRumaa645p74ahqG8vLxzOocn5Ofnu32FZzG+3sX4ehfj612Mr3cxvt7F+HoX4+tdNW18DcOQyWQ6634+DVolg2W1Wt3aAwIClJ2dfdbj33nnHb377rt69NFHFRUVJam4WIbT6dT48ePVoEEDrVy5UpMmTVJRUZGuu+66ave1qKhI27Ztq/bxnrZ3715fd+GCxvh6F+PrXYyvdzG+3sX4ehfj612Mr3fVpPE9Pb+Ux6dBq+QWQJvN5nY7YGFhoYKCgs54nGEYeumll/TKK6/on//8p2666SbXts8++0wOh8P1TFZCQoIOHDigefPmnVPQ8vf3V6tWrap9vKfk5+dr7969atasWYVjhOphfL2L8fUuxte7GF/vYny9i/H1LsbXu2ra+O7cubNS+/k0aJXcMpiRkaEmTZq42jMyMtS6detyjykqKtKkSZP02WefadKkSbrlllvctpcObCXi4+O1ZMmSc+qryWRScHDwOZ3Dk4KCgmpUfy40jK93Mb7exfh6F+PrXYyvdzG+3sX4eldNGd/K3DYo+bgYRkJCgkJDQ7Vu3TpXW05OjrZu3ep65up0Dz30kL766is9//zzZUJWTk6OunXrpoULF7q1b968WZdcconH+w8AAAAA5fHpjJbVatXIkSP13HPPKSoqSo0bN9a0adPUoEEDDRkyRA6HQ0ePHlVYWJgCAwO1cOFCffHFF3rooYfUrVs3HT582HWusLAwhYeHq0ePHpo+fbqio6PVtGlTLV26VEuWLNFrr73mwysFAAAAcDHxadCSpPHjx8tut+vRRx9VQUGBkpOTNW/ePPn7+2vfvn0aOHCgJk+erOHDh+uzzz6TJE2dOlVTp051O0/JPs8884xmzpypf//738rMzFTLli01Y8YM9e7d2xeXBwAAAOAi5POgZbFYNGHCBE2YMKHMttjYWO3YscP1ev78+Wc9X2hoqCZNmqRJkyZ5tJ8AAAAAUFk+fUYLAAAAAC5EBC0AAAAA8DCCFgAAAAB4GEELAAAAADyMoAUAAAAAHkbQAgAAAAAPI2gBAAAAgIcRtAAAAADAwwhaAAAAAOBhBC0AAAAA8DCCFgAAAAB4GEELAAAAADyMoAUAAAAAHkbQAgAAAAAPI2gBAAAAgIcRtAAAAADAwwhaAAAAAOBhBC0AAAAA8DCCFgAAAAB4GEELAAAAADyMoAUAAAAAHkbQAgAAAAAPI2gBAAAAgIcRtAAAAADAwwhaAAAAAOBhBC0AAAAA8DCCFgAAAAB4GEELAAAAADyMoAUAAAAAHkbQAgAAAAAPI2gBAAAAgIcRtAAAAADAwwhaAAAAAOBhBC0AAAAA8DCCFgAAAAB4GEELAAAAADyMoAUAAAAAHkbQAgAAAAAPI2gBAAAAgIcRtAAAAADAwwhaAAAAAOBhBC0AAAAA8DCCFgAAAAB4GEELAAAAADyMoAUAAAAAHkbQAgAAAAAPI2gBAAAAgIcRtAAAAADAwwhaAAAAAOBhBC0AAAAA8DCCFgAAAAB4GEELAAAAADyMoAUAAAAAHkbQAgAAAAAPI2gBAAAAgIcRtAAAAADAwwhaAAAAAOBhBC0AAAAA8DCCFgAAAAB4mM+DltPp1IwZM9S7d2917txZY8eOVVpa2hn3/+2333T77bere/fu6tmzp8aPH68DBw647fPee+9p4MCB6tixo2688UZt3brV25cBAAAAAC4+D1qzZ8/W+++/ryeffFIffPCBnE6nxowZI5vNVmbfY8eO6dZbb1VgYKDeeecdzZkzR0ePHtWYMWNUWFgoSVq0aJGmTp2qe+65RwsXLlRsbKxuvfVWHT169HxfGgAAAICLlE+Dls1m0/z58zV+/Hj169dPCQkJmj59utLT07V06dIy+y9btkx5eXmaOnWq4uPj1b59e02bNk27du3Sxo0bJUmvvvqqRo4cqauvvlqtWrXSM888o6CgIC1YsOB8Xx4AAACAi5RPg9b27duVm5urnj17utrCw8PVtm1b/fDDD2X279mzp2bPnq3AwEBXm9lcfAk5OTnKzMzU3r173c7n5+enpKSkcs8HAAAAAN7g58s3T09PlyQ1bNjQrb1+/fqubaXFxsYqNjbWre31119XYGCgkpOTdfDgwTOeb/v27efUV8MwlJeXd07n8IT8/Hy3r/Asxte7GF/vYny9i/H1LsbXuxhf72J8vaumja9hGDKZTGfdz6dBq2SwrFarW3tAQICys7PPevw777yjd999V48++qiioqK0e/fuM56v5Bmu6ioqKtK2bdvO6RyetHfvXl934YLG+HoX4+tdjK93Mb7exfh6F+PrXYyvd9Wk8T09b5THp0Gr5BZAm83mdjtgYWGhgoKCznicYRh66aWX9Morr+if//ynbrrppjLnK+1s56sMf39/tWrV6pzO4Qn5+fnau3evmjVrds7XhLIYX+9ifL2L8fUuxte7GF/vYny9i/H1rpo2vjt37qzUfj4NWiW3+GVkZKhJkyau9oyMDLVu3brcY4qKijRp0iR99tlnmjRpkm655ZZyz9eyZUu388XExJxTX00mk4KDg8/pHJ4UFBRUo/pzoWF8vYvx9S7G17sYX+9ifL2L8fUuxte7asr4Vua2QcnHxTASEhIUGhqqdevWudpycnK0detWJScnl3vMQw89pK+++krPP/+8W8iSpOjoaDVv3tztfHa7XampqWc8HwAAAAB4mk9ntKxWq0aOHKnnnntOUVFRaty4saZNm6YGDRpoyJAhcjgcOnr0qMLCwhQYGKiFCxfqiy++0EMPPaRu3brp8OHDrnOV7DN69Gg9/fTTatq0qTp06KDXX39dBQUFuu6663x4pQAAAAAuJtUOWk6nU7/++qsyMjLUtWtX2e12RUZGVvk848ePl91u16OPPqqCggIlJydr3rx58vf31759+zRw4EBNnjxZw4cP12effSZJmjp1qqZOnep2npJ9rr/+eh0/flwvvviisrKy1L59e73xxhuKioqq7qUCAAAAQJVUK2h98sknev7555WRkSGz2awFCxZo5syZ8vf31/PPP1+pKhwlLBaLJkyYoAkTJpTZFhsbqx07drhez58/v1LnvO2223TbbbdVug8AAAAA4ElVfkbriy++0MMPP6wePXpo+vTpcjqdkqTBgwdr5cqVmj17tsc7CQAAAAC1SZVntF599VXdcMMNevzxx+VwOFztI0aM0NGjR/Xhhx/q3nvv9WQfAQAAAKBWqfKM1p49ezR48OByt3Xq1EmHDh06504BAAAAQG1W5aAVHR2tXbt2lbtt165dio6OPudOAQAAAEBtVuWgdeWVV2rGjBn66quvZLPZJBUv2vXLL79o9uzZuuKKKzzeSQAAAACoTar8jNa9996rX3/9Vffee6/M5uKcdtNNNykvL09JSUm65557PN5JAAAAAKhNqhy0rFar5s6dq++//15r165VVlaWwsLC1K1bN/Xt21cmk8kb/QQAAACAWqPKQeu2227TmDFj1KtXL/Xq1csbfQIAAACAWq3Kz2ht3LiRWSsAAAAAqECVg1bv3r21ZMkSFRUVeaM/AAAAAFDrVfnWwYCAAC1ZskRffvmlWrZsqeDgYLftJpNJb731lsc6CAAAAAC1TZWDVnp6urp06eJ6bRiG2/bTXwMAAADAxabKQeudd97xRj8AAAAA4IJR5aBVYteuXVq/fr2OHz+uOnXqKDExUS1atPBk3wAAAACgVqpy0DIMQ//+97+1YMECt9sETSaTrr32Wj3zzDMe7SAAAAAA1DZVDlpz587Vxx9/rPHjx+vqq69WvXr1lJGRoU8++USvvPKK4uPjdcstt3ihqwAAAABQO1Q5aH300UcaM2aM/vnPf7raYmNjdeedd6qoqEgffvghQQsAAADARa3K62gdPHhQPXr0KHdb9+7dtW/fvnPuFAAAAADUZlUOWo0bN9aOHTvK3bZ9+3ZFRUWdc6cAAAAAoDarctAaOnSoZs6cqS+//NJVDMMwDH3xxReaNWuWrrzySo93EgAAAABqkyo/ozV27Filpqbqvvvu04QJE1SnTh0dO3ZMdrtd3bt31z333OONfgIAAABArVHloGW1WvXGG2/o22+/1fr165Wdna2IiAglJyerb9++3ugjAAAAANQq1Vqw+I8//lBGRoYefPBBScWLF3/88ce65JJL1KhRI492EAAAAABqmyo/o/Xjjz9q2LBhmjdvnqstJydHS5Ys0bXXXqtff/3Vox0EAAAAgNqmykHr+eefV9euXbVo0SJXW5cuXfTNN9+oY8eOmjp1qkc7CAAAAAC1TZWD1pYtW3TbbbcpMDDQrT0gIECjRo3STz/95LHOAQAAAEBtVOWgFRgYqEOHDpW77dixYzKbq3xKAAAAALigVDkV9e7dWzNmzCizaPGuXbs0c+ZM9enTx2OdAwAAAIDaqMpVBx988EHdcMMNuvbaaxUbG6uoqCgdO3ZMaWlpio2N1UMPPeSNfgIAAABArVHloFWvXj19+umnWrhwoTZu3KisrCzFxMRo5MiRGj58uEJCQrzRTwAAAACoNaq1jlZwcLBGjhypkSNHero/AAAAAFDrVSlo/fLLLwoPD1eTJk0kFRe/mDNnjnbt2qXWrVvrlltuUVRUlFc6CgAAAAC1RaWKYRQVFemuu+7SX/7yF3311VeSpMLCQv3973/XG2+8oUOHDumjjz7SX/7yFx09etSrHQYAAACAmq5SQevdd9/VqlWrNGnSJF133XWSpPfee0+7d+/W+PHjtXjxYn399dcKDQ3Vq6++6tUOAwAAAEBNV6mg9emnn2r06NG6+eabXbcGfvnllwoKCtLo0aMlSSEhIbrpppuUkpLivd4CAAAAQC1QqaC1d+9eJSUluV6fOHFCW7ZsUZcuXRQQEOBqb9as2RkXMwYAAACAi0WlgpZhGDKbT+26adMmOZ1Ode/e3W2/48ePKygoyLM9BAAAAIBaplJBq3nz5vrll19cr5cvXy6TyaTLLrvMbb+VK1eqWbNmHu0gAAAAANQ2lSrvfvXVV+vll19WnTp15HQ6tXDhQrVp00bt2rVz7fPll1/q448/1n333ee1zgIAAABAbVCpoHXTTTdpx44d+te//iXDMNSwYUNNnTrVtf1Pf/qT6zmum266yWudBQAAAIDaoFJBy2KxaPLkyRo/fryOHDmihIQE+fv7u7b369dPLVq00LBhw9zaAQAAAOBiVKmgVaJhw4Zq2LBhmfaHH37YYx0CAAAAgNquUsUwAAAAAACVR9ACAAAAAA8jaAEAAACAhxG0AAAAAMDDziloHT9+XLt27ZLNZpPD4fBUnwAAAACgVqtW0Fq3bp3+8pe/qFu3bvrzn/+s3377TQ888ICmTJni6f4BAAAAQK1T5aC1Zs0a3XbbbQoMDNSDDz4owzAkSQkJCXr77bf1xhtveLyTAAAAAFCbVDlovfjiixo4cKDeeecdjRo1yhW07rjjDo0ZM0YLFizweCcBAAAAoDapctDatm2bRowYIUkymUxu23r16qX9+/d7pmcAAAAAUEtVOWiFhYXp8OHD5W47ePCgwsLCzrlTAAAAAFCbVTloDRw4UNOnT9fmzZtdbSaTSenp6Xr11VfVr18/T/YPAAAAAGodv6oe8MADD+inn37S9ddfr7p160qS7r//fqWnp6thw4a6//77Pd5JAAAAAKhNqhy0IiIitGDBAi1evFhr165VVlaWwsLCdNNNN2n48OEKCgryRj8BAAAAoNaoctCSJKvVquuvv17XX3+9p/sDAAAAALVelYPWrFmzzrjNbDYrODhYTZs2Va9evWS1Ws+pcwAAAABQG1U5aC1ZskTp6emy2Wzy8/NTZGSksrKyZLfbZTKZXOtqtWrVSm+//baioqI83mkAAAAAqMmqXHXwnnvukdVq1QsvvKCff/5Z3333nTZv3qxZs2apTp06evHFF/Xpp5/KZDLphRde8EafAQAAAKBGq3LQmjlzpu69915deeWVMpuLDzeZTBo0aJDGjx+vl156SZdcconuuOMOrVy58qznczqdmjFjhnr37q3OnTtr7NixSktLq9RxY8aM0cyZM8tsGzJkiFq3bu32Z+LEiVW9VAAAAAColirfOnjw4EE1bdq03G2NGzfW/v37JUkxMTHKzs4+6/lmz56t999/X1OmTFGDBg00bdo0jRkzRp9++ukZn/Gy2Wx67LHHtGrVKnXq1MltW15entLS0vTaa6+pXbt2rvbAwMDKXiIAAAAAnJMqz2i1atVKCxYsKHfbRx99pObNm0uS9u7dq/r161d4LpvNpvnz52v8+PHq16+fEhISNH36dKWnp2vp0qXlHrNx40YNHz5cqampCg8PL7N9586dcjqd6tKli+rVq+f6ExYWVsUrBQAAAIDqqfKM1t13360777xT1157rYYMGaLo6GgdOXJEy5Yt044dOzRjxgxt3bpV06ZN04gRIyo81/bt25Wbm6uePXu62sLDw9W2bVv98MMPGjp0aJljVq5cqd69e+vOO+/U1VdfXWb7jh07VLduXUVERFT10gAAAADAI6octPr166d58+Zp5syZmjVrlhwOh/z8/JSYmKi33npLSUlJSklJ0VVXXaV77723wnOlp6dLkho2bOjWXr9+fde20913330VnnPHjh0KDg7W+PHjtXHjRtWpU0cjRozQzTff7HqmDAAAAAC8qVoLFvfo0UM9evSQzWZTdna2oqOj3ULMgAEDNGDAgLOeJz8/X5LKPIsVEBBQqee7yvPbb78pJydHl19+ue68805t2LBB06ZNU3Z2tu65555qnVOSDMNQXl5etY/3lJIxK/kKz2J8vYvx9S7G17sYX+9ifL2L8fUuxte7atr4GoYhk8l01v2qFbQKCwu1Y8cO2Ww2GYahvXv3yul0Kj8/X6mpqXrwwQcrdZ6SAhU2m82tWEVhYaGCgoKq0zXNmTNHhYWFrmeyWrdurRMnTuiVV17R3XffXe1ZraKiIm3btq1ax3rD3r17fd2FCxrj612Mr3cxvt7F+HoX4+tdjK93Mb7eVZPG90xF+0qrctBat26d7rnnnjPOOIWEhFQ6aJXcMpiRkaEmTZq42jMyMtS6deuqdk1S8UWffuHx8fHKy8tTdna26tSpU63z+vv7q1WrVtU61pPy8/O1d+9eNWvWrNphFGfG+HoX4+tdjK93Mb7exfh6F+PrXYyvd9W08d25c2el9qty0Jo+fbrq1KmjJ598UkuWLJHZbNbw4cP17bff6v/9v/+nOXPmVPpcCQkJCg0N1bp161xBKycnR1u3btXIkSOr2jUZhqHBgwdr2LBhuuuuu1ztmzdvVr169aodsqTitcKCg4OrfbynBQUF1aj+XGgYX+9ifL2L8fUuxte7GF/vYny9i/H1rpoyvpW5bVCqRtDasWOHnnrqKQ0ePFjHjx/XBx98oL59+6pv374qKirSK6+8otdff71S57JarRo5cqSee+45RUVFqXHjxpo2bZoaNGigIUOGyOFw6OjRowoLC6vUOlgmk0mDBw/WvHnz1KJFC7Vv315r1qzR3Llz9cgjj1T1UgEAAACgWqoctJxOp2JiYiRJTZs21W+//ebadvnll+vhhx+u0vnGjx8vu92uRx99VAUFBUpOTta8efPk7++vffv2aeDAgZo8ebKGDx9eqfM98MADCg0N1QsvvKD09HTFxsbqkUce0fXXX1+lfgEAAABAdVU5aDVp0kQ7duxQUlKSmjdvrvz8fO3evVstWrSQ3W5Xbm5ulc5nsVg0YcIETZgwocy22NhY7dix44zHpqSklGnz8/PTnXfeqTvvvLNK/QAAAAAAT6lyCb4///nPeu655/Tuu+8qKipK7du315NPPqmUlBS9/PLLNaJgBAAAAAD4UpWD1pgxY3TDDTfop59+kiT9+9//1rZt2zRu3Djt3r1bDz30kMc7CQAAAAC1SZVvHdyzZ4/bc1gdOnTQsmXLXLcPhoaGerSDAAAAAFDbVHlG68Ybb9TixYvd2kJDQ9WxY0dCFgAAAACoGkHL39//nNajAgAAAIALXZVvHbznnns0depUHT9+XAkJCeUuGtaoUSOPdA4AAAAAaqMqB63HH39cDoej3HLsJbZt23ZOnQIAAACA2qzKQeupp57yRj8AAAAA4IJR5aB17bXXeqMfAAAAAHDBqHLQkiSbzaaPPvpIq1ev1uHDh/XMM89o/fr1ateunTp27OjpPgIAAABArVLlqoNHjx7ViBEj9PTTT+v333/Xzz//rIKCAq1YsUI33XSTNm3a5I1+AgAAAECtUeWgNXXqVOXm5uqLL77QokWLZBiGJGnGjBnq0KGDZsyY4fFOAgAAAEBtUuWgtXz5ct1zzz1q2rSpTCaTqz0gIECjR4/Wli1bPNpBAAAAAKhtqhy0CgsLFRkZWe42i8WioqKic+0TAAAAANRqVQ5aHTp00Pvvv1/utk8//VTt27c/504BAAAAQG1W5aqD99xzj2655RZdc8016tu3r0wmkz777DPNnDlT3333nebOneuNfgIAAABArVHlGa2kpCS98cYbCgoK0ty5c2UYht58800dPnxYr732mnr06OGNfgIAAABArVGtdbSSk5P1wQcfqKCgQNnZ2QoNDVVISIin+wYAAAAAtVKVZ7SGDRumN998U0eOHFFgYKBiYmIIWQAAAABQSpWDVqNGjfT888+rb9++uu222/Tpp5+qoKDAG30DAAAAgFqpykFr9uzZWr16tZ544gkZhqGJEyfq0ksv1cMPP6zVq1e7FjAGAAAAgItVtZ7RCgsL03XXXafrrrtOmZmZ+uqrr/TVV19p7Nixqlu3rlauXOnpfgIAAABArVHlGa3TZWZm6siRI8rJyZHD4VBERIQn+gUAAAAAtVa1ZrTS0tL02Wef6YsvvtDOnTtVt25dDR06VM8++6wSEhI83UcAAAAAqFWqHLRGjBihrVu3KjAwUIMHD9bEiRPVs2dPmc3Fk2OGYchkMnm8owAAAABQW1Q5aEVGRmrKlCkaMmSIgoKCXO0ZGRn68MMP9fHHH2v58uUe7SQAAAAA1CZVDlrz5s1ze71q1Sp98MEHWrlypex2u2JjYz3WOQAAAACojar1jNbRo0f10Ucf6cMPP9T+/fsVGhqqa6+9Vtdcc42SkpI83UcAAAAAqFWqFLTWrl2r//73v1q2bJkcDocSExO1f/9+vfzyy+rWrZu3+ggAAAAAtUqlgtabb76p//73v9qzZ4+aNm2qcePG6dprr1VwcLC6detG8QsAAAAAKKVSQWvKlClq3bq13n77bbeZq+PHj3utYwAAAABQW1VqweKrrrpKv//+u/7xj39o3Lhx+vrrr2W3273dNwAAAAColSo1o/X888/rxIkT+vTTT7Vw4ULdfffdqlOnjgYNGiSTycStgwAAAABQSqVmtCQpNDRUf/vb37RgwQJ9+umnuuaaa5SSkiLDMPR///d/eumll7Rz505v9hUAAAAAaoVKB63SLrnkEk2cOFErV67UzJkz1aJFC82ZM0d//vOfdfXVV3u6jwAAAABQq1RrHS3XwX5+Gjx4sAYPHqwjR45o0aJFWrRokaf6BgAAAAC1UrVmtMpTt25djR07Vl988YWnTgkAAAAAtZLHghYAAAAAoBhBCwAAAAA8jKAFAAAAAB5G0AIAAAAADyNoAQAAAICHEbQAAAAAwMMIWgAAAADgYQQtAAAAAPAwghYAAAAAeBhBCwAAAAA8jKAFAAAAAB5G0AIAAAAADyNoAQAAAICHEbQAAAAAwMMIWgAAAADgYQQtAAAAAPAwghYAAAAAeBhBCwAAAAA8jKAFAAAAAB5G0AIAAAAADyNoAQBwFg6noS17jmrz3jxt2XNUDqfh6y4BAGo4P193AACAmmz1zwf0+uLNyswukCR9vPqooiO26PZhHXRpx0Y+7h0AoKZiRgsAgDNY/fMBTX7rB1fIKpGZXaDJb/2g1T8f8FHPAAA1nc+DltPp1IwZM9S7d2917txZY8eOVVpaWqWOGzNmjGbOnFlm25dffqkrr7xSHTt21LBhw7RmzRpvdB0AcAFzOA29vnhzhfvM+eQXbiMEAJTL57cOzp49W++//76mTJmiBg0aaNq0aRozZow+/fRTWa3Wco+x2Wx67LHHtGrVKnXq1Mlt29q1azVhwgQ99NBD6tWrlz766CPdfvvtWrx4sVq2bHk+LgkAcAHYujuzzEzW6Y5k5Wvcs9+oTnigAqwWBVotCvC3KNDqpwCrpfhP6df+J/exnnkfP4vPfwcKAPAAnwYtm82m+fPn68EHH1S/fv0kSdOnT1fv3r21dOlSDR06tMwxGzdu1GOPPaaCggKFh4eX2T5nzhwNGjRIN998syTp4Ycf1qZNm/TWW2/pP//5j1evBwBwYTh2vEBfr/+9UvseOJKrA0dyPfbefhaTAvwtCjgZvErCmyucnfx76bB2ap+zHxPgb5HJZPJYfwEA5fNp0Nq+fbtyc3PVs2dPV1t4eLjatm2rH374odygtXLlSvXu3Vt33nmnrr76ardtTqdTGzdu1MSJE93au3fvrqVLl3rnIgAAFwRbkUPrtqQrJTVNG3dkyFnJWwJvvrKNGtYNUaHNoQKbQ4U2hwptdhUWnXpdcPJ14WmvS+9f8nZ2hyG7w67cArvXrrWq4azkdeBprwMCyp+xszArBwC+DVrp6emSpIYNG7q1169f37XtdPfdd98Zz5eTk6O8vDw1aNCg0uerLMMwlJeXd07n8IT8/Hy3r/Asxte7GF/vYnyrzjAM7fgjS9/+eFBrfjmkvFLhpmXjcB3MzHNrO110RID+1L2xzOZzmyEyDEN2h3EqjLm+OlVY5JDN5lBBkUO2k+HMdrK93H1d+7i3F9mdrvcrCXzeYrGYFOhvkfVk8LL6m11BzPXHalGAv1nWk383y6kTOSe0//jvCgsJdN//5L4lbf5+ZmblqoifD97F+HpXTRtfwzAq9TPIp0GrZLBOfxYrICBA2dnZVT5fQUHBGc9XWFhYzV4WKyoq0rZt287pHJ60d+9eX3fhgsb4ehfj612M79llHrfr5z25+mlPnrJyTwWOiGCLOjYPVqfmwaob7q+taf76cFXmGc8zsGOoduzY7tW+WiVZTVKo9eSLkNP3MKky/5w7nYaKHIaK7MVfbfaSvztVZD/5umS73ZDN7nTb332fssfY7KdmAB0OQ7nVnpXLqtRe/n4m+VtMsvqZXH/39zPJ6md2/b34dck2c6l9TKft436Mv8UkyzmG55qKnw/exfh6V00a3zPVkijNp0ErMDBQUvGzWiV/l6TCwkIFBQVV+XwBAQGu85VW3fOV5u/vr1atWp3TOTwhPz9fe/fuVbNmzc75mlAW4+tdjK93Mb4VO5FfpDW/HNK3Px7Qr3+c+mVeoNWiHu1j1KdzQ7VpWsdtdqpNGym28SG9+cUOHc059Qu76IgAjfpTa3VvF3Ner6EmM4ziAGYrchbPvpWahSsscp42+1b81bVvkUO5+TZlZR+XxT9QdodK7VNyHqfbrFxJIMw7t9+jnpGfxVRmFs5qNbtm6gKsp822lW7zP20Wr5x9z/esHD8fvIvx9a6aNr47d+6s1H4+DVoltwxmZGSoSZMmrvaMjAy1bt26yueLjIxUcHCwMjIy3NozMjIUE3Nu/xiaTCYFBwef0zk8KSgoqEb150LD+HoX4+tdjO8pdodTG7dnKCU1Teu2pMvuKP6gbjZJnePrq39SnHq0b6BA65n/Oeyf3Fx9Eptp47b92rJ9j9olNFfXNo0v2BkPX8nLy9O2bdvUpk2bM37/Ohzut0wWnHy+raAkvBU6VFhkP/W8XHn7lPOcnM1WfFyBzSGj9LNy+Xbl5nvnWTmzSSeDl1+pZ+HcX596Ls6vVEXLkmfnyhZCKf2cXYDVr9zvUX4+eBfj6101ZXwr+0sSnwathIQEhYaGat26da6glZOTo61bt2rkyJFVPp/JZFLXrl21fv16/eUvf3G1r1u3TklJSR7rNwCg5jIMQzv3ZWn5hn1auXGfcnJP3eXQrGG4BiTFqW/XWEWFB1ZwFncWs0ntmkfJXHBIbZpHEbJ8xGIxK9hiVnCgv1fOXzIrV5UiJiXbK3tMSdh3GlJ+oUP5hd57Vs7fz+wKZ/5+ZhnOIkV8d0LBgf6ukBcYUDqclS18ElBeIRSelQMqxadBy2q1auTIkXruuecUFRWlxo0ba9q0aWrQoIGGDBkih8Oho0ePKiwszO3Wworceuutuv3229W2bVv16dNHH3/8sbZt26ann37ay1cDAPClw8fytWJjmpZvSFPaoROu9siwAPXrGqsBSXFq3ijChz1ETWcymWQ9eWtg2WfhPKP0rNypWTe7K5iVF85OD2+ljzk1U2d3bSuZlSt+ls6pE/lFrvdPP5blsWtxzcqVE8asp4czf0uZGTjX6zNUurT6W/ilBmo1ny9YPH78eNntdj366KMqKChQcnKy5s2bJ39/f+3bt08DBw7U5MmTNXz48Eqd77LLLtMzzzyj2bNna/r06WrVqpVeffVVFisGgAtQfqFdazYfUEpqmn7eecT1AdPqZ1aP9g3VPylOXeLrUW4cNcb5mJWz2Z0qKHQPZ9nHc/Xbrr2KadBIhsnPLZy5Al9h5QKd3VH8P9r5mJWz+pV+1s39dsnAgIqXIajomJJ9/CzMysF7fB60LBaLJkyYoAkTJpTZFhsbqx07dpzx2JSUlHLbhw0bpmHDhnmqiwCAGsThNLR552GlpKZp9eaDbmXK27eMVv/EOPXq2EghQd75IAvUZCaTyVWQo7S8PKuUn642bWLO+RkXu8NZJoidPht3xhm7s8zGlczilbDZnbLZnTquogp6VH1ms6lMOHPdHnna6zPNxgX4WyTDrgNHbAo9dEIR4YbbLZbnuvzDxc7hNLRlz1Ft2ZsnZ+BRdW0TVGtmOn0etAAAqIzf03O0PDVNKzbuU2Z2gau9Ud0QDUiKU7/EOMVE+f4haeBC52cxyy/I7LVfZhiGUelbJUsXOalsoCuwOeQ4uUK402kov9Cu/EIPFT1ZmlGmqXhWruJbJc8a6E4LgKX38bOYLthZudU/H9Drize7fuZ/vPqooiO26PZhHXRpx0Y+7t3ZEbQAADVW1vFCfbtpn5ZvSNPOfadKsocG+at3l8YakBSn1k3qXLAfMoCLkclkUqDVr8JqoOeqZFau3OIlFc7GnSqCUrooSn6hXSdyC+SUWYVFTtmKTp+Vs+l4nneuxWw2lRvG3F6XV+Ak4EzHuFextPpoVm71zwc0+a0fyrRnZhdo8ls/aNKo5BoftghaAIAaxVbk0Pqt6UpJTdOG7RlynvzNs8VsUlKbGA1IilNy2xj5+1nOciYAKJ+nZ+VOX57A6TROriF3pnB2akmBU1Ury95CWXqf0q8LbA7Xz0an01BegV15BXZJ3llYzupvOS2cnZpxKy+cnQpufqVm8cqrdFm83e+052gdTkOvL95cYZ/mfPKLurdvWKNvIyRoAQB8zjAMbdt7VCmpafrux/3KLTh1G88lcZEakBSn3p0bKyI0wIe9BIDKMZtNCgzwU2CAn7xV67TI7ix7G2W5z8nZS83YVfzcXHFRlOKvbrNyJ197a1bOYja5hTGnYbjdIl6eI1n52ro7Ux1a1fVOpzyAoAUA8JmDR3K1YkOaUjakKT3z1L/gdSOD1D8xVv0T4xQXE+bDHgJAzeTvZ5a/n1mhXnpWrmRWrlJFTc7w7FzFx9h1clJOjmrOyh3NqTiM+RpBCwBwXp3IL9J3P+5XSmqatu096moPCrDo0o6NNCApTu1b1KVSFwD4UOlZOW8wDEN2h1HmtsoCm13b9x7VG59tPes5qrLwvC8QtAAAXmd3OLVxR4ZSUtO0fku6iuxOScULnna6pJ4GJMWpR/uGXvsHHQBQs5hMJvn7meTvZ1XoadtaN43SklW7K7x9sG5kkNq2iPZuJ88R/6IBALzCMAzt2p+t5alpWrlpn7JP2FzbmjYI04CkOPXtGqvoiCAf9hIAUNNYzCbdPqxDuVUHS4y9pn2NLoQhEbQAAB6WmZ2vFRv2KWVDmv5IP+5qjwwNUN+usRqQFKfmjcIpyQ4AOKNLOzbSpFHJbutoScUzWWOvaV/jS7tLBC0AgAfkF9q1ZvNBLU9N0087D8s4+YCzv59ZPdo31ICkOHWOr1emhC8AAGdyacdG6t6+oTZu268t2/eoXUJzdW3TuMbPZJUgaAEAqsXhNPTLziNK2ZCm1T8fUIHtVCngdi2i1T8xTr06NfJaRSwAwIXPYjapXfMomQsOqU3zqFoTsiSCFgCgiv5Iz9HyDfu0YkOajpS6naNhdIj6J8Wpf2KsGkSH+LCHAAD4HkELAHBW2ScK9e2m/UrZkKadaVmu9pAgf/Xp3Fj9E+OU0KwOz10BAHASQQsAUK4iu0Prtx7S8tQ0pW47JMfJlSUtZpOS2sSof1KcktvEyOpv8XFPAQCoeQhaAAAXwzC0fe8xpWxI06of9ys3v8i1rVVcpAYkxqlPl8aKCA3wYS8BAKj5CFoAAKVn5mr5hn1anpqmg5m5rva6EYHql1j83FWTBuE+7CEAALULQQsALlK5+UX67qcDWr4hTVt2Z7raA60WXdqxkQYkxal9y7q1qsITAAA1BUELAC4idodTm3ZkKCU1Teu2pKvI7pQkmUxSp0vqaUBSnHq2b6jAAP55AADgXPAvKQBc4AzD0O792UrZkKZvN+5X1olC17a4mDANTIpT366xqhsZ5MNeAgBwYSFoAcAFKjM7Xys37lNKapp+Tz/uao8Itapvl1j1T4pTy8YRlGQHAMALCFoAcAGx2Z1a9dNBff/zIf3022GdrMgufz+zurdroAFJcerSur78LGbfdhQAgAscQQsAajmn09Avu49o6dq9WrP5oGz2A65tbZtHaUBSnHp1aqzQIH8f9hIAgIsLQQsAaqm0Q8e1fEOalm/YpyNZ+a72mDpBGpjcRP0S49SwbogPewgAwMWLoAUAtUj2iUKt+nG/UlLT9Ftalqs9JMhfPdvXV5NIm4b07qSQEAIWAAC+RNACgBquyO7QD1sPKSU1TanbDslx8sErs9mkpIQYDUiKU3LbGNmLCrVt2zaKWwAAUAMQtACgBjIMQzt+P6aU1DSt+nG/TuQXuba1io1Q/6Q49ekcq8iwAFe7vai8MwEAAF8gaAFADXLoaJ6Wb0hTSmqaDh7JdbVHRwSqX9fikuxNG4T7sIcAAKAyCFoA4GO5+UX6/ucDSklN05bdma72AKtFl3ZoqAFJcerQqp4sZm4JBACgtiBoAYAPOBxObfr1sJanpmntLwdlszslSSaT1KlVPfVPilPPDg0VFMCPaQAAaiP+BQeA82jPgWylpKZpxcZ9yjpe6GqPiwnVgKQm6tc1VnUjg3zYQwAA4AkELQDwsszsfK3cuF/LN6Rp78EcV3t4iFV9u8ZqQGKcWsZGUC0QAIALCEELALygwGbX2l/StTw1TT/+mqGTFdnlZzGre/sGGpAYp64J9eVnMfu2owAAwCsIWgDgIU6noS27M5WSmqbvf96v/EKHa1ubZlEakBSnyzo1Umiw1Ye9BAAA5wNBCwDO0b6M41q+YZ+Wb0jT4WP5rvaYqGANSIpTv8RYNaob6sMeAgCA842gBQDVkJNr06pN+7R8wz7t+OOYqz0k0E+XdW6s/olxats8iueuAAC4SBG0AKCSiuwOpW47pJTUNKVuOyS7o/jBK7PZpK6t62tAUpy6tWugAH+Lj3sKAAB8jaAFABUwDEO//nFMKalpWvXjfh3PK3JtaxkboQGJcerdpbHqhAX6sJcAAKCmIWgBQDkyjuZp+cY0LU9N0/7Dua72qPBA9U+MVf/EODVtGO7DHgIAgJqMoAUAJ+UVFOn7nw4oZUOaftmV6WoPsFrUs0NDDUiMU8dL6sli5rkrAABQMYIWgIuaw+HUj78dVkpqmtZuPiib3SlJMpmkjq3qqn9inHp2aKjgQH8f9xQAANQmBC0AF6U9B7KVkpqmlRv36djxQld7bP3Q4pLsXeNUr06QD3sIAABqM4IWgIvGsZwCrdy0TympadpzIMfVHhZsVd+ujTUgKU6tYiMpyQ4AAM4ZQQvABa3AZte6X9K1fEOaNu3IkLO4Irv8LGZ1axejAYlx6poQI38/s287CgAALigELQAXHKfT0JY9mVqemqbvfjqg/EK7a1tC0zoakBSnyzo3Vliw1Ye9BAAAFzKCFoALxv7DJ7Q8NU3LN6Qp41i+q71+VLAGJMapf2KsGtUL9WEPAQDAxYKgBaBWO55n06of9yslNU07fj/mag8O9NNlnYqfu2rTLEpmSrIDAIDziKAFoNYpsjuVuu2Qlm9I0w9b02V3FD94ZTab1LV1fQ1IjFO39g0U4G/xcU8BAMDFiqAFoFYwDEO/pWUpJTVN327ar+N5Nte2Fo0i1D8pTn27NFad8EAf9hIAAKAYQQtAjZZxLE8rNhSXZN9/+ISrPSo8QH27Fj931bxRhA97CAAAUBZBC0CNk1dQpNU/H9TyDWn6eecRV7vV36JLOzRU/6Q4dbqkniw8dwUAAGooghaAGsHhNPTTr4e1fEOaVm8+KFuRw7WtY6u66p8Yp0s7NlRwoL8PewkAAFA5BC0APrX3YI5SUtO0cmOajuYUutob1wvVgKQ49esaq/pRwT7sIQAAQNURtACcd1nHC7X0h4Nanpqm3QeyXe1hwVb17dJY/ZPidElcpEwmbg0EAAC1E0ELwHlRWOTQ6s3p+uK7I9qVvl9OZ3FJdj+LScltG2hAUpwSE2Lk72f2cU8BAADOHUELgNc4nYa27slUSmqavv/5gPIK7K5trZvW0YCkOF3WqbHCQ6w+7CUAAIDnEbQAeNyBwyeUsiFNyzfsU8bRPFd7vchAtWnsr2sHdVCrJvV82EMAAADvImgB8IjjeTZ99+N+paSmafvvx1ztQQF+uqxTI/VPilPzmCDt2LFdjeqG+LCnAAAA3kfQAlBtRXanNm4/pJQNaVq/5ZDsDqckyWySurSurwFJcerWroECrcU/avLy8io6HQAAwAWDoAWgSgzD0G9pWVqemqZvf9yvnFyba1vzRuEakBSnPl1iFRUe6MNeAgAA+JbPg5bT6dSsWbO0YMECHT9+XMnJyXrssccUFxdX7v7Hjh3TU089pW+//VYmk0lXXXWVHnroIQUFBbn2GTJkiH7//Xe346699lpNmTLFq9cCXMgOH8vXio1pSklN076ME672OmEB6ts1VgOS4tS8UYQPewgAAFBz+DxozZ49W++//76mTJmiBg0aaNq0aRozZow+/fRTWa1lK5GNHz9e+fn5evPNN5WTk6NHHnlEeXl5evbZZyUV35qUlpam1157Te3atXMdFxjIb9eBqsorKNKazQeVkpqmzbuOyCiuyC6rv0U92zfUgKQ4dbqkriwWSrIDAACU5tOgZbPZNH/+fD344IPq16+fJGn69Onq3bu3li5dqqFDh7rtv2nTJq1fv15ffPGFWrZsKUn6z3/+ozFjxuj+++9XTEyMdu7cKafTqS5duigigt+uA1XlcBr66bfDWr4hTWs2H1ShzeHa1qFlXQ1IitWlHRspONDfh70EAACo2XwatLZv367c3Fz17NnT1RYeHq62bdvqhx9+KBO0UlNTVa9ePVfIkqRu3brJZDJpw4YNuvLKK7Vjxw7VrVuXkAVU0e8Hc5SSmqYVG/fpaE6Bq71xvRD1T4pT/65xqh8V7MMeAgAA1B4+DVrp6emSpIYNG7q1169f37WttEOHDpXZ12q1KjIyUgcPHpQk7dixQ8HBwRo/frw2btyoOnXqaMSIEbr55ptlNlf/9ibDMGpExbT8/Hy3r/Csi218s04U6vuf0/Xtjwe19+BxV3tokL8u7RCjPp0bqVVsuEwmk6Rzrxp4sY3v+cb4ehfj612Mr3cxvt7F+HpXTRtfwzBcn40q4tOgVTJYpz+LFRAQoOzs7HL3L++5rYCAABUWFkqSfvvtN+Xk5Ojyyy/XnXfeqQ0bNmjatGnKzs7WPffcU+2+FhUVadu2bdU+3tP27t3r6y5c0C7k8S1yGNqxL18/7cnTzoMFrueuzGYpvlGgOjUP0SWNAuVnkewnDmj79gMe78OFPL41AePrXYyvdzG+3sX4ehfj6101aXzLyySn82nQKilQYbPZ3IpVFBYWulURLL2/zWYr015YWKjg4OJbmubMmaPCwkKFhYVJklq3bq0TJ07olVde0d13313tWS1/f3+1atWqWsd6Un5+vvbu3atmzZqVO0Y4Nxfq+BqGoR1/ZOnbHw9qzS+HlFdgd21rFRuhPp0b6tIOMQoLPvsPjXNxoY5vTcH4ehfj612Mr3cxvt7F+HpXTRvfnTt3Vmo/nwatktsAMzIy1KRJE1d7RkaGWrduXWb/Bg0aaNmyZW5tNptNWVlZql+/vqTidHl6woyPj1deXp6ys7NVp06davXVZDK5wlxNEBQUVKP6c6G5UMb3wJETWp66T8s3pOnQ0VO3/dWrE6T+iXHqnxir2Pph571fF8r41lSMr3cxvt7F+HoX4+tdjK931ZTxrcxtg5KPg1ZCQoJCQ0O1bt06V9DKycnR1q1bNXLkyDL7Jycn67nnntPvv/+upk2bSpLWr18vSUpMTJRhGBo8eLCGDRumu+66y3Xc5s2bVa9evWqHLKA2OZFn06qfDmh5apq27T3qag8KsKhXx8YakBSndi2iZTZX7ocEAAAAqs6nQctqtWrkyJF67rnnFBUVpcaNG2vatGlq0KCBhgwZIofDoaNHjyosLEyBgYHq1KmTunbtqvvuu0+PP/648vLy9Nhjj2nYsGGKiYmRJA0ePFjz5s1TixYt1L59e61Zs0Zz587VI4884stLBbzK7nBq4/YMpaSmad2WdNkdTkmS2SR1bl1fAxLj1L19AwVafb50HgAAwEXB55+6xo8fL7vdrkcffVQFBQVKTk7WvHnz5O/vr3379mngwIGaPHmyhg8fLpPJpFmzZumJJ57QqFGjFBAQoCuuuEKTJk1yne+BBx5QaGioXnjhBaWnpys2NlaPPPKIrr/+eh9eJeB5hmFo175spWxI08qN+5STe+r5xWYNwzUgKU59u8YqKpzFugEAAM43nwcti8WiCRMmaMKECWW2xcbGaseOHW5t0dHRmjFjxhnP5+fnpzvvvFN33nmnx/sK1ARHsvK1YuM+paSmKe3QqZLskWEB6tc1VgOS4tS8EevIAQAA+JLPgxaAs8svtGvN5gNKSU3TzzuPuEqyW/3M6tG+ofonxalLfD1ZLNVfKw4AAACeQ9ACaiiH09DmnYeVkpqm1ZsPqtDmcG1r3zJa/RPj1KtjI4UE+fuwlwAAACgPQQuoYX5Pz9Hy1DSt2LhPmdkFrvZGdUM0IClO/RLjFBPl+9KmAAAAODOCFlADZB0v1Lebite72rkv29UeGuSv3l2KS7K3blKn0us2AAAAwLcIWoCP2IocWr81XSmpadqwPUNOZ/GDVxazSUltYjQgKU7JbWPk72fxcU8BAABQVQQt4DwyDEPb9h5VSmqavvtxv3IL7K5t8U0iNSAxTpd1bqyI0AAf9hIAAADniqAFnAfpmblanpqm5Rv26WBmrqu9bmSQ+ifGqn9inOJiwnzYQwAAAHgSQQvwkhP5Rfr+p/1KSU3T1j1HXe1BARZd2rGRBiTFqX2LujKbee4KAADgQkPQAjzI7nBq444MpaSmaf2WdBXZnZIks0nqdEk9DUiKU4/2DRUYwP96AAAAFzI+7QHnyDAM7dqfreWpaVq5aZ+yT9hc25o2CNOApDj17Rqr6IggH/YSAAAA5xNBC6imzOx8rdiwTykb0vRH+nFXe2RogPp2jdWApDg1bxROSXYAAICLEEELqIL8QrvWbD6o5alp+mnnYRnFFdnl72dWj/YNNSApTl3i68liMfu2owAAAPApghZwFg6noV92HlHKhjSt/vmACmwO17Z2LaLVPzFOvTo1UmiQvw97CQAAgJqEoAWcQdqh40pJTdOKDWk6kl3gam9YN0QDkuLUr2usGkSH+LCHAAAAqKkIWkApObk2rdtxQm+vXKfd+3Nc7SFB/urTubEGJMWpddM6PHcFAACAChG0cNErsju0fushLU9NU+q2Q3I4ix+8sphNSmoTo/5JcerWNkb+fhYf9xQAAAC1BUELFyXDMLR97zGlbEjTqh/3Kze/yLWtUZS/hvRsoUHdmisiNMCHvQQAAEBtRdDCRSU9M1fLN+zT8tQ0HczMdbXXjQhUv8Q49WxXV8cz09SmTRMFBxOyAAAAUD0ELVzwcvOL9N1PB7R8Q5q27M50tQdaLbq0YyMNSIpT+5Z1ZTGblJeXp22ZFZwMAAAAqASCFi5IDodTm349rJTUNK395aCK7E5JkskkdbqkngYkxaln+4YKDOB/AQAAAHgenzJxwTAMQ7v3Z2v5hn1auXGfsk4UurY1aRCmAYlx6pcYq+iIIB/2EgAAABcDghZqvczsfK3cuE8pqWn6Pf24qz0i1Kq+XWM1IDFOLRpHUJIdAAAA5w1BC7VSQaFda385qJTUNP3022GdrMgufz+zurdroAFJcerSur78LGbfdhQAAAAXJYIWag2n09Avu48oJTVNq38+oPxCh2tb2+ZRGpAUp16dGis0yN+HvQQAAAAIWqgF0g4d1/INaVq+YZ+OZOW72htEB5987ipODeuG+LCHAAAAgDuCFmqk7BOFWvXjfqWkpum3tCxXe0iQv3p3bqz+ibFq0yyK564AAABQIxG0UGMU2R36YeshpaSmKXXbITlOPnhlMZuUmBCjAUlxSm4bI6u/xcc9BQAAACpG0IJPGYahHX8cU0pqmlZt2q8T+UWuba1iI9Q/KU59OscqMizAh70EAAAAqoagBZ84dDSv+Lmr1DQdOJLrao+OCFS/rrHqnxSnpg3CfdhDAAAAoPoIWjhvcvOL9P3PB5SSmqYtuzNd7YFWiy7t2EgDEuPUvlVdWcw8dwUAAIDajaAFr3I4nNr062EtT03T2l8OymZ3SpJMJqlTq3rqnxSnnh0aKiiAb0UAAABcOPh0C6/YcyBbKalpWrFxn7KOF7ra42LCNCApTv26xqpuZJAPewgAAAB4D0ELHpOZna+VG/dr+YY07T2Y42oPD7Gqb9dYDUiMU8vYCEqyAwAA4IJH0MI5KbDZtfaXdC1PTdOPv2boZEV2+VnM6t6+gQYkxqlrQn35Wcy+7SgAAABwHhG0UGVOp6EtuzOVkpqm73/er/xCh2tbm2ZRGpAUp8s6NVJosNWHvQQAAAB8h6CFStuXcVzLN+zT8g1pOnws39UeExVc/NxVYqwa1Q31YQ8BAACAmoGghQrl5Nq0atM+Ld+wTzv+OOZqDwn002WdG6t/YpzaNo/iuSsAAACgFIIWyiiyO5S67ZBSUtOUuu2Q7I7iB6/MZpMSE+prQFKcurVtIKu/xcc9BQAAAGomghYkSYZh6Nc/jiklNU2rftyv43lFrm0tYyM0IDFOfbrEKjIswIe9BAAAAGoHgtZFLuNonpZvTNPy1DTtP5zrao8KD1T/xFj1T4xT04bhPuwhAAAAUPsQtC5CeQVF+v6nA0rZkKZfdmW62gOsFvXs0FADEuPU8ZJ6sph57goAAACoDoLWRcLhcOrH3w4rJTVNazcflM3ulCSZTFLHVnXVPzFOPTs0VHCgv497CgAAANR+BK0L3J4D2UpJTdPKjft07Hihqz22fmhxSfaucapXJ8iHPQQAAAAuPAStWsThNLRlz1Ft2ZsnZ+BRdW0TVO7tfcdyCrRy0z6lpKZpz4EcV3t4iFV9ujTWgKQ4tYqNpCQ7AAAA4CUErVpi9c8H9PrizcrMLpAkfbz6qKIjtuj2YR10acdGKrDZte6XdC3fkKZNOzLkLK7ILj+LWd3axWhAYpy6JsTI38/sw6sAAAAALg4ErVpg9c8HNPmtH8q0Z2YXaPJbP6hjq7r6LS1L+YV217Y2zaLUPylOvTs1Umiw9Xx2FwAAALjoEbRqOIfT0OuLN1e4z887j0iS6kcFa0BinPonxqpRvdDz0T0AAAAA5SBo1XBbd2e6bhesyNhh7TW0VwuZKckOAAAA+BwP7NRwR3POHrIkKSIkgJAFAAAA1BAErRouKjzQo/sBAAAA8D6CVg3XtkW0oiMqDlF1I4PUtkX0eeoRAAAAgLMhaNVwFrNJtw/rUOE+Y69pX+56WgAAAAB8g6BVC1zasZEmjUouM7NVNzJIk0Yl69KOjXzUMwAAAADloepgLXFpx0bq3r6hNm7bry3b96hdQnN1bdOYmSwAAACgBiJo1SIWs0ntmkfJXHBIbZpHEbIAAACAGopbBwEAAADAwwhaAAAAAOBhBC0AAAAA8DCCFgAAAAB4mM+DltPp1IwZM9S7d2917txZY8eOVVpa2hn3P3bsmB544AElJyerW7dueuKJJ5Sfn++2z5dffqkrr7xSHTt21LBhw7RmzRpvXwYAAAAAuPg8aM2ePVvvv/++nnzySX3wwQdyOp0aM2aMbDZbufuPHz9ev//+u95880299NJLWrlypR5//HHX9rVr12rChAm64YYbtGjRIvXs2VO33367du3adZ6uCAAAAMDFzqdBy2azaf78+Ro/frz69eunhIQETZ8+Xenp6Vq6dGmZ/Tdt2qT169fr2WefVbt27dSzZ0/95z//0SeffKJDhw5JkubMmaNBgwbp5ptvVsuWLfXwww+rXbt2euutt8735QEAAAC4SPk0aG3fvl25ubnq2bOnqy08PFxt27bVDz/8UGb/1NRU1atXTy1btnS1devWTSaTSRs2bJDT6dTGjRvdzidJ3bt3L/d8AAAAAOANPl2wOD09XZLUsGFDt/b69eu7tpV26NChMvtarVZFRkbq4MGDysnJUV5enho0aFCp81WFYRjKy8s7p3N4QsnzaKc/lwbPYHy9i/H1LsbXuxhf72J8vYvx9S7G17tq2vgahiGTyXTW/XwatEoGy2q1urUHBAQoOzu73P1P37dk/8LCQhUUFJzxfIWFhefU16KiIm3btu2czuFJe/fu9XUXLmiMr3cxvt7F+HoX4+tdjK93Mb7exfh6V00a3/Iyyel8GrQCAwMlFT+rVfJ3SSosLFRQUFC5+5dXJKOwsFDBwcEKCAhwne/07eWdryr8/f3VqlWrczqHJ+Tn52vv3r1q1qzZOV8TymJ8vYvx9S7G17sYX+9ifL2L8fUuxte7atr47ty5s1L7+TRoldwGmJGRoSZNmrjaMzIy1Lp16zL7N2jQQMuWLXNrs9lsysrKUv369RUZGang4GBlZGS47ZORkaGYmJhz6qvJZFJwcPA5ncOTgoKCalR/LjSMr3cxvt7F+HoX4+tdjK93Mb7exfh6V00Z38rcNij5uBhGQkKCQkNDtW7dOldbTk6Otm7dquTk5DL7JycnKz09Xb///rurbf369ZKkxMREmUwmde3a1dVWYt26dUpKSvLSVQAAAACAO5NhGIYvOzB9+nR98MEHeuaZZ9S4cWNNmzZN+/bt02effSaz2ayjR48qLCxMgYGBMgxDN954owoLC/X4448rLy9P//d//6fu3btr8uTJkqTvvvtOt99+uyZMmKA+ffro448/1nvvvaeFCxe6VSusio0bN8owjErdi+lthmGoqKhI/v7+lU7TqDzG17sYX+9ifL2L8fUuxte7GF/vYny9q6aNr81mc03wVMTnQcvhcOiFF17QwoULVVBQoOTkZD322GOKjY3Vvn37NHDgQE2ePFnDhw+XJGVmZuqJJ57QqlWrFBAQoCuuuEKTJk1yPZ8lSYsXL9bs2bOVnp6uVq1aacKECWVKvlfFpk2bZBiG/P39z/l6AQAAANReRUVFMplM6tKlS4X7+TxoAQAAAMCFxqfPaAEAAADAhYigBQAAAAAeRtACAAAAAA8jaAEAAACAhxG0AAAAAMDDCFoAAAAA4GEELQAAAADwMIIWAAAAAHgYQQsAAAAAPIygBQAAAAAeRtACAAAAAA8jaAEAAACAhxG0vCgrK0uPPfaY+vTpo65du+pvf/ubUlNTXdvXrFmj4cOHq1OnTrriiiv0+eefux1/8OBB3X///erVq5eSk5N122236bfffnPb58svv9SVV16pjh07atiwYVqzZk2FfXI6nZoxY4Z69+6tzv+/vfuPibr+4wD+BH+CwqQspObKkfyQH3KECP4iSKwJOFE3U1gKU2dLciNDmFISZihiZQ2NIGfIj81fTJLNyaZppXicDXXmj/MUNQNUxFM8UOD1/cO4PDl/IPerr8/Hxpafu/fn3u8nL993r+68T0AA5s+fj0uXLplu0RZki/nW19fD09Ozy8+OHTtMt3ALsUS+nVQqFby9vZ84J9bvv8yRL+v3X0/Kt6OjA/n5+XjnnXcQEBCAqKgobN269bFzam1tRUZGBkJDQ6FQKPDxxx+jsbHRtAu3EFvMV6VSGa3fqqoq0y7eAsydb3t7O9avX4/w8HD4+/tj2rRp2L9//2PnxP33X+bIl/vvv7rz/Hb37l3ExMQgNTX1sXOyWv0KmU1CQoJER0eLUqkUjUYjGRkZ4u/vL+fOnRO1Wi1+fn6ybt06UavVkp+fLyNGjJDff/9dRERaW1slOjpa4uPj5dixY3LmzBlJSkqS0NBQuX79uoiIHDp0SHx8fGTz5s2iVqslKytLfH19Ra1WP3JO3377rYwePVr27dsnf/75pyQmJsqkSZOktbXVIpmYki3mu3//fvHz85P6+nppaGjQ/+h0OotkYkrmzrdTdXW1BAcHi4eHxxPnxPo1b76s36fPNzc3V4KCgmT37t1SW1srpaWlMmLECNm5c+cj55SamioTJ04UpVIpNTU1MnXqVImLi7NEHCZni/kWFRXJxIkTDWq3oaGB+4ORfHNyciQkJET27dsnFy9elNzcXPH29pbjx48/ck7cf82bL/ff7j+/iYhkZmaKh4eHLF269LFzslb9stEykwsXLoiHh4dUV1frj3V0dMjEiRPl66+/lvT0dJkxY4bBmOTkZElMTBQRkd9++008PDykrq5Of3tLS4uMHDlStm7dKiIiiYmJsnjxYoNzzJw5U9LT043OqbW1VRQKhRQVFemP3bx5U/z9/aW8vLxH67U0W8xXRCQvL09iYmJ6ujyrs0S+9+7dk1WrVomPj4/ExsY+sRFg/Zo3XxHWb3fyHT9+vOTm5hqcIy0tTWbPnm10TnV1deLl5SX79+/XH9NoNOLh4SFHjx7t2YItzBbzFRH57LPPZOHChT1en7VZIt+srKwu+2ZQUJD88MMPRufE/de8+Ypw/+1Ovp0OHDggY8aMkaioqMc2WtasX3500ExcXFyQl5cHPz8//TE7OzvY2dlBq9WiuroaoaGhBmNCQkKgUqkgIhg+fDjy8vLg6uqqv93e/v6vS6vVoqOjA0ePHu1yjtGjR0OpVBqd06lTp9Dc3GwwxtnZGSNGjHjkGFtli/kCwOnTp+Hu7m6KJVqVufMFgDt37kCpVCI/Px/x8fFPnBPr17z5Aqzf7uwPq1evRmxsrME57O3t9fk/TKVS6R+n07Bhw+Dq6sr6Rc/zBVi/3dkfli5diujoaABAS0sLCgsLodPpMHr0aKNz4v5r3nwB1m938gWAxsZGpKWlITMzEy4uLo+dkzXrl42WmTg7OyMsLAx9+/bVH9uzZw9qa2sxfvx41NXVYciQIQZjXn75Zeh0Oty4cQMvvfQSwsLCDG4vLCxES0sLxo4dC61Wizt37hg9R11dndE5dR53c3N76jG2yhbzBYAzZ86gsbERcXFxGDNmDGbNmoUDBw6YYMWWZe58Ox9jx44dBi88H4f1a958Adbv0+Zrb2+P0NBQg3NcuXIFu3fvxrhx44zOqb6+Hi4uLujXr1+Xx2X99jxfADh79iw0Gg2mTZuGsWPHIiEhAceOHTPRqi3HEvtDp127diEgIAArV67EwoULDV4cP4j7r3nzBbj/djffZcuWITw8HBEREU+ckzXrl42WhRw9ehRpaWmYNGkS3nrrLbS0tBgUIQD9n+/evdtl/N69e5GTk4O5c+fC09MTLS0tBmM69evXD62trUbnoNPpuj3mv8IW8m1ra4NGo8HNmzeRlJSEvLw8BAQEYMGCBU/8Eg1bZ+p8nwXr17z5sn6fPd9r165h/vz5ePHFF/HBBx8YnYNOp+vymADrFzBNvn///Tdu3bqFO3fuYPny5cjNzcXgwYMRHx8PtVptglVajznzHTVqFMrKypCSkoINGzaguLjY6By4/5o3X+6/3cu3tLQU586dQ1pa2lPNwZr129usZycAQGVlJZYsWYLAwECsXbsWwP1f7sMF1flnBwcHg+MlJSXIzMzElClTkJKSoh//4JhOra2tXcZ36t+/v35M538/acx/ga3k27t3b1RVVaFXr176fH19fXH27FkUFBR0eav8v8Ic+T4L1q9582X9Plu+Go0GCxYsQHt7O3766Sc4OzsbnUf//v2Nvohg/ZomXzc3NyiVSjg4OKBPnz4AAD8/P5w8eRKFhYXIyMjo8Vqtwdz5urm5wc3NDV5eXqitrUVBQQFmz57d5X7cf82bL/ffp89Xo9EgOzsbBQUFcHR0fKp5WLN++Y6WmW3ZsgVJSUkIDw/Hxo0b9S/g3dzc0NDQYHDfhoYGODo6wsnJSX8sOzsbK1aswPvvv48vv/xS/znVQYMGwdHR0eg5Hvxc64M63zLtzhhbZ0v5AsCAAQMM/hIDwPDhw1FfX9+jdVqLufJ9Fqxf8+YLsH67m69KpcJ7770HBwcHlJaWYujQoY+cy5AhQ9DU1NTlBQbr1zT5Avc/stTZZAH3/12Hu7s76/ehfNva2lBZWYkrV64YnMPT0/ORWXH/NW++APffp823oqICzc3NSEhIgEKhgEKhQHV1NcrLy6FQKIzOxZr1y0bLjIqLi5GZmYm4uDisW7fO4C3LoKAgHDlyxOD+hw8fRmBgoL6YsrOzkZ+fj6VLlyI1NRV2dnb6+9rZ2SEwMLDLOaqqqhAUFGR0Pl5eXhg4cKDBNUW0Wi1OnjyJUaNG9Xi9lmZr+Z49exaBgYFdrtly4sQJvPHGGz1aqzWYM99nwfo1b76s3+7le+zYMcybNw/Dhw9HUVHRE5+s33zzTXR0dOi/FAMAzp8/j/r6etavCfI9cOAAFAqFwXVx2tracOrUKdbvQ/n26tUL6enpKCkpMThHTU3NI7Pi/mvefLn/Pn2+8fHx2LNnD8rKyvQ/vr6+iIiIQFlZmdH5WLV+zfqdhs8xjUYjPj4+8uGHH3a5podWq5UzZ86Ij4+PZGdni1qtloKCAoPrCBw+fFg8PDwkMzOzy/jbt2+LiMjBgwfF29tbfvzxR1Gr1bJ69Wrx9/c3uM7T9evXRavV6v+8bt06CQ4OlsrKSoPrCNy9e9eyAfWQLebb3t4u06dPl8mTJ4tSqRS1Wi2rVq0SX19fOX36tOVD6gFL5Pug7du3G/36cdav5fJl/T59vvfu3ZPIyEh5++235eLFiwa3P3idl4d/H8nJyRIRESGHDx/WX0crPj7e4vn0lC3me+vWLQkPD5dZs2bJ8ePH5dSpU5KcnCyjRo2Sq1evWiWnZ2WJ/SEvL0/8/f1l165dcv78efn+++/F29tbKisr9fPg/mu5fLn/Pvvzm4hIfHx8l693t5X6ZaNlJhs2bBAPDw+jP53F8Msvv0h0dLT4+vrKu+++K7t379aPX758+SPHr1+/Xn+/nTt3SmRkpPj5+UlsbKy+UDuFh4cbFF9bW5usWbNGQkJCJCAgQObPny+XLl0ycxqmZ6v5Xr16VVJTU2Xs2LHi5+cnM2fOFKVSaeY0TM9S+XZ6VCPA+rVsvqzf+56Ur0qleuTt4eHh+vM8/Ptobm6WZcuWSVBQkAQFBUlycrI0NjZaLhgTsdV8a2trJSkpSYKDg2XkyJGSmJj4n3uRKmKZ/aG9vV02bdokkZGR4uvrK1OmTJG9e/cazIP7r2Xz5f57X3ef30SMN1q2Ur92IiLmfc+MiIiIiIjo+cJ/o0VERERERGRibLSIiIiIiIhMjI0WERERERGRibHRIiIiIiIiMjE2WkRERERERCbGRouIiIiIiMjE2GgRERERERGZGBstIiJ6LqSlpcHT0xO//vqr0dsPHjwIT09PrF271sIzIyKi/0e8YDERET0XtFotoqKi0KdPH/z8889wdHTU33b79m3ExMTAyckJ27ZtQ9++fa04UyIi+n/Ad7SIiOi54OzsjIyMDPz111/46quvDG7LycnB1atXsWbNGjZZRERkEmy0iIjouREREYGYmBhs2bIFNTU1AACVSoWSkhJ89NFH8PLywpUrV5CcnIzg4GCMHDkSc+bMwcmTJw3Oc/nyZaSkpGDcuHHw8fFBaGgoUlJScOPGDYPHWrVqFebMmQN/f38sW7bMomslIiLr4kcHiYjoudLU1ISoqCi4ubmhuLgY06dPx4ABA1BUVISbN29i6tSpcHBwwKJFi+Dg4IDNmzfjxIkT2LZtG9zd3aHT6RAVFQUXFxcsXLgQTk5O+OOPP/Ddd99h+vTp+PzzzwHcb7Tq6+uRkJCAkJAQDBgwAAqFwsqrJyIiS+lt7QkQERFZ0qBBg7BixQosWrQIiYmJuHz5MsrKytCrVy9s3rwZTU1NKCkpwauvvgoAmDBhAiZPnoxvvvkG69evx4ULFzBkyBCsXr0aQ4cOBQCEhISgpqYGR44cMXisV155BUuWLLH4GomIyPrYaBER0XMnMjISkydPRkVFBT799FO89tprAIBDhw7B29sbrq6uaGtrAwDY29tjwoQJ2LVrFwDA29sbxcXF6OjowIULF1BbWwu1Wg2NRqMf08nb29uyCyMiIpvBRouIiJ5L48ePR0VFBcLCwvTHmpqaUFtbCx8fH6NjdDodHBwcsGnTJmzcuBFNTU0YPHgwfH194eDggFu3bhnc/8FvNiQioucLGy0iIqJ/ODk5ITg4GCkpKUZv79u3L8rLy5GVlYVPPvkE06ZNwwsvvAAAWLx4MY4fP27J6RIRkQ1jo0VERPSP4OBglJeXY9iwYRg4cKD++MqVK3Hv3j1kZGRApVLB2dkZ8+bN09/e3NwMlUqF3r35tEpERPfx692JiIj+MXfuXHR0dGDu3LmoqKjAoUOHkJ6ejsLCQgwbNgwA4O/vD61Wi6ysLFRVVaG8vBxxcXG4du0adDqdlVdARES2gv/rjYiI6B+urq4oLS1FTk4OVqxYgdbWVrz++uv44osvMGPGDABAbGwsLl++jO3bt6O4uBiurq4ICwvD7NmzkZ6ejnPnzsHd3d3KKyEiImvjdbSIiIiIiIhMjB8dJCIiIiIiMjE2WkRERERERCbGRouIiIiIiMjE2GgRERERERGZGBstIiIiIiIiE2OjRUREREREZGJstIiIiIiIiEyMjRYREREREZGJsdEiIiIiIiIyMTZaREREREREJsZGi4iIiIiIyMTYaBEREREREZnY/wD3/Nv63dED7AAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "# Plot sentiment scores over time\n", - "plt.figure(figsize=(10, 6))\n", - "\n", - "# Plot Polarity\n", - "plt.plot(yearly_sentiment['year'], yearly_sentiment['polarity'], marker='o', linestyle='-', color='b', label='Polarity')\n", - "\n", - "# Plot Subjectivity\n", - "plt.plot(yearly_sentiment['year'], yearly_sentiment['subjectivity'], marker='o', linestyle='-', color='r', label='Subjectivity')\n", - "\n", - "# Add titles and labels\n", - "plt.title('Average Sentiment Scores by Year')\n", - "plt.xlabel('Year')\n", - "plt.ylabel('Average Score')\n", - "plt.legend()\n", - "plt.grid(True)\n", - "\n", - "# Show the plot\n", - "plt.show()\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "02793131-4dd8-4278-8f71-cc56b2ad14ac", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.14" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} From 600992f5359950f7c401e139f6a7ad0bae9fef1e Mon Sep 17 00:00:00 2001 From: Aditya Gahlot Date: Fri, 30 Aug 2024 22:29:42 +1000 Subject: [PATCH 4/5] Social Media Sentiment analysis of electric vehicles .ipynb file --- .../SocialMedia_SentimentAnalysis.ipynb | 1189 +++++++++++++++++ 1 file changed, 1189 insertions(+) create mode 100644 personal-work/aditya-gahlot/SocialMedia_SentimentAnalysis.ipynb diff --git a/personal-work/aditya-gahlot/SocialMedia_SentimentAnalysis.ipynb b/personal-work/aditya-gahlot/SocialMedia_SentimentAnalysis.ipynb new file mode 100644 index 0000000..a1e4f7c --- /dev/null +++ b/personal-work/aditya-gahlot/SocialMedia_SentimentAnalysis.ipynb @@ -0,0 +1,1189 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "df66e9ba-0317-4628-b617-3e705321d814", + "metadata": {}, + "source": [ + "# Social Media Sentiment Analysis\n", + "\n", + "To perform social media sentiment analysis on EVs, I took up a dataset from Kaggle which contained Youtube comments of people around the globe. Kaggle is a platform for data scientists which contains numerous datasets on any topic we wish to search for. For doing that, in the below cell, I imported several essential Python libraries required for data manipulation, natural language processing (NLP), and machine learning." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e274c491-bc85-4279-a58e-115af15d8874", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import nltk\n", + "from textblob import TextBlob\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer\n", + "from sklearn.naive_bayes import MultinomialNB\n", + "from sklearn.metrics import accuracy_score, classification_report\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "2d51c9fa-d442-48e5-8bda-e9f93d3b503e", + "metadata": {}, + "source": [ + "For downloading the dataset, this cell uses the Kaggle API to download a dataset titled \"EV Talk YouTube Sentiments Unveiled\" from the Kaggle repository. The dataset is saved locally for further processing." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "164759de-eab8-4a14-9200-649dc89b2036", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Dataset URL: https://www.kaggle.com/datasets/kanchana1990/ev-talk-youtube-sentiments-unveiled\n", + "License(s): other\n", + "ev-talk-youtube-sentiments-unveiled.zip: Skipping, found more recently modified local copy (use --force to force download)\n" + ] + } + ], + "source": [ + "!kaggle datasets download -d kanchana1990/ev-talk-youtube-sentiments-unveiled" + ] + }, + { + "cell_type": "markdown", + "id": "47262fed-9e27-457d-bde6-be1d227aaffd", + "metadata": {}, + "source": [ + "For extracting the dataset, this cell takes out the contents of the downloaded zip file into a specified directory named **dataset-directory** using Python's built-in **zipfile** module. This allows us to access the dataset files directly." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "fe45e097-95ab-48a2-b601-ad6749505fcb", + "metadata": {}, + "outputs": [], + "source": [ + "import zipfile\n", + "\n", + "with zipfile.ZipFile('archive.zip', 'r') as zip_ref:\n", + " zip_ref.extractall('dataset-directory')" + ] + }, + { + "cell_type": "markdown", + "id": "90fbf825-3420-4db7-a522-02b888556567", + "metadata": {}, + "source": [ + "In the next step, we load the dataset into a pandas DataFrame from the CSV file named **youtube_comments_full_anonymized.csv** located in the extracted directory. This DataFrame (df) will be used for all subsequent data manipulation and analysis." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "a356a6c7-047f-410d-830b-b790f9ce18ed", + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('dataset-directory/youtube_comments_full_anonymized.csv')\n" + ] + }, + { + "cell_type": "markdown", + "id": "717528d2-ced9-473f-b9a9-79d374b41f28", + "metadata": {}, + "source": [ + "Here, the **head()** method is used to display the first five rows of the DataFrame. This allows us to quickly inspect the data structure and contents to ensure it loaded correctly." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "329b098b-32d5-44a0-898d-f48ae646fad0", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CommentAnonymized AuthorPublished AtLikesReply Count
0Ya this is an good invention that we drive ev ...667e8d19fa9123ecadb71631917bbbc22023-12-06T09:54:19Z00
1Let car be charged while you may drink a cup o...7ddfba69037c0d749088d184f0fab66a2023-12-05T03:17:25Z00
2Is.that the car stops charhing better than up ...7ddfba69037c0d749088d184f0fab66a2023-12-05T03:08:28Z00
3😂how much of invetsment of.this instead of a n...7ddfba69037c0d749088d184f0fab66a2023-12-05T03:04:52Z00
4what will happen if an accident happens and a ...e673dba59001bbeacd4ae6d6fa09f3f22023-12-04T15:47:42Z00
\n", + "
" + ], + "text/plain": [ + " Comment \\\n", + "0 Ya this is an good invention that we drive ev ... \n", + "1 Let car be charged while you may drink a cup o... \n", + "2 Is.that the car stops charhing better than up ... \n", + "3 😂how much of invetsment of.this instead of a n... \n", + "4 what will happen if an accident happens and a ... \n", + "\n", + " Anonymized Author Published At Likes Reply Count \n", + "0 667e8d19fa9123ecadb71631917bbbc2 2023-12-06T09:54:19Z 0 0 \n", + "1 7ddfba69037c0d749088d184f0fab66a 2023-12-05T03:17:25Z 0 0 \n", + "2 7ddfba69037c0d749088d184f0fab66a 2023-12-05T03:08:28Z 0 0 \n", + "3 7ddfba69037c0d749088d184f0fab66a 2023-12-05T03:04:52Z 0 0 \n", + "4 e673dba59001bbeacd4ae6d6fa09f3f2 2023-12-04T15:47:42Z 0 0 " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()\n" + ] + }, + { + "cell_type": "markdown", + "id": "cb565932-ad2e-4640-ade5-a7fb12f1bc71", + "metadata": {}, + "source": [ + "As we can see above, we can see the first few rows of the dataset rendered in a csv file. This dataset contains information on the comments made by a particular user and the likes and the reply count associated with each of them. In the below cell, we define and apply a function to clean the text in the **Comment** column. This function converts the text to lowercase, removes numbers, non-alphanumeric characters and extra spaces. After this, the cleaned text is stored in a new column called **cleaned_comment**. This new column is also displayed along with the dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "7995a71e-36e1-4922-88b8-3fe762522755", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CommentAnonymized AuthorPublished AtLikesReply Countcleaned_comment
0Ya this is an good invention that we drive ev ...667e8d19fa9123ecadb71631917bbbc22023-12-06T09:54:19Z00ya this is an good invention that we drive ev ...
1Let car be charged while you may drink a cup o...7ddfba69037c0d749088d184f0fab66a2023-12-05T03:17:25Z00let car be charged while you may drink a cup o...
2Is.that the car stops charhing better than up ...7ddfba69037c0d749088d184f0fab66a2023-12-05T03:08:28Z00is that the car stops charhing better than up ...
3😂how much of invetsment of.this instead of a n...7ddfba69037c0d749088d184f0fab66a2023-12-05T03:04:52Z00how much of invetsment of this instead of a n...
4what will happen if an accident happens and a ...e673dba59001bbeacd4ae6d6fa09f3f22023-12-04T15:47:42Z00what will happen if an accident happens and a ...
\n", + "
" + ], + "text/plain": [ + " Comment \\\n", + "0 Ya this is an good invention that we drive ev ... \n", + "1 Let car be charged while you may drink a cup o... \n", + "2 Is.that the car stops charhing better than up ... \n", + "3 😂how much of invetsment of.this instead of a n... \n", + "4 what will happen if an accident happens and a ... \n", + "\n", + " Anonymized Author Published At Likes Reply Count \\\n", + "0 667e8d19fa9123ecadb71631917bbbc2 2023-12-06T09:54:19Z 0 0 \n", + "1 7ddfba69037c0d749088d184f0fab66a 2023-12-05T03:17:25Z 0 0 \n", + "2 7ddfba69037c0d749088d184f0fab66a 2023-12-05T03:08:28Z 0 0 \n", + "3 7ddfba69037c0d749088d184f0fab66a 2023-12-05T03:04:52Z 0 0 \n", + "4 e673dba59001bbeacd4ae6d6fa09f3f2 2023-12-04T15:47:42Z 0 0 \n", + "\n", + " cleaned_comment \n", + "0 ya this is an good invention that we drive ev ... \n", + "1 let car be charged while you may drink a cup o... \n", + "2 is that the car stops charhing better than up ... \n", + "3 how much of invetsment of this instead of a n... \n", + "4 what will happen if an accident happens and a ... " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Function to clean the text data\n", + "import re\n", + "\n", + "def clean_text(text):\n", + " text = text.lower() # Convert to lowercase\n", + " text = re.sub(r'\\d+', '', text) # Remove numbers\n", + " text = re.sub(r'\\s+', ' ', text) # Remove extra spaces\n", + " text = re.sub(r'\\W', ' ', text) # Remove non-alphanumeric characters\n", + " return text\n", + "\n", + "# Apply the function to the Comment column\n", + "df['cleaned_comment'] = df['Comment'].apply(clean_text)\n", + "df.head()\n" + ] + }, + { + "cell_type": "markdown", + "id": "80e559ae-71d7-48d3-8021-f6f785a6f934", + "metadata": {}, + "source": [ + "This cell converts the cleaned text data into numerical features using the TF-IDF vectorization method. The vectorized data is stored in 'X' variable. Additionally, for simplicity, we define the sentiment as positive if the number of likes is greater than zero (1 for positive, 0 for negative), and store these labels in y. This assumption can be replaced with actual sentiment labels if available." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "28afe252-9a89-4cef-8d87-69ceb604a985", + "metadata": {}, + "outputs": [], + "source": [ + "# Vectorize the text data using TF-IDF\n", + "tfidf_vectorizer = TfidfVectorizer(max_features=5000)\n", + "X = tfidf_vectorizer.fit_transform(df['cleaned_comment']).toarray()\n", + "\n", + "# For demonstration purposes, let's assume the sentiment is positive if likes are greater than 0\n", + "# Replace this with the actual sentiment column if available\n", + "df['sentiment'] = df['Likes'].apply(lambda x: 1 if x > 0 else 0)\n", + "y = df['sentiment']\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "87fe3f6c-3f5f-41db-b1f1-20be82b8eb6a", + "metadata": {}, + "outputs": [], + "source": [ + "# Split the data into training and testing sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "8f7c7479-9481-4eb2-80ed-7059ab83f0a7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
MultinomialNB()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "MultinomialNB()" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Train a Multinomial Naive Bayes model\n", + "model = MultinomialNB()\n", + "model.fit(X_train, y_train)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "ad773321-0c89-41c7-8ad0-50765de3accf", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 75.29%\n", + "Classification Report:\n", + " precision recall f1-score support\n", + "\n", + " 0 0.75 1.00 0.86 64\n", + " 1 0.00 0.00 0.00 21\n", + "\n", + " accuracy 0.75 85\n", + " macro avg 0.38 0.50 0.43 85\n", + "weighted avg 0.57 0.75 0.65 85\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "D:\\anaconda\\envs\\labelme_env\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "D:\\anaconda\\envs\\labelme_env\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n", + "D:\\anaconda\\envs\\labelme_env\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1531: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n" + ] + } + ], + "source": [ + "# Predict the sentiment on the test set\n", + "y_pred = model.predict(X_test)\n", + "\n", + "# Evaluate the model\n", + "accuracy = accuracy_score(y_test, y_pred)\n", + "classification_rep = classification_report(y_test, y_pred)\n", + "\n", + "print(f\"Accuracy: {accuracy * 100:.2f}%\")\n", + "print(\"Classification Report:\\n\", classification_rep)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "f5095ccb-2345-42b6-871d-0d9b02d1fe64", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CommentAnonymized AuthorPublished AtLikesReply Countcleaned_commentsentimentpolaritysubjectivity
0Ya this is an good invention that we drive ev ...667e8d19fa9123ecadb71631917bbbc22023-12-06T09:54:19Z00ya this is an good invention that we drive ev ...00.0416670.610648
1Let car be charged while you may drink a cup o...7ddfba69037c0d749088d184f0fab66a2023-12-05T03:17:25Z00let car be charged while you may drink a cup o...00.1000000.278571
2Is.that the car stops charhing better than up ...7ddfba69037c0d749088d184f0fab66a2023-12-05T03:08:28Z00is that the car stops charhing better than up ...00.5000000.500000
3😂how much of invetsment of.this instead of a n...7ddfba69037c0d749088d184f0fab66a2023-12-05T03:04:52Z00how much of invetsment of this instead of a n...00.1750000.425000
4what will happen if an accident happens and a ...e673dba59001bbeacd4ae6d6fa09f3f22023-12-04T15:47:42Z00what will happen if an accident happens and a ...00.0000000.357143
\n", + "
" + ], + "text/plain": [ + " Comment \\\n", + "0 Ya this is an good invention that we drive ev ... \n", + "1 Let car be charged while you may drink a cup o... \n", + "2 Is.that the car stops charhing better than up ... \n", + "3 😂how much of invetsment of.this instead of a n... \n", + "4 what will happen if an accident happens and a ... \n", + "\n", + " Anonymized Author Published At Likes Reply Count \\\n", + "0 667e8d19fa9123ecadb71631917bbbc2 2023-12-06T09:54:19Z 0 0 \n", + "1 7ddfba69037c0d749088d184f0fab66a 2023-12-05T03:17:25Z 0 0 \n", + "2 7ddfba69037c0d749088d184f0fab66a 2023-12-05T03:08:28Z 0 0 \n", + "3 7ddfba69037c0d749088d184f0fab66a 2023-12-05T03:04:52Z 0 0 \n", + "4 e673dba59001bbeacd4ae6d6fa09f3f2 2023-12-04T15:47:42Z 0 0 \n", + "\n", + " cleaned_comment sentiment polarity \\\n", + "0 ya this is an good invention that we drive ev ... 0 0.041667 \n", + "1 let car be charged while you may drink a cup o... 0 0.100000 \n", + "2 is that the car stops charhing better than up ... 0 0.500000 \n", + "3 how much of invetsment of this instead of a n... 0 0.175000 \n", + "4 what will happen if an accident happens and a ... 0 0.000000 \n", + "\n", + " subjectivity \n", + "0 0.610648 \n", + "1 0.278571 \n", + "2 0.500000 \n", + "3 0.425000 \n", + "4 0.357143 " + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Function to calculate polarity and subjectivity using TextBlob\n", + "def get_sentiment(text):\n", + " blob = TextBlob(text)\n", + " return blob.sentiment.polarity, blob.sentiment.subjectivity\n", + "\n", + "# Apply the function to the cleaned_comment column and create new columns for polarity and subjectivity\n", + "df['polarity'], df['subjectivity'] = zip(*df['cleaned_comment'].apply(get_sentiment))\n", + "\n", + "df.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "d02a851e-9f13-4965-b3bb-3f61ac034c58", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
polaritysubjectivity
count424.000000424.000000
mean0.0905110.365949
std0.2810150.312195
min-1.0000000.000000
25%0.0000000.000000
50%0.0000000.400000
75%0.2000000.600000
max1.0000001.000000
\n", + "
" + ], + "text/plain": [ + " polarity subjectivity\n", + "count 424.000000 424.000000\n", + "mean 0.090511 0.365949\n", + "std 0.281015 0.312195\n", + "min -1.000000 0.000000\n", + "25% 0.000000 0.000000\n", + "50% 0.000000 0.400000\n", + "75% 0.200000 0.600000\n", + "max 1.000000 1.000000" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Display summary statistics for polarity and subjectivity\n", + "df[['polarity', 'subjectivity']].describe()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "bde9135b-521d-4d40-a52f-7a5426b67cc0", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAHWCAYAAAB9mLjgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvtElEQVR4nO3dd3hUZd7G8XsmyUx6bwRSqKFXBbGCoDTLKq6ioqCsui6WFduia999EQvr6rKy7iLoWlBcVFREQQEbotK7tBBCCgnpbZLMnPePkJGRAJmQMJPk+7muucic88yZ3zw5TOae55znmAzDMAQAAAAAaDCzpwsAAAAAgJaGIAUAAAAAbiJIAQAAAICbCFIAAAAA4CaCFAAAAAC4iSAFAAAAAG4iSAEAAACAmwhSAAAAAOAmghQAAAAAuIkgBQCo17BhwzRs2LAm3WZaWppMJpPmz5/fpNttKiaTSY8//nizP8/KlStlMpm0cuVK57Jhw4apd+/ezf7ckvf/HgCgJSBIAUArMX/+fJlMJufN399f3bp10x133KGcnBxPl3dcS5YsaZbwkpKS4uwLs9ms8PBw9enTR7feeqvWrFnTZM/z1ltv6YUXXmiy7TUlb64NAFo6k2EYhqeLAACcuvnz5+umm27Sk08+qY4dO6qyslLffPON/vvf/yo5OVlbtmxRYGBgg7dXNxp19KjJqTIMQzabTX5+fvLx8ZEk3XHHHZo9e7aa+s9RSkqKIiIidO+990qSSkpKtH37di1cuFDZ2dm65557NGvWLJfHVFZWytfXV76+vg1+nksuuURbtmxRWlpagx/jcDhUVVUli8Uis7n2O81hw4YpLy9PW7ZsafB2Gltbfb8HAIB7Gv6XAgDQIowZM0ZnnHGGJOl3v/udoqKiNGvWLH344Ye69tprPVJTTU2NHA6HLBaL/P39T9vztm/fXhMnTnRZNnPmTF133XX629/+pq5du+r22293rmvu2iorK53h6XT2w6/VjVgCABqPQ/sAoJW78MILJUn79u2TVBtqnnrqKXXu3FlWq1UpKSl66KGHZLPZTridqqoqPfrooxo0aJDCwsIUFBSk8847TytWrHBpV3f+zXPPPacXXnjB+Tzbtm075tycyZMna/bs2ZLkcliiYRhKSUnR5ZdffkwdlZWVCgsL02233dao/ggICNB///tfRUZG6q9//avLSNivz5EqKSnRH//4R6WkpMhqtSo2NlYXXXSR1q1bJ6l2FOmTTz7R/v37nbWnpKRI+uU8qAULFujPf/6z2rdvr8DAQBUXF9d7jlSdtWvX6uyzz1ZAQIA6duyoOXPmuKyvO4Tz16NMv97miWo73jlSX375pc477zwFBQUpPDxcl19+ubZv3+7S5vHHH5fJZNLu3bs1efJkhYeHKywsTDfddJPKy8sb9ksAgFaAESkAaOX27NkjSYqKipJUO0r12muv6aqrrtK9996rNWvWaMaMGdq+fbvef//9426nuLhY//nPf3TttdfqlltuUUlJiebOnatRo0bphx9+UP/+/V3az5s3T5WVlbr11ltltVoVGRkph8Ph0ua2225TZmamli1bpv/+97/O5SaTSRMnTtQzzzyj/Px8RUZGOtd99NFHKi4uPmakyR3BwcG64oorNHfuXG3btk29evWqt93vf/97vffee7rjjjvUs2dPHT58WN988422b9+ugQMH6uGHH1ZRUZEyMjL0t7/9zbntoz311FOyWCy67777ZLPZZLFYjltXQUGBxo4dq6uvvlrXXnut3n33Xd1+++2yWCy6+eab3XqNDantaMuXL9eYMWPUqVMnPf7446qoqNBLL72kc845R+vWrXOGsDpXX321OnbsqBkzZmjdunX6z3/+o9jYWM2cOdOtOgGgxTIAAK3CvHnzDEnG8uXLjdzcXOPAgQPGggULjKioKCMgIMDIyMgwNmzYYEgyfve737k89r777jMkGV9++aVz2QUXXGBccMEFzvs1NTWGzWZzeVxBQYERFxdn3Hzzzc5l+/btMyQZoaGhxqFDh1za162bN2+ec9nUqVON+v4c7dy505BkvPzyyy7LL7vsMiMlJcVwOBwn7I/k5GRj3Lhxx13/t7/9zZBkfPjhh85lkozHHnvMeT8sLMyYOnXqCZ9n3LhxRnJy8jHLV6xYYUgyOnXqZJSXl9e7bsWKFc5lF1xwgSHJeP75553LbDab0b9/fyM2NtaoqqoyDOOX3/O+fftOus3j1Vbf76HueQ4fPuxctnHjRsNsNhs33nijc9ljjz1mSHL5nRuGYVxxxRVGVFTUMc8FAK0Vh/YBQCszcuRIxcTEKDExURMmTFBwcLDef/99tW/fXkuWLJEkTZs2zeUxdRMyfPLJJ8fdro+Pj3M0xeFwKD8/XzU1NTrjjDOch7odbfz48YqJiWn06+jWrZuGDBmiN99807ksPz9fn376qa6//nqZTKZGb1v6ZXSmpKTkuG3Cw8O1Zs0aZWZmNvp5Jk2apICAgAa19fX1dTlk0WKx6LbbbtOhQ4e0du3aRtdwMllZWdqwYYMmT57sMvrXt29fXXTRRc795mi///3vXe6fd955Onz4sIqLi5utTgDwJgQpAGhlZs+erWXLlmnFihXatm2b9u7dq1GjRkmS9u/fL7PZrC5durg8Jj4+XuHh4dq/f/8Jt/3aa6+pb9++8vf3V1RUlGJiYvTJJ5+oqKjomLYdO3Y85ddy44036ttvv3XWtXDhQlVXV+uGG2445W2XlpZKkkJCQo7b5plnntGWLVuUmJiowYMH6/HHH9fevXvdeh53+iEhIUFBQUEuy7p16yZJbs0K6K66/k1NTT1mXY8ePZSXl6eysjKX5UlJSS73IyIiJNUenggAbQFBCgBamcGDB2vkyJEaNmyYevTo4Zxe+2iNGc154403NHnyZHXu3Flz587V0qVLtWzZMl144YXHnPskqcGjMCcyYcIE+fn5OUel3njjDZ1xxhn1fuB3V900478OlUe7+uqrtXfvXr300ktKSEjQs88+q169eunTTz9t8PM0RT8c7Xi/O7vd3qTPczLHmzbd4KoqANoIghQAtCHJyclyOBzatWuXy/KcnBwVFhYqOTn5uI9977331KlTJy1atEg33HCDRo0apZEjR6qysvKUajpRqIuMjNS4ceP05ptvav/+/fr222+bbDTq/fffV2Jionr06HHCtu3atdMf/vAHffDBB9q3b5+ioqL017/+tUH1uyszM/OYkZ+ff/5ZkpyTPdSN/BQWFrq0q280saG11f3ed+7cecy6HTt2KDo6+piRMgBo6whSANCGjB07VpL0wgsvuCyvuzDtuHHjjvvYuhGIo0cc1qxZo9WrV59STXUf0H8dDOrccMMN2rZtm+6//375+PhowoQJp/R8FRUVuuGGG5Sfn6+HH374hCM8vz5kMTY2VgkJCS5TxQcFBdV7aGNj1NTU6F//+pfzflVVlf71r38pJiZGgwYNkiR17txZkvTVV1+51PrKK68cs72G1tauXTv1799fr732msvvYcuWLfr888+d+w0A4BdMfw4AbUi/fv00adIkvfLKKyosLNQFF1ygH374Qa+99pp+85vfaPjw4cd97CWXXKJFixbpiiuu0Lhx47Rv3z7NmTNHPXv2dJ5v1Bh1AeGuu+7SqFGjjglL48aNU1RUlBYuXKgxY8YoNja2wds+ePCg3njjDUm1o1Dbtm3TwoULlZ2drXvvvfeE16IqKSlRhw4ddNVVV6lfv34KDg7W8uXL9eOPP+r55593qf+dd97RtGnTdOaZZyo4OFiXXnqpu90gqfYcqZkzZyotLU3dunXTO++8ow0bNuiVV16Rn5+fJKlXr14666yzNH36dOfU8AsWLFBNTc0x23OntmeffVZjxozR0KFDNWXKFOf052FhYS7X1gIAHOHpaQMBAE2jblrsH3/88YTtqqurjSeeeMLo2LGj4efnZyQmJhrTp083KisrXdr9evpzh8Nh/N///Z+RnJxsWK1WY8CAAcbHH39sTJo0yWWK7bqptZ999tljnru+abdramqMO++804iJiTFMJlO9U6H/4Q9/MCQZb731VsM6w6id/lySIckwmUxGaGio0atXL+OWW24x1qxZU+9jdNT05zabzbj//vuNfv36GSEhIUZQUJDRr18/45///KfLY0pLS43rrrvOCA8PNyQ5+6JuOvKFCxce8zzHm/68V69exk8//WQMHTrU8Pf3N5KTk41//OMfxzx+z549xsiRIw2r1WrExcUZDz30kLFs2bJjtnm82ur7PRiGYSxfvtw455xzjICAACM0NNS49NJLjW3btrm0qZv+PDc312X58aZlB4DWymQYnBUKAPBu99xzj+bOnavs7GwFBgZ6uhwAADhHCgDg3SorK/XGG29o/PjxhCgAgNfgHCkAgFc6dOiQli9frvfee0+HDx/W3Xff7emSAABwIkgBALzStm3bdP311ys2NlYvvvii+vfv7+mSAABw4hwpAAAAAHAT50gBAAAAgJsIUgAAAADgJs6RkuRwOJSZmamQkJDjXuEeAAAAQOtnGIZKSkqUkJAgs/n4404EKUmZmZlKTEz0dBkAAAAAvMSBAwfUoUOH4673aJCaMWOGFi1apB07diggIEBnn322Zs6cqdTUVGebyspK3XvvvVqwYIFsNptGjRqlf/7zn4qLi3O2SU9P1+23364VK1YoODhYkyZN0owZM+Tr27CXFxISIqm2s0JDQ5v2RQIAAABoMYqLi5WYmOjMCMfj0SC1atUqTZ06VWeeeaZqamr00EMP6eKLL9a2bdsUFBQkqfZq9p988okWLlyosLAw3XHHHbryyiv17bffSpLsdrvGjRun+Ph4fffdd8rKytKNN94oPz8//d///V+D6qg7nC80NJQgBQAAAOCkp/x41fTnubm5io2N1apVq3T++eerqKhIMTExeuutt3TVVVdJknbs2KEePXpo9erVOuuss/Tpp5/qkksuUWZmpnOUas6cOXrwwQeVm5sri8Vy0uctLi5WWFiYioqKCFIAAABAG9bQbOBVs/YVFRVJkiIjIyVJa9euVXV1tUaOHOls0717dyUlJWn16tWSpNWrV6tPnz4uh/qNGjVKxcXF2rp1a73PY7PZVFxc7HIDAAAAgIbymiDlcDj0xz/+Ueecc4569+4tScrOzpbFYlF4eLhL27i4OGVnZzvbHB2i6tbXravPjBkzFBYW5rwx0QQAAAAAd3hNkJo6daq2bNmiBQsWNPtzTZ8+XUVFRc7bgQMHmv05AQAAALQeXjH9+R133KGPP/5YX331lcsUg/Hx8aqqqlJhYaHLqFROTo7i4+OdbX744QeX7eXk5DjX1cdqtcpqtTbxqwAAAADQVnh0RMowDN1xxx16//339eWXX6pjx44u6wcNGiQ/Pz998cUXzmU7d+5Uenq6hg4dKkkaOnSoNm/erEOHDjnbLFu2TKGhoerZs+fpeSEAAAAA2hSPjkhNnTpVb731lj788EOFhIQ4z2kKCwtTQECAwsLCNGXKFE2bNk2RkZEKDQ3VnXfeqaFDh+qss86SJF188cXq2bOnbrjhBj3zzDPKzs7Wn//8Z02dOpVRJwAAAADNwqPTnx9vbvZ58+Zp8uTJkn65IO/bb7/tckHeow/b279/v26//XatXLlSQUFBmjRpkp5++ukGX5CX6c8BAAAASA3PBl51HSlPIUgBAAAAkFrodaQAAAAAoCUgSAEAAACAmwhSAAAAAOAmghQAAAAAuIkgBQAAAABu8uh1pAAA8Cbp6enKy8vzdBmSpOjoaCUlJXm6DADAcRCkAABQbYjq3qOHKsrLPV2KJCkgMFA7tm8nTAGAlyJIAQAgKS8vTxXl5br+wWcVl9TZo7XkpO/RmzPvV15eHkEKALwUQQoAgKPEJXVWh669PF0GAMDLMdkEAAAAALiJIAUAAAAAbiJIAQAAAICbCFIAAAAA4CaCFAAAAAC4iSAFAAAAAG4iSAEAAACAmwhSAAAAAOAmghQAAAAAuIkgBQAAAABuIkgBAAAAgJsIUgAAAADgJoIUAAAAALiJIAUAAAAAbiJIAQAAAICbCFIAAAAA4CaCFAAAAAC4iSAFAAAAAG4iSAEAAACAmwhSAAAAAOAmghQAAAAAuIkgBQAAAABuIkgBAAAAgJsIUgAAAADgJoIUAAAAALiJIAUAAAAAbiJIAQAAAICbPBqkvvrqK1166aVKSEiQyWTSBx984LLeZDLVe3v22WedbVJSUo5Z//TTT5/mVwIAAACgLfFokCorK1O/fv00e/bsetdnZWW53F599VWZTCaNHz/epd2TTz7p0u7OO+88HeUDAAAAaKN8PfnkY8aM0ZgxY467Pj4+3uX+hx9+qOHDh6tTp04uy0NCQo5pCwAAAADNpcWcI5WTk6NPPvlEU6ZMOWbd008/raioKA0YMEDPPvusampqTrgtm82m4uJilxsAAAAANJRHR6Tc8dprrykkJERXXnmly/K77rpLAwcOVGRkpL777jtNnz5dWVlZmjVr1nG3NWPGDD3xxBPNXTIAAACAVqrFBKlXX31V119/vfz9/V2WT5s2zflz3759ZbFYdNttt2nGjBmyWq31bmv69OkujysuLlZiYmLzFA4AAACg1WkRQerrr7/Wzp079c4775y07ZAhQ1RTU6O0tDSlpqbW28ZqtR43ZAEAAADAybSIc6Tmzp2rQYMGqV+/fidtu2HDBpnNZsXGxp6GygAAAAC0RR4dkSotLdXu3bud9/ft26cNGzYoMjJSSUlJkmoPu1u4cKGef/75Yx6/evVqrVmzRsOHD1dISIhWr16te+65RxMnTlRERMRpex0AAAAA2haPBqmffvpJw4cPd96vO29p0qRJmj9/viRpwYIFMgxD11577TGPt1qtWrBggR5//HHZbDZ17NhR99xzj8v5TwAAAADQ1DwapIYNGybDME7Y5tZbb9Wtt95a77qBAwfq+++/b47SAAAAAOC4WsQ5UgAAAADgTQhSAAAAAOAmghQAAAAAuIkgBQAAAABuIkgBAAAAgJsIUgAAAADgJoIUAAAAALiJIAUAAAAAbiJIAQAAAICbCFIAAAAA4CaCFAAAAAC4iSAFAAAAAG4iSAEAAACAmwhSAAAAAOAmghQAAAAAuIkgBQAAAABuIkgBAAAAgJsIUgAAAADgJoIUAAAAALiJIAUAAAAAbiJIAQAAAICbCFIAAAAA4CaCFAAAAAC4iSAFAAAAAG4iSAEAAACAmwhSAAAAAOAmghQAAAAAuIkgBQAAAABuIkgBAAAAgJsIUgAAAADgJoIUAAAAALiJIAUAAAAAbiJIAQAAAICbCFIAAAAA4CaCFAAAAAC4iSAFAAAAAG4iSAEAAACAmzwapL766itdeumlSkhIkMlk0gcffOCyfvLkyTKZTC630aNHu7TJz8/X9ddfr9DQUIWHh2vKlCkqLS09ja8CAAAAQFvj0SBVVlamfv36afbs2cdtM3r0aGVlZTlvb7/9tsv666+/Xlu3btWyZcv08ccf66uvvtKtt97a3KUDAAAAaMN8PfnkY8aM0ZgxY07Yxmq1Kj4+vt5127dv19KlS/Xjjz/qjDPOkCS99NJLGjt2rJ577jklJCQ0ec0AAAAA4PXnSK1cuVKxsbFKTU3V7bffrsOHDzvXrV69WuHh4c4QJUkjR46U2WzWmjVrjrtNm82m4uJilxsAAAAANJRXB6nRo0fr9ddf1xdffKGZM2dq1apVGjNmjOx2uyQpOztbsbGxLo/x9fVVZGSksrOzj7vdGTNmKCwszHlLTExs1tcBAAAAoHXx6KF9JzNhwgTnz3369FHfvn3VuXNnrVy5UiNGjGj0dqdPn65p06Y57xcXFxOmAAAAADSYV49I/VqnTp0UHR2t3bt3S5Li4+N16NAhlzY1NTXKz88/7nlVUu15V6GhoS43AAAAAGioFhWkMjIydPjwYbVr106SNHToUBUWFmrt2rXONl9++aUcDoeGDBniqTIBAAAAtHIePbSvtLTUObokSfv27dOGDRsUGRmpyMhIPfHEExo/frzi4+O1Z88ePfDAA+rSpYtGjRolSerRo4dGjx6tW265RXPmzFF1dbXuuOMOTZgwgRn7AAAAADQbj45I/fTTTxowYIAGDBggSZo2bZoGDBigRx99VD4+Ptq0aZMuu+wydevWTVOmTNGgQYP09ddfy2q1Orfx5ptvqnv37hoxYoTGjh2rc889V6+88oqnXhIAAACANsCjI1LDhg2TYRjHXf/ZZ5+ddBuRkZF66623mrIsAAAAADihFnWOFAAAAAB4A4IUAAAAALiJIAUAAAAAbiJIAQAAAICbCFIAAAAA4CaCFAAAAAC4iSAFAAAAAG4iSAEAAACAmwhSAAAAAOAmghQAAAAAuIkgBQAAAABuIkgBAAAAgJsIUgAAAADgJoIUAAAAALiJIAUAAAAAbiJIAQAAAICbCFIAAAAA4CaCFAAAAAC4iSAFAAAAAG4iSAEAAACAmwhSAAAAAOAmghQAAAAAuIkgBQAAAABuIkgBAAAAgJsIUgAAAADgJoIUAAAAALiJIAUAAAAAbiJIAQAAAICbCFIAAAAA4CaCFAAAAAC4iSAFAAAAAG4iSAEAAACAmwhSAAAAAOAmghQAAAAAuIkgBQAAAABuIkgBAAAAgJs8GqS++uorXXrppUpISJDJZNIHH3zgXFddXa0HH3xQffr0UVBQkBISEnTjjTcqMzPTZRspKSkymUwut6effvo0vxIAAAAAbYlHg1RZWZn69eun2bNnH7OuvLxc69at0yOPPKJ169Zp0aJF2rlzpy677LJj2j755JPKyspy3u68887TUT4AAACANsrXk08+ZswYjRkzpt51YWFhWrZsmcuyf/zjHxo8eLDS09OVlJTkXB4SEqL4+PhmrRUAAAAA6rSoc6SKiopkMpkUHh7usvzpp59WVFSUBgwYoGeffVY1NTUn3I7NZlNxcbHLDQAAAAAayqMjUu6orKzUgw8+qGuvvVahoaHO5XfddZcGDhyoyMhIfffdd5o+fbqysrI0a9as425rxowZeuKJJ05H2QAAAABaoRYRpKqrq3X11VfLMAy9/PLLLuumTZvm/Llv376yWCy67bbbNGPGDFmt1nq3N336dJfHFRcXKzExsXmKBwAAANDqeH2QqgtR+/fv15dffukyGlWfIUOGqKamRmlpaUpNTa23jdVqPW7IAgAAAICT8eogVReidu3apRUrVigqKuqkj9mwYYPMZrNiY2NPQ4UAAAAA2iKPBqnS0lLt3r3beX/fvn3asGGDIiMj1a5dO1111VVat26dPv74Y9ntdmVnZ0uSIiMjZbFYtHr1aq1Zs0bDhw9XSEiIVq9erXvuuUcTJ05URESEp14WAAAAgFbOo0Hqp59+0vDhw533685bmjRpkh5//HEtXrxYktS/f3+Xx61YsULDhg2T1WrVggUL9Pjjj8tms6ljx4665557XM5/AgAAAICm5tEgNWzYMBmGcdz1J1onSQMHDtT333/f1GUBAAAAwAm1qOtIAQAAAIA3IEgBAAAAgJsIUgAAAADgJoIUAAAAALiJIAUAAAAAbiJIAQAAAICbGhWk9u7d29R1AAAAAECL0agg1aVLFw0fPlxvvPGGKisrm7omAAAAAPBqjQpS69atU9++fTVt2jTFx8frtttu0w8//NDUtQEAAACAV2pUkOrfv7/+/ve/KzMzU6+++qqysrJ07rnnqnfv3po1a5Zyc3Obuk4AAAAA8BqnNNmEr6+vrrzySi1cuFAzZ87U7t27dd999ykxMVE33nijsrKymqpOAAAAAPAapxSkfvrpJ/3hD39Qu3btNGvWLN13333as2ePli1bpszMTF1++eVNVScAAAAAeA3fxjxo1qxZmjdvnnbu3KmxY8fq9ddf19ixY2U21+ayjh07av78+UpJSWnKWgEAAADAKzQqSL388su6+eabNXnyZLVr167eNrGxsZo7d+4pFQcAAAAA3qhRQWrXrl0nbWOxWDRp0qTGbB4AAAAAvFqjzpGaN2+eFi5ceMzyhQsX6rXXXjvlogAAAADAmzUqSM2YMUPR0dHHLI+NjdX//d//nXJRAAAAAODNGhWk0tPT1bFjx2OWJycnKz09/ZSLAgAAAABv1qggFRsbq02bNh2zfOPGjYqKijrlogAAAADAmzUqSF177bW66667tGLFCtntdtntdn355Ze6++67NWHChKauEQAAAAC8SqNm7XvqqaeUlpamESNGyNe3dhMOh0M33ngj50gBAAAAaPUaFaQsFoveeecdPfXUU9q4caMCAgLUp08fJScnN3V9AAAAAOB1GhWk6nTr1k3dunVrqloAAAAAoEVoVJCy2+2aP3++vvjiCx06dEgOh8Nl/ZdfftkkxQEAAACAN2pUkLr77rs1f/58jRs3Tr1795bJZGrqugAAAADAazUqSC1YsEDvvvuuxo4d29T1AAAAAIDXa9T05xaLRV26dGnqWgAAAACgRWhUkLr33nv197//XYZhNHU9AAAAAOD1GnVo3zfffKMVK1bo008/Va9eveTn5+eyftGiRU1SHAAAAAB4o0YFqfDwcF1xxRVNXQsAAAAAtAiNClLz5s1r6joAAAAAoMVo1DlSklRTU6Ply5frX//6l0pKSiRJmZmZKi0tbbLiAAAAAMAbNWpEav/+/Ro9erTS09Nls9l00UUXKSQkRDNnzpTNZtOcOXOauk4AAAAA8BqNGpG6++67dcYZZ6igoEABAQHO5VdccYW++OKLJisOAAAAALxRo0akvv76a3333XeyWCwuy1NSUnTw4MEmKQwAAAAAvFWjRqQcDofsdvsxyzMyMhQSEnLKRQEAAACAN2tUkLr44ov1wgsvOO+bTCaVlpbqscce09ixY5uqNgAAAADwSo0KUs8//7y+/fZb9ezZU5WVlbruuuuch/XNnDmzwdv56quvdOmllyohIUEmk0kffPCBy3rDMPToo4+qXbt2CggI0MiRI7Vr1y6XNvn5+br++usVGhqq8PBwTZkyhZkDAQCNVlYj5ZbYZKs+9sgLAADqNOocqQ4dOmjjxo1asGCBNm3apNLSUk2ZMkXXX3+9y+QTJ1NWVqZ+/frp5ptv1pVXXnnM+meeeUYvvviiXnvtNXXs2FGPPPKIRo0apW3btsnf31+SdP311ysrK0vLli1TdXW1brrpJt1666166623GvPSAABtkN1haM3BSsVe8xctzbRImemSJIuPWeGBfhqQFK7UuBCZTCYPVwoA8BYmwzAMTxch1R4e+P777+s3v/mNpNrRqISEBN1777267777JElFRUWKi4vT/PnzNWHCBG3fvl09e/bUjz/+qDPOOEOStHTpUo0dO1YZGRlKSEho0HMXFxcrLCxMRUVFCg0NbZbXBwDwTsu35eixxVt1sLDiyBJD/n4+qqx2uLRLiQrU8O6xCvX3a/aaMnZt1aypV2rt2rUaOHBgsz8fAOAXDc0GjRqRev3110+4/sYbb2zMZl3s27dP2dnZGjlypHNZWFiYhgwZotWrV2vChAlavXq1wsPDnSFKkkaOHCmz2aw1a9boiiuuqHfbNptNNpvNeb+4uPiU6wUAtDwfbjioae9ulN1hKMRiUsaqd3XN+MuV2qObqu0OlVTWaFdOiX5MK1Da4XK98f1+ndclRn06hHm6dACAhzUqSN19990u96urq1VeXi6LxaLAwMAmCVLZ2dmSpLi4OJflcXFxznXZ2dmKjY11We/r66vIyEhnm/rMmDFDTzzxxCnXCABoud798YAeXLRJhiGNH9hBV6XU6OynXlPQNZdLkvx8zIoMsmhIpyh1jQvR8u05yiqq1Jc7D8mQob4dwj37AgAAHtWoySYKCgpcbqWlpdq5c6fOPfdcvf32201dY5ObPn26ioqKnLcDBw54uiQAwGn0+uo0PfC/2hA18awkPXtVX1l9j3/+U2SQRb8d1EFnJEdIklbuzNWeXCY2AoC2rFFBqj5du3bV008/fcxoVWPFx8dLknJyclyW5+TkONfFx8fr0KFDLutramqUn5/vbFMfq9Wq0NBQlxsAoG1YufOQHv1wqyRpyrkd9dTlvWU2n3wSCZPJpLM7R6lXQqgMSZ9uyVam87wqAEBb02RBSqo9rC4zM7NJttWxY0fFx8friy++cC4rLi7WmjVrNHToUEnS0KFDVVhYqLVr1zrbfPnll3I4HBoyZEiT1AEAaD2Kyqv14P82SZKuH5KkP4/r4dZMfCaTSRemxqpjdJDsDkMfbcxUQVlVc5ULAPBijTpHavHixS73DcNQVlaW/vGPf+icc85p8HZKS0u1e/du5/19+/Zpw4YNioyMVFJSkv74xz/qL3/5i7p27eqc/jwhIcE5s1+PHj00evRo3XLLLZozZ46qq6t1xx13aMKECQ2esQ8A0HY88dFW5RTb1DE6SH8e17NR05mbzSaN6R2vResOKru4Uku3ZuuaMxIbNKoFAGg9GhWk6oJMHZPJpJiYGF144YV6/vnnG7ydn376ScOHD3fenzZtmiRp0qRJmj9/vh544AGVlZXp1ltvVWFhoc4991wtXbrUeQ0pSXrzzTd1xx13aMSIETKbzRo/frxefPHFxrwsAEAr9vnWbC1af1Bmk/Tcb/spwOLT6G35+Zh1Sd92+u/3+3WoxKZ1Bwp0RnJkE1YLAPB2jQpSDofj5I0aYNiwYTrRZaxMJpOefPJJPfnkk8dtExkZycV3AQAnlF9WpYfe3yxJuvX8zhp0ZNKIUxFk9dX5XWO0bHuOvt+br84xwYoItJzydgEALUOTniMFAIA3+svH25RXWqVuccG656KuTbbdHu1ClBQZKLvD0BfbD53wy0EAQOvSqBGpukPwGmLWrFmNeQoAAJrEzuwSvb/hoCTpmav6yerb+EP6fs1kMmlE91i9sWa/DhZWaPPBIq4vBQBtRKOC1Pr167V+/XpVV1crNTVVkvTzzz/Lx8dHAwcOdLZrzEm8AAA0pReW/yzDkMb0jlf/xPAm335ogJ/O7hytVT/n6pvdeeocE6wga6P+vAIAWpBGvdNfeumlCgkJ0WuvvaaIiNrjzAsKCnTTTTfpvPPO07333tukRQIA0BhbDhbp0y3ZMpmkey7q1mzP069DmHZkFyun2KYf0/I1LDW22Z4LAOAdGnWO1PPPP68ZM2Y4Q5QkRURE6C9/+Ytbs/YBANCc/rbsZ0nSZf0S1C0upNmex2Qy6dwu0ZKkzQeLVFRR3WzPBQDwDo0KUsXFxcrNzT1meW5urkpKSk65KAAATtX69AJ9seOQzCbp7hFNN8HE8XSICFRyZKAchrR67+Fmfz4AgGc1KkhdccUVuummm7Ro0SJlZGQoIyND//vf/zRlyhRdeeWVTV0jAABum3VkNOrKgR3UKSb4tDzn2Z2jJNVOcJFbYjstzwkA8IxGBak5c+ZozJgxuu6665ScnKzk5GRdd911Gj16tP75z382dY0AALhl7f4Cfb0rT75m02kZjaoTG+qvrrG1oe27PXmn7XkBAKdfoyabCAwM1D//+U89++yz2rNnjySpc+fOCgoKatLiAABojHnf7pMkXTGgvRIjA0/rcw/tHKXduaVKO1yugwUVah8RcFqfHwBwepzSBXmzsrKUlZWlrl27KigoiAsRAgA8Lqe4Uku3ZEuSJp+TctqfPyLQol7tQiVJ3+/jXCkAaK0aFaQOHz6sESNGqFu3bho7dqyysrIkSVOmTGHqcwCAR725Jl01DkNnpkSoV0KYR2o4s2OkzCYpo6BC2cWVHqkBANC8GhWk7rnnHvn5+Sk9PV2Bgb8cMnHNNddo6dKlTVYcAADuqKpx6K016ZKkG4emeKyOUH8/pR6Zbn1tWoHH6gAANJ9GnSP1+eef67PPPlOHDh1clnft2lX79+9vksIAAHDXks1Zyiu1KS7UqtG94z1ay6DkCG3PLtHu3FIVlFUpIsji0XoAAE2rUSNSZWVlLiNRdfLz82W1Wk+5KAAAGuO11WmSpOuHJMvP55ROAz5lUcFWdYyunYRpbTqjUgDQ2jTqr8x5552n119/3XnfZDLJ4XDomWee0fDhw5usOAAAGmpTRqHWpxfK4mPWtYOTPF2OJOmM5AhJ0o6sEpXaajxcDQCgKTXq0L5nnnlGI0aM0E8//aSqqio98MAD2rp1q/Lz8/Xtt982dY0AAJzUa9/VHlo+rm87xYR4x9ERCeEBSgjzV2ZRpTakF+rcrtGeLgkA0EQaNSLVu3dv/fzzzzr33HN1+eWXq6ysTFdeeaXWr1+vzp07N3WNAACcUHFltT7ZnClJumFosoercTUopXZUavPBItmq7R6uBgDQVNwekaqurtbo0aM1Z84cPfzww81REwAAblmyKUuV1Q51iQ3WgMRwT5fjomNUkKKCLDpcVqWtWcUamBTh6ZIAAE3A7REpPz8/bdq0qTlqAQCgUf63LkOSdNWgDjKZTB6uxpXJZFL/I+Fu44FCObh4PQC0Co06tG/ixImaO3duU9cCAIDb0vLK9GNagcwm6YoB7T1dTr1S40Pk72tWcWWN9uWVebocAEATaNRkEzU1NXr11Ve1fPlyDRo0SEFBQS7rZ82a1STFAQBwMouOjEad1zVGcaH+Hq6mfn4+ZvVqH6a1+wu04UChOscEe7okAMApcitI7d27VykpKdqyZYsGDhwoSfr5559d2njbIRUAgNbL4TD0v3UHJUnjB3U4SWvP6tshTOv2FyijoEJ5pTZFB3vHzIIAgMZxK0h17dpVWVlZWrFihSTpmmuu0Ysvvqi4uLhmKQ4AgBP5ft9hHSysUIi/ry7u6d1/i0L9/dQ5Jli7c0u18UChRvTw7noBACfm1jlSxq9OkP30009VVsax3gAAz3hvbe1hfZf0TZC/n4+Hqzm5ukkndmSXqIKp0AGgRWvUZBN1fh2sAAA4XcpsNVq6JVtS7Wx9LUFCuL9igq2qcRjaerDI0+UAAE6BW0HKZDIdcw4U50QBADxh6ZZslVfZ1TE6SAOTwj1dToMcPRX6poNFTIUOAC2YW+dIGYahyZMny2qtPUG2srJSv//974+ZtW/RokVNVyEAAPX4aFOmJOny/gkt6ku9bnHB+npXrkoqa5SWV6ZOzOAHAC2SW0Fq0qRJLvcnTpzYpMUAANAQBWVV+mZXniTp0n4JHq7GPb4+ZvVKCNPa9AJtzCgiSAFAC+VWkJo3b15z1QEAQIMt3ZqtGoehnu1CW+Q1mfp0qA1S6fnlKiivUkSgxdMlAQDcdEqTTQAA4Akfbaw9rK+ljUbVCQvwU0pUoCRpcwaTTgBAS0SQAgC0KIdKKvX93sOSpEv6tvNwNY3Xt0O4JGlbVrGq7Q7PFgMAcBtBCgDQony6OVsOo/aaTImRgZ4up9FSogIVFuAnW41DO7NLPF0OAMBNBCkAQIvS0g/rq2MymdSnfZgkaVNGEddmBIAWhiAFAGgxMgsr9NP+AplM0rg+Lfewvjq9EkLlYzYpt9Sm7OJKT5cDAHADQQoA0GJ8silLknRmSqTiw/w9XM2p8/fzUWpciCRpI5NOAECLQpACALQYdRfhbemH9R2tb4faw/t255SqvKrGw9UAABrK64NUSkqKTCbTMbepU6dKkoYNG3bMut///vcerhoA0NQO5JdrU0aRzCZpTO94T5fTZOJC/RUXapXdMLQls9jT5QAAGsitC/J6wo8//ii73e68v2XLFl100UX67W9/61x2yy236Mknn3TeDwxsubM4AQDq99nWbEm1h/VFB1s9XE3T6tchXJ9vy9HmjCKdkRzh6XIAAA3g9UEqJibG5f7TTz+tzp0764ILLnAuCwwMVHx86/l2EgBwrKVbaoNUaxqNqtM1Nlhf7cpVqa1G+/LK1LpiIgC0Tl5/aN/Rqqqq9MYbb+jmm2+WyWRyLn/zzTcVHR2t3r17a/r06SovLz/hdmw2m4qLi11uAADvdai4UmvTCyRJo1phkPL1MatXwi9ToQMAvJ/Xj0gd7YMPPlBhYaEmT57sXHbdddcpOTlZCQkJ2rRpkx588EHt3LlTixYtOu52ZsyYoSeeeOI0VAwAaAqfbcuRceQivO3CAjxdTrPo0z5Ma/cXKD2/XN0ZkgIAr9eigtTcuXM1ZswYJST8MlvTrbfe6vy5T58+ateunUaMGKE9e/aoc+fO9W5n+vTpmjZtmvN+cXGxEhMTm69wAMApWbqldtrz1nhYX52wAD91jA7Svrwy7S318XQ5AICTaDFBav/+/Vq+fPkJR5okaciQIZKk3bt3HzdIWa1WWa183QcALUFBWZW+35svSRrdioOUVDsV+r68Mu0vNcvkx98pAPBmLeYcqXnz5ik2Nlbjxo07YbsNGzZIktq1a/lXvAcASMu258juMNSjXaiSo4I8XU6zSo4MVFiAn6oNk4J6DvN0OQCAE2gRQcrhcGjevHmaNGmSfH1/GUTbs2ePnnrqKa1du1ZpaWlavHixbrzxRp1//vnq27evBysGADSVz47M1je6V+sejZIkk8mkvu1rJ50IGTBOhmF4uCIAwPG0iCC1fPlypaen6+abb3ZZbrFYtHz5cl188cXq3r277r33Xo0fP14fffSRhyoFADSlkspqfb0rT5I0pk/rD1KS1DMhVGaTIUtcJ+04XO3pcgAAx9EizpG6+OKL6/1WLjExUatWrfJARQCA0+HLHYdUZXeoU0yQusYGe7qc08Lfz0dJgQ6llflo6e4yXX+xpysCANSnRYxIAQDaps+2/nJY39HXD2ztOoU4JEmrMyqVW2LzcDUAgPoQpAAAXqmiyq4VO3IlSWN6t60JhCIshmyZO1TjkN75Md3T5QAA6kGQAgB4pa925aqi2q724QHq3T7U0+WcdiXrPpEkvbkmXTV2h4erAQD8GkEKAOCVltbN1te7bR3WV6dsxzcKtZqVVVSp5dtzPF0OAOBXCFIAAK9TVeNwhocxrfwivMdlr9ZFnQIkSa9+k+bZWgAAxyBIAQC8znd78lRSWaOYEKsGJkV4uhyPGdMlSH4+Jv2Qlq9NGYWeLgcAcBSCFADA69Qd1jeqV5zM5rZ3WF+dyAAfXdI3QZI095t9Hq4GAHA0ghQAwKvYHYY+31Z3WF/bmq2vPlPO7ShJ+mRTlrKKKjxcDQCgDkEKAOBVftiXr/yyKoUH+mlwx0hPl+NxvduHaUjHSNU4DL323X5PlwMAOIIgBQDwKku3ZEmSLuoRJz8f/kxJv4xKvbVmv8psNR6uBgAgEaQAAF7E4TD02dYjh/X1aaOz9dVjRI84pUQFqriyRv9bl+HpcgAAIkgBALzI+gOFyi6uVLDVV2d3jvZ0OV7Dx2zSTefUjkq9+s0+2R2GhysCABCkAABeo+6wvhE9YuXv5+PharzLVYM6KDzQT2mHy/XpkX4CAHgOQQoA4BUMw9CSzbXTnjNb37GCrL6aNDRFkjR7xR4ZBqNSAOBJBCkAgFfYfLBIBwsrFGjx0bDUGE+X45Umn52iQIuPtmcVa+XPuZ4uBwDaNIIUAMArfHrkIrzDu3NY3/FEBFl03eAkSdLLK/Z4uBoAaNsIUgAAjzMMQ59urj3vZ0xvZus7kd+d10l+Pib9kJavH9PyPV0OALRZBCkAgMdtzypR2uFyWX3NGp4a6+lyvFp8mL/GD+wgSfrnit0ergYA2i6CFADA4+pmoRuWGqMgq6+Hq/F+t13QWWaTtGJnrrZmFnm6HABokwhSAACPqzs/itn6GqZjdJDG9qntqxe/2OXhagCgbSJIAQA8aldOiXYfKpXFx6wLe3BYX0PdPaKrTCbps6052pzBqBQAnG4EKQCAR9VdO+q8rtEK9ffzcDUtR9e4EF3Rv70k6fllOz1cDQC0PQQpAIBH1Z0fNaYPh/W56+6RXeVjNmnlzlz9xAx+AHBaEaQAAB6zN7dUO7JL5Gs26aIecZ4up8VJjgrS1WfUzuD3/Oc/e7gaAGhbCFIAAI+pm2Ti7C7RCgvksL7GuOPCrrL4mLV672F9tzvP0+UAQJtBkAIAeEzdYX1juQhvo7UPD9B1Q5IkSc9+vlOGYXi4IgBoGwhSAACPSD9cri0Hi2U2SRf15LC+U/GH4Z0V4Oej9emF+mRzlqfLAYA2gSAFAPCIpVtrP/Cf1SlKUcFWD1fTssWG+Ov3F3SWJM1YskOV1XYPVwQArR9BCgDgEXXTnjNbX9O49fxOahfmr4OFFZr7zT5PlwMArR5BCgBw2mUWVmjDgUKZTNKoXhzW1xQCLD7605jukqTZK3brUHGlhysCgNaNIAUAOO2WHpmt78zkSMWG+Hu4mtbjsn4JGpAUrvIqu579jIv0AkBzIkgBAE67Xy7Cy2x9TclkMumRS3pKkt5bl6HNGUUerggAWi+CFADgtMouqtRP+wskSaOZ9rzJDUyK0G/6J8gwpIc/2Cy7g+nQAaA5EKQAAKfVx5syZRjSmSkRahcW4OlyWqWHxvZQiL+vNmUUad63TDwBAM2BIAUAOK0+3JApqfZ8HjSP2FB/TR/TQ5L0/Oc/60B+uYcrAoDWhyAFADht9uaWavPBIvmYTRrLtOfNasKZiRqcEqmKarse+XCLDIND/ACgKRGkAACnzeKNtaNR53WN5iK8zcxsNun/ruwji49ZK3fmOvseANA0vDpIPf744zKZTC637t27O9dXVlZq6tSpioqKUnBwsMaPH6+cnBwPVgwAOB7DMLSYw/pOqy6xwbrjwi6SpCc/2qbcEpuHKwKA1sOrg5Qk9erVS1lZWc7bN99841x3zz336KOPPtLChQu1atUqZWZm6sorr/RgtQCA49lysFh788pk9TXr4l7M1ne6/P6CzuoeH6LDZVV64L2NHOIHAE3E64OUr6+v4uPjnbfo6GhJUlFRkebOnatZs2bpwgsv1KBBgzRv3jx99913+v777z1cNQDg1xZvPChJGtkjTsFWXw9X03ZYfM36+4QBsviatWJnrl5fvd/TJQFAq+D1QWrXrl1KSEhQp06ddP311ys9PV2StHbtWlVXV2vkyJHOtt27d1dSUpJWr159wm3abDYVFxe73AAAzcfuMJzn6FzWn8P6TrfU+BA9NKb20Pi/LtmundklHq4IAFo+rw5SQ4YM0fz587V06VK9/PLL2rdvn8477zyVlJQoOztbFotF4eHhLo+Ji4tTdnb2Cbc7Y8YMhYWFOW+JiYnN+CoAAD/sy1dOsU0h/r4alhrj6XLapElnp2hYaoyqahy66+31qqy2e7okAGjRvDpIjRkzRr/97W/Vt29fjRo1SkuWLFFhYaHefffdU9ru9OnTVVRU5LwdOHCgiSoGANTnww21h/WN6R0vq6+Ph6tpm0wmk569qp+igy3amVOiJz/e5umSAKBF8+og9Wvh4eHq1q2bdu/erfj4eFVVVamwsNClTU5OjuLjT3wSs9VqVWhoqMsNANA8Kqrs+nhTliTpNwPae7iati0mxKrnfttPJpP01pp0Lfgh3dMlAUCL1aKCVGlpqfbs2aN27dpp0KBB8vPz0xdffOFcv3PnTqWnp2vo0KEerBIAcLTPtmar1FajDhEBOqtjlKfLafOGpcZq2shukqRHP9yqtfsLPFwRALRMXh2k7rvvPq1atUppaWn67rvvdMUVV8jHx0fXXnutwsLCNGXKFE2bNk0rVqzQ2rVrddNNN2no0KE666yzPF06AOCI99ZmSJKuGtRBZrPJw9VAkqYO76LRveJVZXfo9jfWKqe40tMlAUCL49VBKiMjQ9dee61SU1N19dVXKyoqSt9//71iYmpPVP7b3/6mSy65ROPHj9f555+v+Ph4LVq0yMNVAwDqHCys0Ld78iRJ4wd28HA1qGM2m/Tc1f3ULS5Yh0ps+v0ba5l8AgDc5NUX8liwYMEJ1/v7+2v27NmaPXv2aaoIAOCORWszZBjSWZ0ilRgZ6OlyWpzt27c36/bvHhigB5aXaX16oSbPWal7h4bL5zijhtHR0UpKSmrWegCgJfHqIAUAaLkMw9B762oP6/vtIC4z4Y7i/FxJ0sSJE5v9uayJfRR39ZP6/qA0+qH/KH/ZnHrbBQQGasf27YQpADiCIAUAaBY/phVo/+FyBVl8NKbPiWdThauK0toLxY+77WGl9h3U7M+XUS6tyTMUMvASnTV8tLqHOVzW56Tv0Zsz71deXh5BCgCOIEgBAJrFe2trr9E3rm87BVr4c9MYUQnJ6tC1V7M/TwdJ/gcKternXG0t8lV8u1j1bh/W7M8LAC2ZV082AQBomcqravTJkWtHXcVhfS1C/8RwnZEcIUn6Yschbc0s8nBFAODdCFIAgCb34YZMlVXZlRIVqDNTIjxdDhro7M5R6tehdiRq+fZD2pZZ7OGKAMB7cawFAKBJGYah/67eL0m6fkiyTCauHdVSmEwmXdAtRoakTRlFWrY9R5IU6tmyAMArMSIFAGhS6w8UaltWsay+Zl01iGtHtTQmk0nDusWo75FzpJZtz9GeEj4uAMCv8c4IAGhSbxwZjbqkb4IigiwergaNYTKZNCw1xnmY34YCX4Wdc60Mw/BwZQDgPQhSAIAmk19WpY83104yccPQZA9Xg1NRd5jfkI6RkqTwc6/Xf9YXy+EgTAGARJACADShhT8dUFWNQ33ahzlHM9BymUwmndUpSv0iamQYDn26u1x3vr1eldV2T5cGAB5HkAIANAmHw9Cba9IlSRPPSmKSiVakS4hDeR89J1+z9MnmLE145Xvlltg8XRYAeBRBCgDQJL7alav0/HKF+Pvqsn7tPV0Omlj59q/06PmRCgvw04YDhfrN7G/1c06Jp8sCAI8hSAEAmsRr36VJkq4a1EEBFh/PFoNm0TvWqvf/cLZSogJ1sLBC4//5nZZvy/F0WQDgEQQpAMAp25ldohU7c2UySZOGpni6HDSjTjHBev8P52hwx0iV2Gr0u9d/0qxlPzMJBYA2hyAFADhlr3y1V5I0ule8UqKDPFwNmltEkEVvTBmiSUdmZnzxi12a8tqPKiqv9nBlAHD6EKQAAKckq6hCizcelCTden4nD1eD08Xia9YTl/fWrKv7yepr1oqdubr0H99oe1axp0sDgNOCIAUAOCXzvk1Ttd3Q4I6RGpAU4elycJpdObCD/nf72eoQEaD0/HJd8c9v9eGGg54uCwCaHUEKANBoxZXVeuvIlOe/v4DRqLaqd/swfXznuTq/W4wqqx26e8EGPfHRVlXbHZ4uDQCaDUEKANBob61JV6mtRl1jgzWsW6yny4EHhQdaNG/ymbrzwi6SakcqfztntQ7kl3u4MgBoHgQpAECj2GrsevWbfZJqz40ym7kAb1vnYzbp3otT9e8bz1Cov682HCjU2Be/1pLNWZ4uDQCaHEEKANAo7/54QIdKbIoLtery/lyAF7+4qGecltx9ngYmhaukskZ/eHOdHn5/syqr7Z4uDQCaDEEKAOC2iiq7XvpytyRp6vAusvjy5wSuOkQE6p3bhuoPwzrLZJLeXJOu38z+VrsPlXi6NABoEvzlAwC47b/fp+lQiU3twwM04cwkT5cDL+XnY9YDo7vr9ZsHKzrYoh3ZJbr0pW/17o8HZBhcwBdAy0aQAgC4paSyWi+v3CNJuntkV0ajcFLndY3RkrvP07ldolVRbdcD/9ukO95er8LyKk+XBgCNxl8/AIBbXv0mTQXl1eoUE6QrB3BuFBomNsRfr988WPePSpWv2aRPNmVp9Atf65tdeZ4uDQAahSAFAGiwwvIq/efrvZKke0Z2k68Pf0bQcGazSVOHd9H/bj9bnaKDlF1cqYlz1+ipj7cxEQWAFoe/gACABnt51R6V2GrUo12oxvVp5+ly0EL1SwzXx3edq4ln1Z5fN/ebfbr8H99qW2axhysDgIYjSAEAGiQtr0zzvkmTJN17UTeuG4VTEmjx1V9+00evTj5D0cEW7cwp0W9mf6tXvtojh4OJKAB4P4IUAOCkDMPQEx9tVZXdofO6RmtEj1hPl4RW4sLucfrsj+frop5xqrI79H9LduiaV1Zrb26pp0sDgBMiSAEATmr59kNasTNXfj4mPXFZL5lMjEah6UQFW/XKDYP09JV9FGTx0Y9pBRrz96/1r1V7VGN3eLo8AKgXQQoAcEKV1XY9+fFWSdLvzuukTjHBHq4IrZHJZNKEwUn67J7zdX63GNlqHJrx6Q5d+fJ32pHNuVMAvA9BCgBwQnNW7dGB/Aq1C/PXHcO7eLoctHIdIgL12k1n6tmr+irU31ebMop06Uvf6O/Ld6mqhtEpAN6DIAUAOK79h8ucF999eFwPBVl9PVwR2gKTyaTfnpGoZdMu0EU941RtN/S35T/rsn98ow0HCj1dHgBIIkgBAI7D7jB077sbZatx6OzOUUx3jtMuLtRfr9wwSC9dO0CRQRbtyC7RFf/8Vg+/v1mF5VWeLg9AG0eQAgDU619f7dFP+wsUbPXVzPF9mWACHmEymXRpvwQtu+d8XTmgvQxDenNNui58fpXe/ekAU6UD8BiO0QAAHGNrZpH+tuxnSdKjl/ZUYmSghyuCN9i+fbtHn39iV2lAWKTmbixTWoFND7y3SW98v1+PXNJTZ6ZEerQ2b5Cenq68vDxPl+EUHR2tpKQkT5cBNBuvDlIzZszQokWLtGPHDgUEBOjss8/WzJkzlZqa6mwzbNgwrVq1yuVxt912m+bMmXO6ywWAVqGy2q5p72xUtd3QxT3j9NtBHTxdEjysOD9XkjRx4kQPV1IrIDhEj72xQv9dl6dNGUX67ZzVGtsnXg+O7q7kqCBPl+cR6enp6t6jhyrKyz1dilNAYKB2bN9OmEKr5dVBatWqVZo6darOPPNM1dTU6KGHHtLFF1+sbdu2KSjolzfKW265RU8++aTzfmAg35wCQGM999lO7cwpUXSwRTOu7MMhfVBFae304+Nue1ipfQd5tJac9D16c+b9uijRpJsvHKZZy37WOz+ma8nmbH2+NUdXn5mouy7sqvgwf4/Webrl5eWporxc1z/4rOKSOnu6HOfvKS8vjyCFVsurg9TSpUtd7s+fP1+xsbFau3atzj//fOfywMBAxcfHn+7yAKDV+Whjpv7zzT5J0owr+yoq2OrhiuBNohKS1aFrL0+X4RQTYtWMK/voxqHJmvHpDn31c67eWpOu/63N0A1nJevW8zspNrRtBaq4pM5e9TsCWrMWNdlEUVGRJCky0vU46DfffFPR0dHq3bu3pk+frvKTDGvbbDYVFxe73ACgrdtysEj3v7dRknTbBZ10Uc84D1cENEyPdqF6/ebBeufWs3RmSoRsNQ7955t9OnfmCk1ftFlpeWWeLhFAK+TVI1JHczgc+uMf/6hzzjlHvXv3di6/7rrrlJycrISEBG3atEkPPvigdu7cqUWLFh13WzNmzNATTzxxOsoGgBbhcKlNt/13rSqrHbqgW4weGNXd0yUBbhvSKUrv3jZUq37O1T++3K2f9hfo7R/S9c6P6bqoZ5xuOCtF53SJ4nBVAE2ixQSpqVOnasuWLfrmm29clt96663On/v06aN27dppxIgR2rNnjzp3rv8Y4enTp2vatGnO+8XFxUpMTGyewgHAy1XbHbr9zXU6WFihjtFBevHaAfIx80ETLZPJZNKw1FgNS43Vj2n5ennlHn2545A+25qjz7bmqFN0kK4bkqTL+7dXTAiHrgJovBYRpO644w59/PHH+uqrr9Shw4lnjxoyZIgkaffu3ccNUlarVVYrb54AYHcYuuedDfphX76Crb76942DFBbg5+mygCZxZkqkzpwcqZ9zSvTG9/u1aN1B7c0r018+2a4Zn+7QuV2idXn/BF3UM04h/uz3ANzj1UHKMAzdeeedev/997Vy5Up17NjxpI/ZsGGDJKldu3bNXB0AtGwOh6EH/7dJH2/Kkp+PSf+4boC6xIZ4uiygyXWLC9GTl/fWA6O764P1B7VwbYY2HijUqp9zternXPn5mDSkY5Qu7B6r4d1jlRIVyOF/AE7Kq4PU1KlT9dZbb+nDDz9USEiIsrOzJUlhYWEKCAjQnj179NZbb2ns2LGKiorSpk2bdM899+j8889X3759PVw9AHgvwzD02OKtem9thnzMJr04YYCGpcZ6uiygWQVbfTXxrGRNPCtZ+/LK9OGGg1q8MVN7c8v0ze48fbM7T09+vE1xodba0ayUSPVPDFdqfIj8/Xw8XT4AL+PVQerll1+WVHvR3aPNmzdPkydPlsVi0fLly/XCCy+orKxMiYmJGj9+vP785z97oFoAaBkcDkN/+WS7/vv9fplM0vO/7acxfRjFR9vSMTpIfxzZTX8c2U17c0v15Y5D+nLHIf2Ylq+cYps+3pSljzdlSZLMptr23eNDlRIdqOTIICVGBqpdmL8iAi0K8feVmfMKgTbHq4OUYRgnXJ+YmKhVq1adpmoAoOWz1dh1/8JNWrwxU5I044o++s2A9h6uCvCsTjHB6hQTrN+d10kVVXZtOFCon9Ly9UNavrZmFiu/rEp7csu0J7f+adR9zCaFB/gpIsiiiEA/RQRaFBrgpyCLjwIsvkf+9VGQ1VeBFh8FWur+df05yOorq6+ZwwqBFsKrgxQAoOkUlVfr1v/+pDX78uVrNunp8X111aATT+ADtDUBFh8N7RyloZ2jJNV+qZtbYtO2rGL9nFOiA/kVSs8vV3p+uQ4VV6qsyi67w9DhsiodLqs65ef38zEpOtiqmBCrYoKtSggPUHJUoJIiA9UxOkgdo4Pk69OiLgMKtFoEKQBoA/YfLtOU137S7kOlCrb6as7EQTq3a7SnywK8nslkUmyov2JD/es9j9BWY1dhebXyy6pUUF6lgrJqFZRXqaiiWhVVdpVX2VVeVfOrf4/9ubLaIUmqthvKKqpUVlFlvfVYfc3qHh+ingmh6tchXEM6RSklKrBZ+wBA/QhSANDKLd6YqYcWbVaprUbxof6ad9OZ6tEu1NNlOaWnpysvL8/TZWj79u2eLgFu8JbfV3R0tJKSkhQX6n9K27E7DFVU21VcUa28UpsOFdt0qMSmjIJy7T9crv35ZdqbW6byKrs2ZhRpY0aR3v7hgCQpNsSq1AiTgnoOU5W9KV4VgIYgSAFAK1VRZdcTH23Vgh9rP2ydmRKhl64dqPiwU/vA15TS09PVvUcPVZSXe7oUp9LSUk+XgBMozs+VJE2cONHDldQKCAzUju3blZSUdErb8TGbFGz1VbDVVwnhAfW2cTgM7c8v17bMYm3JLNLatAJtOFCoQyU2HSqRoi+9Tx8fNJRQlqHOMUHqFheiICsf9YDmwv8uAGiF1uw9rIfe36w9uWUymaQ7hnfR3SO6et25FXl5eaooL9f1Dz6ruKT6L6J+umz/YZU+fe3vqqys/5AqeIeK0mJJ0rjbHlZq30EerSUnfY/enHm/8vLyTjlINYTZbHKeJzWub+1Mm5XVtZNjvPf1Fr21arMssR11sLBCBwsr9PXuPCVFBqp7fIi6xAR73f9/oKUjSAFAK5JfVqUZS7Zr4doMSVJMiFUvXNNf53Tx7vOh4pI6q0PXXh6tISd9j0efH+6JSkj2+D7jDfz9fHRWpyhZCkP0/OQ7ddvfF6k8KEE/55Qqu7iy9rDAw+Va5Zurngmh6tM+TOGBFk+XDbQKBCkAaAWqahx6+4d0vbD8ZxWUV0uSrhuSpAdHdVdYoN8x7TkvCWidgnyl1KQIDUiKUEF5lXZml2hbVrFKKmu0Lr1Q69ILlRwVqEFJEeoQEcBU68ApIEgBQAtmdxj6YP1B/W35z8ooqJAkdY8P0V+v6KNByRH1PobzkoC2ISLQorM6RWlwx0ilHS7Tpowi5wjV/sPlig2xamBShLrGBnNBYaARCFIA0AJVVtv1wfqD+vfXe50XCY0NserOEV014cxE+Z3gXAjOSwLaFrPJpE7RweoUHazC8iqtP1CobZnFOlRi09Kt2fp+n5+GdIxUt7gQmRmhAhqMIAUALUhuiU1v/5Cu11enKa+09uKfYQF+un1YZ00amqIAi0+Dt8V5SUDbEx5o0fDUWJ3VMUobMwq18UChCsur9dnWHP2wL19DOkapa1wwgQpoAIIUAHg5u8PQ17ty9c6PB7RsW45qHIYkKSHMXzed01HXDE5UqP+x50EBwPEEWGonqRiYFKENGYVat79ABeXVWro1Wz+kWXRWx0h1iQ3mHCrgBAhSAOCFDMPQ1sxiLd6YqY82Ziqr6JdD3/olhuvmc1I0tk+7Ex7CBwAnY/E1a3BKpPp1CNOGA4Van16o/LIqLdmSrahgi87qGKXOMUEEKqAeBCkA8BKGYWjzwSJ9vjVHSzZnaW9emXNdWICfrhzYXtecmaju8aEerBJAa2T19dGQjlHq3yFc6w8Uav2BQh0urdInm7MUF2rV0E5RSooMJFABRyFIAcBpcLzpxitrHNpyqErrs2364WClDlc4nOssPtIZ7fx1blKABrazyuJjU3nmbq3LPLVamHIcwPFYj1yXqn9iuNanF2r9gQLlFNv0wYZMdQgP0NDOUUoID/B0mYBXIEgBQDP79XTjftHJ8u84UAGdBsq/Q2+ZfH85v8lRVaGKvWtV/vNqVez5QbuqKvR2M9XFlOMAjsffz0dDO0epX2KYfkor0KaDRcoorNDCtRlKiQrU2Z2jFRNi9XSZgEcRpACgme1Mz5E5ZbAGX/o7FfuEqcLuemhMoI+huACH2gU4FOvvI58ug6WLBzdbPUw5DqChAi2+Or9bjAYkheuHffnamlWstMPlSjucrm6xwTqrU5QigiyeLhPwCIIUADSx7KJKfb/3sPOWdrhc0ZfepxxJsks+ZpM6RAQoJSpIyVGBCg/wO63nHTDlOAB3hfj7aUSPOA1MjtD3ew/r55xS/XyoVLsOlapHu1AN6Rip0ABmD0XbQpAC0God77ykppZfYdeWQ1XammvTlkNVyiq1u6w3yVBl5i71Tu2sXp0T1T48QL7Mtge0Gt5w3uHpqiEi0KIxvdvpjGSbvt97WHvzyrQtq1g7sovVo12oBiVHKCKQESq0DQQpAK3Sr89Lako+wZGyJvaWf1Jf+Sf1kV9ke5f1hsOuqpw9qkzfLFv6ZlVmbJNRVa7LZr6u5KjuTV4PAM8ozs+VJE2cONHDlfzidJ37GBNi1aX9EpRVVKHv9hxWRkGFtmYWa2tmsbrGBivJzOx+aP0IUgBapby8PFWUl+v6B59VXFLnU9pWhV3KqzQr12ZSbqVZpTW//oBgKNxiKMZqKMbfoWirIb+UFGlIiqRLOScJaKUqSoslSeNue1ipfQd5tBZPvc+0CwvQ+IEdlFlYoZ/2F2hfXpl2HSrVLvkp9rdPaMshmwYYBtOmo1UiSAFo1eKSOqtD115uPabMVqOMggplFJbrYEGFCsqrj2kTG2JVh4gAtY8IUPuwAFn9fI67Pc5JAlq3qIRkt99nmpqn32cSwgN0WXiA8kpt+imtQDtzihXQaZAeXZmv9/d+p5vO6ajRveJl8eWwZrQeBCkAbV6ZrUYHCyt0oODEwal9RIA6hAeoffiJgxMAtFXRwVaN7h2vFJ/Deu+T5YocNLb2elTp6xUdbNW1gxN17eAkrkWFVoEgBaDNKa2sDU4HCyuUUVBeb3CKCbGqQ3iAOkQEKCE8QP4EJwBosGBfKf/zf+rdRydrU3mY3v4hXYdKbHrpy936x4rdOrtzlMYP7KDRveMVaOHjKFom9lwArZphSIXlVc7glFlYqaKKeoJTcO2IUyLBCQCaTESAj+45p5vuuLCLPt+aoze+36/Vew/r2921tz9/sEUXdo/V6N7xGp4aqyBr6/9oerpmlG2I6OhoJSUlebqMFqv1760A2hSHw9CuQ6X6dHeZoi97QEsy/VR5YL9LG5NqR5wSjow4tSc4AUCz8vMxa1zfdhrXt50O5Jfr/fUH9b91Gdp/uFwfb8rSx5uyZPE169wu0Tq/a7TO7xajjtFBrW6SiuacUbYxAgIDtWP7dsJUIxGkADSp0/1NW43D0L7Cam3LrdK23Cptz6tSaZUhSQrqcb4q7ZLZJMWF+qt9eO3kEO3C/GX1JTgBgCckRgbqrhFddeeFXbQxo0hLt2Rr6ZYspR0u15c7DunLHYckSe3DAzS4Y6QGJkdoUFKEUuND5NPCp1VvyhllT1VO+h69OfN+5eXlEaQaiSAFoMmcjm/afEKiZU1IlSUhVdZ2qbLEd5bZz9+ljaOqUrbM7bId2KqLxl6mwYMGcAFcAPAyJpNJ/RPD1T8xXA+OTtXOnBKt3Jmrr3fl6sd9BTpYWKH31x/U++sPSpL8/cxKjQtR9/hQdW8Xok4xwUqJCmyRFzlvzIyy8D4EKQBNpqm/aatxSAVVJuVXmZRvMyu/yqRK+7HfRvqZDEX7G4q21l7DKdxi1s78PH363QIFjrqwxf2BBYC2xmQy1Qak+FD9/oLOqqiy68e0fK3dX6B16QVan16oUluNNmYUaWNGkctjfc0mxYX6KzrEquggi6KDrYoKtigq2KroYIvCAy0K8PORv59Z/n4+CvDzkfXIz/6+PvI1m2Ru4SNd8AyCFIAm15hv2iqr7cortSm3xKbcUpsOldiUX1ol41ftTKba6XXjQ/0VH+av+FB/RQT6HXMcfe4Brt0EAJ62ffv2Rj82WNIFUdIFUX6y94tWTpldaYXVSiusUXpRtbJK7copq1GV3XBOKNRYJlNtIPM1m+VrNsnHx1T775Fltf/W3vcxm+Trc1TbI/d9jtz3NZsUbPVViL+vQvz9XP49lG2TX2wnVdTUntNLgGvZCFIATqsah0OF5dXKL6vS4bIq5R0JTiWVNfW2D7b6OgNTfJi/YkOs8mOECQC8WnF+riRp4sSJzfxMJvkER8onNEY+gWHyCQqXOTBMPoHh8gkKl09gmMz+ITJb/NWuQ7JqDKmy2qGKarvLVgxDqrYbqrbbj/M8TSfhphe1JFNS5m4F+Pko0OqjQIuPgiy+Crb6KjTAT6H+vgo9Er44qsJ7EaQANDnDkCqq7CqsqHKGpvyyKuWXV6moolrGr4eZjgj191VMiFUxwVZFh1gVF+qv4DYwFS4AtDYVpcWSpHG3PazUvoM8WkvtpAp3afHatRo4cKAkyTAM2WocstU4ZHcYqnEc+dduHLlvuC4/su7o+3Z7/e2qahwqs9WopLJGJZXVKqmsUfGRn3MKirX7QI58QyIlmVRRbVdFtV2HT1B/oMVHIf6+CvP3U1ign8ICfrkFW31b3cyGLQmfUAA0SkWVXZlFFcoqrFRGQbn255dr4+4CxU96QYsz/FRzYO9xH2vxMSsyyKLIIIuigy3O8GRlCnIAaFWiEpK9clIFk8lUe47Uaf67s27dOg0aNFr3/GORolJSVWazq7yqRuVVdmf4KnaGr2pV2w2VV9lVXmVXTrHtmO35mE0K9fdVWICfwgMsCg3wVVjgkZ8ZzWp2BCkAx6i2O5RbYlNWUaUyCyuUWVihrKLKIxe0rf05v6yq3sda47uo5siIU7DVV+EBfoo4EprqbkEWH75BAwC0WSaTFGjxVaDFV5K13jZ1o2bFFdUqrqxRUUW1y62kslp2h6GC8moVlFdLOnbG3GCrr8sIlvMW6Oc8OuRUzmNrSi3x4sAEKaANKa+q0aHi2okcDpVU6lDxkYkdimvv55YcmeThOCHp14IsPkoID1BCeICSowLlU56vmY/cr+vv/JO6pfbgmzAAABrp6FGz2NBj1zschkpsRwJWeW24KqyoUnFF7bIqu0OlthqV2mrqnYjDV76Kn/SC/rhwi2oKl6mmMFs1JXmyl+TLXnpYjooS6Zgpn5pPS7w4MEHKC53uC5qeSEv8dqAtcTgMFVVUa/OuNO3POayiSoeKbA4V2xwqqjzyr82hgkq7Ciocqqhp+Buij0mKCvRRdICPogPNig70cbnFBPoo0M901MhSlbZvP6CKPT8o1E+EKAAAmpHZbHKOMCnSdZ1hGKqoth8zilUXuMqq7KqRWdb4LrLGd6l3+yYZ8veRAnxq/7X6GLKYJYvZkNUsWY7ct5oNWXwkP1PtSFtjtNSLAxOkvMzpuKCpO1ritwMtlWEYqqx2uLzh1U3ScLjUpsNHZrk7XFo7YpRXWqWC8irZHe59W+SoqpS9LF/20oJf/i3N/9XPBXJUlGhvI7+JKi0tbdTjAADAqTOZTM5DB9uFBRyzvtru0OqVn+uz/72poRPuVnBcUm3AstlVaqtRRbVdhkyqsEsV9Vy/sf7nlPx9a6/XZfX1kcXXLKuv+Vf/HrXc55flNrskc8s7T5og5UVq7A7tOpAjm/x09YOzFNshRSbJeZPpl59Px+klLfXbAU8wDENVdofKbXaVVdWoosqusiq7ym01Kquyq7iiWoVHwlHxr78dOupWVeNo1PPbK0sV7O+nQKufrObab42O/tffxzhyk3xNZplM0ZKim7YTJG3/YZU+fe3vqqysbPJtAwCApuHnY1aQqlSx+wd18CtT/9RYl/V2h6HyqhqVHflcU2qrUWVV7QyDddPHV1bbnf9W243aGXuPLJOq3azIouT7P9S7W0t0ZGLFFqHVBKnZs2fr2WefVXZ2tvr166eXXnpJgwcP9nRZbkk7XKYpHx1S4p1vao0kZZy4fd3F4+q7WNwxF4pzXlzuV8vqLj7nc+wyP5tJfjEpyiypUXxhhay+Zln9fGT1rd2GpycLcDgMVR+ZbrTa/sv0o3VTl1bb61l3ZHnVkSlPq2qO/tnuXGarcajK2c7unCK14sisOuVVRwWmI/dr3BwZOp6jZ+CJCLIoKsiqqCCL8yrtzp+Daq/cnrZzq84afIamzV6kDl1Tm6SGxspJ5yK4AAC0dD5m05GLCPs1qH2N3eESsKrsjqM+U9mP87nLIZu9dl21vfYzVIBvy5qIqlUEqXfeeUfTpk3TnDlzNGTIEL3wwgsaNWqUdu7cqdjY2JNvwEs4jNrRpoZ+HP/l4nGGpMaNZJyYnxJu/ofu+DRX+vRLlzVmk2TxNcvXbJbZpCNX+jbLxyz5mGpDm4/JJPORcFZXr6Ha0RtDkn51v3Z97TcadTPJOIy6IFQbdGrshuyGIbvjdJ7+6B4/s+Tva5K/r1n+viZZfU0K9jMpyGJWsMWsID9T7b8Ws4IttT8H+5kVdOTnAN/6QmrNkVt57QsvkSpLpIOSdv+847S/RgAAgDq+PmYF+5gV7N+4aJH+81a9eN+NGrlyRRNX1rxaRZCaNWuWbrnlFt10002SpDlz5uiTTz7Rq6++qj/96U8erq7husWF6H9Xt9OgQYN0zz8WKaFLz+OGDEOGHIaOXDzuqIvF1V0Y7jjLXO4fGc359YXl6pbbbFUqKSpUSESkagyTy2FnjiNXBm+eANd4huGQ7HYZDrvkqJHhqPv56H9rZNRUy7BXS0f+NWqqjvzrel9HL7NXy1FVKaO64si/NhlV5XJUV8qoqpSjqkJGdaVkeKZPOC8JAAC0RGaT5KgsVYBfy5qoqsUHqaqqKq1du1bTp093LjObzRo5cqRWr15d72NsNptstl8ualZUVCRJKi4ubt5iG6Duw/DB3VtVVdn4CSfMR24NG5A96gFHyS3Yp3dnP6JXXnlFqampchwZCapyGKqy117h22HIebM7fzac940jPx/N9Zwvk3Ph8c4F8zGblLF/nx555M8aOmq8QqNiZZJx1E0uP9fLJMnnyE2q55INJkmWI7eTS/95s9Yu/1BnjrlGHTp2bdBjmktdLWk7NsnPwzPl1R3al532s/YEBVKLF9YieVc91OL9tUjeVQ+1eH8tknfVk5uxT5K0du1aj3/puHPnTklSxq6tslV4dmIxb/wdlZaWesXn8boaDOPExz+ZjJO18HKZmZlq3769vvvuOw0dOtS5/IEHHtCqVau0Zs2aYx7z+OOP64knnjidZQIAAABoQQ4cOKAOHTocd32LH5FqjOnTp2vatGnO+w6HQ/n5+YqKivL4BArFxcVKTEzUgQMHFBpaz9XXcEro3+ZF/zYv+rd50b/Ni/5tXvRv86J/m5e39a9hGCopKVFCQsIJ27X4IBUdHS0fHx/l5OS4LM/JyVF8fHy9j7FarbJaXY/tCg8Pb64SGyU0NNQrdqTWiv5tXvRv86J/mxf927zo3+ZF/zYv+rd5eVP/hoWFnbRNyzqjqx4Wi0WDBg3SF1984VzmcDj0xRdfuBzqBwAAAABNpcWPSEnStGnTNGnSJJ1xxhkaPHiwXnjhBZWVlTln8QMAAACAptQqgtQ111yj3NxcPfroo8rOzlb//v21dOlSxcXFebo0t1mtVj322GPHHHqIpkH/Ni/6t3nRv82L/m1e9G/zon+bF/3bvFpq/7b4WfsAAAAA4HRr8edIAQAAAMDpRpACAAAAADcRpAAAAADATQQpAAAAAHATQeo0++tf/6qzzz5bgYGBDb4IsGEYevTRR9WuXTsFBARo5MiR2rVrl0ub/Px8XX/99QoNDVV4eLimTJmi0tLSZngF3s3dfkhLS5PJZKr3tnDhQme7+tYvWLDgdLwkr9KY/WzYsGHH9N3vf/97lzbp6ekaN26cAgMDFRsbq/vvv181NTXN+VK8krv9m5+frzvvvFOpqakKCAhQUlKS7rrrLhUVFbm0a8v77+zZs5WSkiJ/f38NGTJEP/zwwwnbL1y4UN27d5e/v7/69OmjJUuWuKxvyPtxW+JO//773//Weeedp4iICEVERGjkyJHHtJ88efIx++ro0aOb+2V4LXf6d/78+cf0nb+/v0sb9l9X7vRvfX/LTCaTxo0b52zD/vuLr776SpdeeqkSEhJkMpn0wQcfnPQxK1eu1MCBA2W1WtWlSxfNnz//mDbuvqc3OwOn1aOPPmrMmjXLmDZtmhEWFtagxzz99NNGWFiY8cEHHxgbN240LrvsMqNjx45GRUWFs83o0aONfv36Gd9//73x9ddfG126dDGuvfbaZnoV3svdfqipqTGysrJcbk888YQRHBxslJSUONtJMubNm+fS7uj+bysas59dcMEFxi233OLSd0VFRc71NTU1Ru/evY2RI0ca69evN5YsWWJER0cb06dPb+6X43Xc7d/NmzcbV155pbF48WJj9+7dxhdffGF07drVGD9+vEu7trr/LliwwLBYLMarr75qbN261bjllluM8PBwIycnp9723377reHj42M888wzxrZt24w///nPhp+fn7F582Znm4a8H7cV7vbvddddZ8yePdtYv369sX37dmPy5MlGWFiYkZGR4WwzadIkY/To0S77an5+/ul6SV7F3f6dN2+eERoa6tJ32dnZLm3Yf3/hbv8ePnzYpW+3bNli+Pj4GPPmzXO2Yf/9xZIlS4yHH37YWLRokSHJeP/990/Yfu/evUZgYKAxbdo0Y9u2bcZLL71k+Pj4GEuXLnW2cfd3djoQpDxk3rx5DQpSDofDiI+PN5599lnnssLCQsNqtRpvv/22YRiGsW3bNkOS8eOPPzrbfPrpp4bJZDIOHjzY5LV7q6bqh/79+xs333yzy7KGvAm0do3t3wsuuMC4++67j7t+yZIlhtlsdvmD//LLLxuhoaGGzWZrktpbgqbaf999913DYrEY1dXVzmVtdf8dPHiwMXXqVOd9u91uJCQkGDNmzKi3/dVXX22MGzfOZdmQIUOM2267zTCMhr0ftyXu9u+v1dTUGCEhIcZrr73mXDZp0iTj8ssvb+pSWyR3+/dknyvYf12d6v77t7/9zQgJCTFKS0udy9h/69eQv0EPPPCA0atXL5dl11xzjTFq1Cjn/VP9nTUHDu3zcvv27VN2drZGjhzpXBYWFqYhQ4Zo9erVkqTVq1crPDxcZ5xxhrPNyJEjZTabtWbNmtNes6c0RT+sXbtWGzZs0JQpU45ZN3XqVEVHR2vw4MF69dVXZbSxS7CdSv+++eabio6OVu/evTV9+nSVl5e7bLdPnz4uF9AeNWqUiouLtXXr1qZ/IV6qqf4fFxUVKTQ0VL6+rtdbb2v7b1VVldauXevy3mk2mzVy5Ejne+evrV692qW9VLsv1rVvyPtxW9GY/v218vJyVVdXKzIy0mX5ypUrFRsbq9TUVN1+++06fPhwk9beEjS2f0tLS5WcnKzExERdfvnlLu+h7L+/aIr9d+7cuZowYYKCgoJclrP/Ns7J3n+b4nfWHHxP3gSelJ2dLUkuHzLr7tety87OVmxsrMt6X19fRUZGOtu0BU3RD3PnzlWPHj109tlnuyx/8skndeGFFyowMFCff/65/vCHP6i0tFR33XVXk9Xv7Rrbv9ddd52Sk5OVkJCgTZs26cEHH9TOnTu1aNEi53br27/r1rUVTbH/5uXl6amnntKtt97qsrwt7r95eXmy2+317ls7duyo9zHH2xePfq+tW3a8Nm1FY/r31x588EElJCS4fDAaPXq0rrzySnXs2FF79uzRQw89pDFjxmj16tXy8fFp0tfgzRrTv6mpqXr11VfVt29fFRUV6bnnntPZZ5+trVu3qkOHDuy/RznV/feHH37Qli1bNHfuXJfl7L+Nd7z33+LiYlVUVKigoOCU33OaA0GqCfzpT3/SzJkzT9hm+/bt6t69+2mqqHVpaP+eqoqKCr311lt65JFHjll39LIBAwaorKxMzz77bKv4INrc/Xv0h/o+ffqoXbt2GjFihPbs2aPOnTs3erstxenaf4uLizVu3Dj17NlTjz/+uMu61rz/omV6+umntWDBAq1cudJlQoQJEyY4f+7Tp4/69u2rzp07a+XKlRoxYoQnSm0xhg4dqqFDhzrvn3322erRo4f+9a9/6amnnvJgZa3P3Llz1adPHw0ePNhlOftv20OQagL33nuvJk+efMI2nTp1atS24+PjJUk5OTlq166dc3lOTo769+/vbHPo0CGXx9XU1Cg/P9/5+Jasof17qv3w3nvvqby8XDfeeONJ2w4ZMkRPPfWUbDabrFbrSdt7s9PVv3WGDBkiSdq9e7c6d+6s+Pj4Y2bdycnJkST23wb2b0lJiUaPHq2QkBC9//778vPzO2H71rT/Hk90dLR8fHyc+1KdnJyc4/ZnfHz8Cds35P24rWhM/9Z57rnn9PTTT2v58uXq27fvCdt26tRJ0dHR2r17d5v6IHoq/VvHz89PAwYM0O7duyWx/x7tVPq3rKxMCxYs0JNPPnnS52mr+29jHO/9NzQ0VAEBAfLx8Tnl/xPNgXOkmkBMTIy6d+9+wpvFYmnUtjt27Kj4+Hh98cUXzmXFxcVas2aN85unoUOHqrCwUGvXrnW2+fLLL+VwOJwfWluyhvbvqfbD3LlzddlllykmJuakbTds2KCIiIhW8SH0dPVvnQ0bNkiS8w/50KFDtXnzZpcQsWzZMoWGhqpnz55N8yI9qLn7t7i4WBdffLEsFosWL158zHTH9WlN++/xWCwWDRo0yOW90+Fw6IsvvnD51v5oQ4cOdWkv1e6Lde0b8n7cVjSmfyXpmWee0VNPPaWlS5e6nA94PBkZGTp8+LDLB/+2oLH9ezS73a7Nmzc7+4799xen0r8LFy6UzWbTxIkTT/o8bXX/bYyTvf82xf+JZuGxaS7aqP379xvr1693TrG9fv16Y/369S5TbaemphqLFi1y3n/66aeN8PBw48MPPzQ2bdpkXH755fVOfz5gwABjzZo1xjfffGN07dq1zU5/fqJ+yMjIMFJTU401a9a4PG7Xrl2GyWQyPv3002O2uXjxYuPf//63sXnzZmPXrl3GP//5TyMwMNB49NFHm/31eBt3+3f37t3Gk08+afz000/Gvn37jA8//NDo1KmTcf755zsfUzf9+cUXX2xs2LDBWLp0qRETE9Nmpz93p3+LioqMIUOGGH369DF2797tMuVuTU2NYRhte/9dsGCBYbVajfnz5xvbtm0zbr31ViM8PNw5Q+QNN9xg/OlPf3K2//bbbw1fX1/jueeeM7Zv32489thj9U5/frL347bC3f59+umnDYvFYrz33nsu+2rd37+SkhLjvvvuM1avXm3s27fPWL58uTFw4ECja9euRmVlpUdeoye5279PPPGE8dlnnxl79uwx1q5da0yYMMHw9/c3tm7d6mzD/vsLd/u3zrnnnmtcc801xyxn/3VVUlLi/IwryZg1a5axfv16Y//+/YZhGMaf/vQn44YbbnC2r5v+/P777ze2b99uzJ49u97pz0/0O/MEgtRpNmnSJEPSMbcVK1Y42+jINV/qOBwO45FHHjHi4uIMq9VqjBgxwti5c6fLdg8fPmxce+21RnBwsBEaGmrcdNNNLuGsrThZP+zbt++Y/jYMw5g+fbqRmJho2O32Y7b56aefGv379zeCg4ONoKAgo1+/fsacOXPqbdvaudu/6enpxvnnn29ERkYaVqvV6NKli3H//fe7XEfKMAwjLS3NGDNmjBEQEGBER0cb9957r8v03W2Fu/27YsWKet9PJBn79u0zDIP996WXXjKSkpIMi8ViDB482Pj++++d6y644AJj0qRJLu3fffddo1u3bobFYjF69eplfPLJJy7rG/J+3Ja407/Jycn17quPPfaYYRiGUV5eblx88cVGTEyM4efnZyQnJxu33HKLRz8keZo7/fvHP/7R2TYuLs4YO3assW7dOpftsf+6cvf9YceOHYYk4/PPPz9mW+y/ro7396muTydNmmRccMEFxzymf//+hsViMTp16uTyWbjOiX5nnmAyjFY+By4AAAAANDHOkQIAAAAANxGkAAAAAMBNBCkAAAAAcBNBCgAAAADcRJACAAAAADcRpAAAAADATQQpAAAAAHATQQoAAAAA3ESQAgC0evPnz1d4ePgpbyctLU0mk0kbNmw45W0BAFo2ghQAoEWYPHmyTCaTTCaTLBaLunTpoieffFI1NTWnrYbExERlZWWpd+/ekqSVK1fKZDKpsLDwtNUAAPAOvp4uAACAhho9erTmzZsnm82mJUuWaOrUqfLz89P06dOb/bmrqqpksVgUHx/f7M8FAPB+jEgBAFoMq9Wq+Ph4JScn6/bbb9fIkSO1ePFiFRQU6MYbb1RERIQCAwM1ZswY7dq167jb2bNnjy6//HLFxcUpODhYZ555ppYvX+7SJiUlRU899ZRuvPFGhYaG6tZbb3U5tC8tLU3Dhw+XJEVERMhkMmny5Ml6/fXXFRUVJZvN5rK93/zmN7rhhhuavlMAAB5BkAIAtFgBAQGqqqrS5MmT9dNPP2nx4sVavXq1DMPQ2LFjVV1dXe/jSktLNXbsWH3xxRdav369Ro8erUsvvVTp6eku7Z577jn169dP69ev1yOPPOKyLjExUf/73/8kSTt37lRWVpb+/ve/67e//a3sdrsWL17sbHvo0CF98sknuvnmm5u4BwAAnkKQAgC0OIZhaPny5frss8+UlJSkxYsX6z//+Y/OO+889evXT2+++aYOHjyoDz74oN7H9+vXT7fddpt69+6trl276qmnnlLnzp1dwo8kXXjhhbr33nvVuXNnde7c2WWdj4+PIiMjJUmxsbGKj49XWFiYAgICdN1112nevHnOtm+88YaSkpI0bNiwJu0HAIDnEKQAAC3Gxx9/rODgYPn7+2vMmDG65pprNHnyZPn6+mrIkCHOdlFRUUpNTdX27dvr3U5paanuu+8+9ejRQ+Hh4QoODtb27duPGZE644wzGlXnLbfcos8//1wHDx6UVDtrYN1kGQCA1oHJJgAALcbw4cP18ssvy2KxKCEhQb6+vseMIjXEfffdp2XLlum5555Tly5dFBAQoKuuukpVVVUu7YKCghpV54ABA9SvXz+9/vrruvjii7V161Z98sknjdoWAMA7EaQAAC1GUFCQunTp4rKsR48eqqmp0Zo1a3T22WdLkg4fPqydO3eqZ8+e9W7n22+/1eTJk3XFFVdIqh2hSktLc7sei8UiSbLb7ces+93vfqcXXnhBBw8e1MiRI5WYmOj29gEA3otD+wAALVrXrl11+eWX65ZbbtE333yjjRs3auLEiWrfvr0uv/zy4z5m0aJF2rBhgzZu3KjrrrtODofD7edOTk6WyWTSxx9/rNzcXJWWljrXXXfddcrIyNC///1vJpkAgFaIIAUAaPHmzZunQYMG6ZJLLtHQoUNlGIaWLFkiPz+/etvPmjVLEREROvvss3XppZdq1KhRGjhwoNvP2759ez3xxBP605/+pLi4ON1xxx3OdWFhYRo/fryCg4P1m9/8prEvDQDgpUyGYRieLgIAgNZoxIgR6tWrl1588UVPlwIAaGIEKQAAmlhBQYFWrlypq666Stu2bVNqaqqnSwIANDEmmwAAoIkNGDBABQUFmjlzJiEKAFopRqQAAAAAwE1MNgEAAAAAbiJIAQAAAICbCFIAAAAA4CaCFAAAAAC4iSAFAAAAAG4iSAEAAACAmwhSAAAAAOAmghQAAAAAuOn/Afyytn8jZalbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAHWCAYAAAB9mLjgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABf2klEQVR4nO3dd3wUdf7H8ffuJrvpjZBGEjrSUUAQxIKgCNhBUVFBUfydoCJnwzvFDqLHCcrJnaeUsyBY0FMPC4ioIChd6RASShJISK+b7Pz+CKwEEmBCkt3A6/l4zCO7M9+Z/exmIHnn+53vWAzDMAQAAAAAOGVWTxcAAAAAAA0NQQoAAAAATCJIAQAAAIBJBCkAAAAAMIkgBQAAAAAmEaQAAAAAwCSCFAAAAACYRJACAAAAAJMIUgAAAABgEkEKAM5ATz/9tCwWizIyMk7atlmzZho5cmTdF3WM2bNny2KxaPfu3ab39VTNp+LSSy/VpZdeWi+vZbFY9PTTT7ufm/m+1wZv/j4AQF0jSAGAF9i4caOGDh2qpk2bys/PT02aNNHll1+u1157zdOlnbYXX3xRCxcurNPX2LRpk55++ukahbITGTlypCwWi3sJCgpSixYtNHToUH300UdyuVy18jrLly/X008/rezs7Fo5Xm3y5toAwJN8PF0AAJztli9frr59+yoxMVH33HOPYmJitGfPHv3888+aNm2a7r///jp9/a1bt8pqrbu/q7344osaOnSorrvuukrrb7/9dt18881yOBymj3lszZs2bdIzzzyjSy+9VM2aNTvNiitzOBz697//LUkqKipScnKy/vvf/2ro0KG69NJL9emnnyokJMTd/uuvvzb9GsuXL9czzzyjkSNHKiws7JT3Kyoqko9P3f4oP1FtdX3uAIA3I0gBgIe98MILCg0N1S+//HLcL6oHDhyo89evSZCpDTabTTabrUb71mfNPj4+uu222yqte/755zV58mRNmDBB99xzjz744AP3NrvdXqf1uFwulZaWys/PT35+fnX6WifjqXMHALwBf0YCAA/buXOnOnToUGVPRFRUlPvx7t27ZbFYNHv27OPaHXutzBEZGRm66aabFBISokaNGunBBx9UcXFxpTZVXeeSnZ2tcePGKSEhQQ6HQ61atdJLL7103FA2l8uladOmqVOnTvLz81Pjxo115ZVX6tdff3XXVVBQoDlz5riHxx15rWOvkbrqqqvUokWLKj+jXr16qXv37lXWPHv2bN14442SpL59+7pfZ+nSpRoxYoQiIyPldDqPO+YVV1yhc845p8rXOxWPP/64rrjiCi1YsEDbtm1zr6/qGqnXXntNHTp0UEBAgMLDw9W9e3e99957kiqua3rkkUckSc2bN3fXf+RzsVgsGjt2rN5991116NBBDodDixYtcm+ryff9VM+lk9VW1bmza9cu3XjjjYqIiFBAQIAuuOACffHFF5XaLF26VBaLRfPnz9cLL7yg+Ph4+fn5qV+/ftqxY0e1nzkAeBN6pADAw5o2baoVK1bot99+U8eOHWv12DfddJOaNWumSZMm6eeff9b06dOVlZWluXPnVrtPYWGhLrnkEu3bt0/33nuvEhMTtXz5ck2YMEGpqal69dVX3W1HjRql2bNna+DAgbr77rtVVlamH374QT///LO6d++u//znP7r77rvVo0cPjR49WpLUsmXLKl932LBhuuOOO/TLL7/o/PPPd69PTk7Wzz//rJdffrnK/S6++GI98MADmj59up544gm1a9dOktSuXTvdfvvtmjt3rr766itdddVV7n3S0tK0ZMkSTZw48ZQ/y6rcfvvt+vrrr/XNN9+oTZs2VbZ588039cADD2jo0KHuQLNhwwatXLlSt956q2644QZt27ZN77//vv7+978rMjJSktS4cWP3MZYsWaL58+dr7NixioyMPOnwxZp836tyKrUdLT09Xb1791ZhYaEeeOABNWrUSHPmzNE111yjDz/8UNdff32l9pMnT5bVatXDDz+snJwcTZkyRcOHD9fKlStN1QkAHmEAADzq66+/Nmw2m2Gz2YxevXoZjz76qPHVV18ZpaWlldolJSUZkoxZs2YddwxJxsSJE93PJ06caEgyrrnmmkrt7rvvPkOSsX79eve6pk2bGiNGjHA/f+6554zAwEBj27ZtlfZ9/PHHDZvNZqSkpBiGYRhLliwxJBkPPPDAcfW4XC7348DAwErHP2LWrFmGJCMpKckwDMPIyckxHA6H8ec//7lSuylTphgWi8VITk6utuYFCxYYkozvvvuu0r7l5eVGfHy8MWzYsErrp06dalgsFmPXrl3H1XW0ESNGGIGBgdVuX7t2rSHJeOihh9zrLrnkEuOSSy5xP7/22muNDh06nPB1Xn755UqfxdEkGVar1fj999+r3FaT77uZc+lEtR37fRg3bpwhyfjhhx/c6/Ly8ozmzZsbzZo1M8rLyw3DMIzvvvvOkGS0a9fOKCkpcbedNm2aIcnYuHHjca8FAN6GoX0A4GGXX365VqxYoWuuuUbr16/XlClTNGDAADVp0kSfffbZaR17zJgxlZ4fmbjiyy+/rHafBQsW6KKLLlJ4eLgyMjLcS//+/VVeXq5ly5ZJkj766CNZLJYqe3UsFovpWkNCQjRw4EDNnz9fhmG413/wwQe64IILlJiYaPqYVqtVw4cP12effaa8vDz3+nfffVe9e/dW8+bNTR/zaEFBQZJU6djHCgsL0969e/XLL7/U+HUuueQStW/f/pTb1+T7Xhu+/PJL9ejRQ3369HGvCwoK0ujRo7V7925t2rSpUvs777yz0jVlF110kaSK4YEA4O0IUgDgBc4//3x9/PHHysrK0qpVqzRhwgTl5eVp6NChx/3yaUbr1q0rPW/ZsqWsVusJpwnfvn27Fi1apMaNG1da+vfvL+mPCTB27typuLg4RURE1Li+Yw0bNkx79uzRihUr3K+xevVqDRs2rMbHvOOOO1RUVKRPPvlEUsVMc6tXr9btt99+2vXm5+dLkoKDg6tt89hjjykoKEg9evRQ69atNWbMGP3000+mXsds4KvJ9702JCcnV3nd2ZHhlsnJyZXWHxuOw8PDJUlZWVl1VCEA1B6CFAB4EbvdrvPPP18vvvii3njjDTmdTi1YsEBS9b085eXlp3z8U+kpcrlcuvzyy/XNN99UuQwZMuSUX8+sq6++WgEBAZo/f74kaf78+bJare7JJGqiffv26tatm9555x1J0jvvvCO73a6bbrrptOv97bffJEmtWrWqtk27du20detWzZs3T3369NFHH32kPn36mLo+y9/f/7TqPPb7XhvnUm2obtbGo3skAcBbEaQAwEsdmaUuNTVV0h9/rT/2xqjH/pX/aNu3b6/0fMeOHXK5XCecrKBly5bKz89X//79q1yO9CK0bNlS+/fv16FDh074PswM8wsMDNRVV12lBQsWyOVy6YMPPtBFF12kuLi403qNO+64Q0uWLFFqaqree+89DR482P15no7//Oc/slgsuvzyy0/YLjAwUMOGDdOsWbOUkpKiwYMH64UXXnDPpFeToZAncrLvu5lzyUxtTZs21datW49bv2XLFvd2ADhTEKQAwMO+++67Kv8Cf+R6liNDpUJCQhQZGem+RumIf/zjH9Uee8aMGZWev/baa5KkgQMHVrvPTTfdpBUrVuirr746blt2drbKysokSUOGDJFhGHrmmWeOa3f0+wkMDDzuF/YTGTZsmPbv369///vfWr9+/SkN6wsMDHTXV5VbbrlFFotFDz74oHbt2nXcfaFqYvLkyfr66681bNiw44bSHS0zM7PSc7vdrvbt28swDPe07Cer36yTfd/NnEtmahs0aJBWrVrlHpopSQUFBfrXv/6lZs2ambrOCwC8HdOfA4CH3X///SosLNT111+vtm3bqrS0VMuXL9cHH3ygZs2a6c4773S3vfvuuzV58mTdfffd6t69u5YtW1bpHkbHSkpK0jXXXKMrr7xSK1as0DvvvKNbb71VXbp0qXafRx55RJ999pmuuuoqjRw5Ut26dVNBQYE2btyoDz/8ULt371ZkZKT69u2r22+/XdOnT9f27dt15ZVXyuVy6YcfflDfvn01duxYSVK3bt307bffaurUqYqLi1Pz5s3Vs2fPal9/0KBBCg4O1sMPPyybzXZKQwnPPfdc2Ww2vfTSS8rJyZHD4dBll13mvg/XkftbLViwQGFhYRo8ePBJj3lEWVmZe1hgcXGxkpOT9dlnn2nDhg3q27ev/vWvf51w/yuuuEIxMTG68MILFR0drc2bN+v111/X4MGD3ddWdevWTZL0l7/8RTfffLN8fX119dVXu0OMWafyfT/Vc8lMbY8//rjef/99DRw4UA888IAiIiI0Z84cJSUl6aOPPpLVyt9vAZxBPDllIADAMP73v/8Zd911l9G2bVsjKCjIsNvtRqtWrYz777/fSE9Pr9S2sLDQGDVqlBEaGmoEBwcbN910k3HgwIFqp8HetGmTMXToUCM4ONgIDw83xo4daxQVFVU65rFTWBtGxZTVEyZMMFq1amXY7XYjMjLS6N27t/HKK69Umpa9rKzMePnll422bdsadrvdaNy4sTFw4EBj9erV7jZbtmwxLr74YsPf39+Q5H6tY6c/P9rw4cMNSUb//v2r/MyqqvnNN980WrRoYdhstiqnQp8/f74hyRg9enSVx6zKiBEjDEnuJSAgwGjWrJkxZMgQ48MPP3RP5320Y6c//+c//2lcfPHFRqNGjQyHw2G0bNnSeOSRR4ycnJxK+z333HNGkyZNDKvVWulzkWSMGTOmyvpO5/t+qufSiWqr6vuwc+dOY+jQoUZYWJjh5+dn9OjRw/j8888rtTky/fmCBQsqrT/RtOwA4G0shsEVnQBwNktISNCAAQP073//29Ol1KlPP/1U1113nZYtW+aeZhsAgJqijx0AzmJOp1OZmZmKjIz0dCl17s0331SLFi0q3eMIAICa4hopADhLffXVV5o3b56KiorUr18/T5dTZ+bNm6cNGzboiy++0LRp02p9hjwAwNmJoX0AcJbq27evduzYoT/96U964oknPF1OnbFYLAoKCtKwYcM0c+ZM+fjwN0QAwOkjSAEAAACASVwjBQAAAAAmEaQAAAAAwCQGiktyuVzav3+/goODuQgZAAAAOIsZhqG8vDzFxcWd8EbiBClJ+/fvV0JCgqfLAAAAAOAl9uzZo/j4+Gq3E6QkBQcHS6r4sEJCQjxcDQAAAABPyc3NVUJCgjsjVIcgJbmH84WEhBCkAAAAAJz0kh8mmwAAAAAAkwhSAAAAAGASQQoAAAAATCJIAQAAAIBJBCkAAAAAMIkgBQAAAAAmEaQAAAAAwCSCFAAAAACYRJACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJvl4ugAcLyUlRRkZGZ4uQ5IUGRmpxMRET5cBAAAAeBWClJdJSUlR23btVFRY6OlSJEn+AQHasnkzYQoAAAA4CkHKy2RkZKiosFDDH3tZ0YktPVpLespOvfvSI8rIyCBIAQAAAEchSHmp6MSWim/dwdNlAAAAAKgCk00AAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAkwhSAAAAAGASQQoAAAAATCJIAQAAAIBJBCkAAAAAMIkgBQAAAAAmEaQAAAAAwCSCFAAAAACYRJACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJjk0SC1bNkyXX311YqLi5PFYtHChQvd25xOpx577DF16tRJgYGBiouL0x133KH9+/dXOsahQ4c0fPhwhYSEKCwsTKNGjVJ+fn49vxMAAAAAZxOPBqmCggJ16dJFM2bMOG5bYWGh1qxZoyeffFJr1qzRxx9/rK1bt+qaa66p1G748OH6/fff9c033+jzzz/XsmXLNHr06Pp6CwAAAADOQj6efPGBAwdq4MCBVW4LDQ3VN998U2nd66+/rh49eiglJUWJiYnavHmzFi1apF9++UXdu3eXJL322msaNGiQXnnlFcXFxdX5ewAAAABw9mlQ10jl5OTIYrEoLCxMkrRixQqFhYW5Q5Qk9e/fX1arVStXrqz2OCUlJcrNza20AAAAAMCpajBBqri4WI899phuueUWhYSESJLS0tIUFRVVqZ2Pj48iIiKUlpZW7bEmTZqk0NBQ95KQkFCntQMAAAA4szSIIOV0OnXTTTfJMAy98cYbp328CRMmKCcnx73s2bOnFqoEAAAAcLbw6DVSp+JIiEpOTtaSJUvcvVGSFBMTowMHDlRqX1ZWpkOHDikmJqbaYzocDjkcjjqrGQAAAMCZzat7pI6EqO3bt+vbb79Vo0aNKm3v1auXsrOztXr1ave6JUuWyOVyqWfPnvVdLgAAAICzhEd7pPLz87Vjxw7386SkJK1bt04RERGKjY3V0KFDtWbNGn3++ecqLy93X/cUEREhu92udu3a6corr9Q999yjmTNnyul0auzYsbr55puZsQ8AAABAnfFokPr111/Vt29f9/Px48dLkkaMGKGnn35an332mSTp3HPPrbTfd999p0svvVSS9O6772rs2LHq16+frFarhgwZounTp9dL/QAAAADOTh4NUpdeeqkMw6h2+4m2HREREaH33nuvNssCAAAAgBPy6mukAAAAAMAbEaQAAAAAwCSCFAAAAACYRJACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAkwhSAAAAAGASQQoAAAAATCJIAQAAAIBJBCkAAAAAMIkgBQAAAAAmEaQAAAAAwCSCFAAAAACYRJACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAkzwapJYtW6arr75acXFxslgsWrhwYaXthmHoqaeeUmxsrPz9/dW/f39t3769UptDhw5p+PDhCgkJUVhYmEaNGqX8/Px6fBcAAAAAzjYeDVIFBQXq0qWLZsyYUeX2KVOmaPr06Zo5c6ZWrlypwMBADRgwQMXFxe42w4cP1++//65vvvlGn3/+uZYtW6bRo0fX11sAAAAAcBby8eSLDxw4UAMHDqxym2EYevXVV/XXv/5V1157rSRp7ty5io6O1sKFC3XzzTdr8+bNWrRokX755Rd1795dkvTaa69p0KBBeuWVVxQXF1dv7wUAAADA2cNrr5FKSkpSWlqa+vfv714XGhqqnj17asWKFZKkFStWKCwszB2iJKl///6yWq1auXJltccuKSlRbm5upQUAAAAATpXXBqm0tDRJUnR0dKX10dHR7m1paWmKioqqtN3Hx0cRERHuNlWZNGmSQkND3UtCQkItVw8AAADgTOa1QaouTZgwQTk5Oe5lz549ni4JAAAAQAPitUEqJiZGkpSenl5pfXp6untbTEyMDhw4UGl7WVmZDh065G5TFYfDoZCQkEoLAAAAAJwqrw1SzZs3V0xMjBYvXuxel5ubq5UrV6pXr16SpF69eik7O1urV692t1myZIlcLpd69uxZ7zUDAAAAODt4dNa+/Px87dixw/08KSlJ69atU0REhBITEzVu3Dg9//zzat26tZo3b64nn3xScXFxuu666yRJ7dq105VXXql77rlHM2fOlNPp1NixY3XzzTczYx8AAACAOuPRIPXrr7+qb9++7ufjx4+XJI0YMUKzZ8/Wo48+qoKCAo0ePVrZ2dnq06ePFi1aJD8/P/c+7777rsaOHat+/frJarVqyJAhmj59er2/FwAAAABnD48GqUsvvVSGYVS73WKx6Nlnn9Wzzz5bbZuIiAi99957dVEeAAAAAFTJa6+RAgAAAABvRZACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAkwhSAAAAAGASQQoAAAAATCJIAQAAAIBJBCkAAAAAMIkgBQAAAAAmEaQAAAAAwCSCFAAAAACYRJACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAkwhSAAAAAGASQQoAAAAATKpRkNq1a1dt11Gl8vJyPfnkk2revLn8/f3VsmVLPffcczIMw93GMAw99dRTio2Nlb+/v/r376/t27fXS30AAAAAzk41ClKtWrVS37599c4776i4uLi2a3J76aWX9MYbb+j111/X5s2b9dJLL2nKlCl67bXX3G2mTJmi6dOna+bMmVq5cqUCAwM1YMCAOq0LAAAAwNmtRkFqzZo16ty5s8aPH6+YmBjde++9WrVqVW3XpuXLl+vaa6/V4MGD1axZMw0dOlRXXHGF+7UMw9Crr76qv/71r7r22mvVuXNnzZ07V/v379fChQtrvR4AAAAAkGoYpM4991xNmzZN+/fv19tvv63U1FT16dNHHTt21NSpU3Xw4MFaKa53795avHixtm3bJklav369fvzxRw0cOFCSlJSUpLS0NPXv39+9T2hoqHr27KkVK1ZUe9ySkhLl5uZWWgAAAADgVJ3WZBM+Pj664YYbtGDBAr300kvasWOHHn74YSUkJOiOO+5QamrqaRX3+OOP6+abb1bbtm3l6+ur8847T+PGjdPw4cMlSWlpaZKk6OjoSvtFR0e7t1Vl0qRJCg0NdS8JCQmnVScAAACAs8tpBalff/1V9913n2JjYzV16lQ9/PDD2rlzp7755hvt379f11577WkVN3/+fL377rt67733tGbNGs2ZM0evvPKK5syZc1rHnTBhgnJyctzLnj17Tut4AAAAAM4uPjXZaerUqZo1a5a2bt2qQYMGae7cuRo0aJCs1opc1rx5c82ePVvNmjU7reIeeeQRd6+UJHXq1EnJycmaNGmSRowYoZiYGElSenq6YmNj3fulp6fr3HPPrfa4DodDDofjtGoDAAAAcPaqUY/UG2+8oVtvvVXJyclauHChrrrqKneIOiIqKkpvvfXWaRVXWFh43HFtNptcLpekisAWExOjxYsXu7fn5uZq5cqV6tWr12m9NgAAAABUp0Y9Uqdynya73a4RI0bU5PBuV199tV544QUlJiaqQ4cOWrt2raZOnaq77rpLkmSxWDRu3Dg9//zzat26tZo3b64nn3xScXFxuu66607rtQEAAACgOjUKUrNmzVJQUJBuvPHGSusXLFigwsLC0w5QR7z22mt68skndd999+nAgQOKi4vTvffeq6eeesrd5tFHH1VBQYFGjx6t7Oxs9enTR4sWLZKfn1+t1AAAAAAAx6rR0L5JkyYpMjLyuPVRUVF68cUXT7uoI4KDg/Xqq68qOTlZRUVF2rlzp55//nnZ7XZ3G4vFomeffVZpaWkqLi7Wt99+qzZt2tRaDQAAAABwrBoFqZSUFDVv3vy49U2bNlVKSsppFwUAAAAA3qxGQSoqKkobNmw4bv369evVqFGj0y4KAAAAALxZjYLULbfcogceeEDfffedysvLVV5eriVLlujBBx90T1UOAAAAAGeqGk028dxzz2n37t3q16+ffHwqDuFyuXTHHXfU6jVSAAAAAOCNahSk7Ha7PvjgAz333HNav369/P391alTJzVt2rS26wMAAAAAr1OjIHVEmzZtmCEPAAAAwFmnRkGqvLxcs2fP1uLFi3XgwAG5XK5K25csWVIrxQEAAACAN6pRkHrwwQc1e/ZsDR48WB07dpTFYqntugAAAADAa9UoSM2bN0/z58/XoEGDarseAAAAAPB6NZr+3G63q1WrVrVdCwAAAAA0CDUKUn/+8581bdo0GYZR2/UAAAAAgNer0dC+H3/8Ud99953+97//qUOHDvL19a20/eOPP66V4gAAAADAG9UoSIWFhen666+v7VoAAAAAoEGoUZCaNWtWbdcBAAAAAA1Gja6RkqSysjJ9++23+uc//6m8vDxJ0v79+5Wfn19rxQEAAACAN6pRj1RycrKuvPJKpaSkqKSkRJdffrmCg4P10ksvqaSkRDNnzqztOgEAAADAa9SoR+rBBx9U9+7dlZWVJX9/f/f666+/XosXL6614gAAAADAG9WoR+qHH37Q8uXLZbfbK61v1qyZ9u3bVyuFAQAAAIC3qlGPlMvlUnl5+XHr9+7dq+Dg4NMuCgAAAAC8WY2C1BVXXKFXX33V/dxisSg/P18TJ07UoEGDaqs2AAAAAPBKNRra97e//U0DBgxQ+/btVVxcrFtvvVXbt29XZGSk3n///dquEQAAAAC8So2CVHx8vNavX6958+Zpw4YNys/P16hRozR8+PBKk08AAAAAwJmoRkFKknx8fHTbbbfVZi0AAAAA0CDUKEjNnTv3hNvvuOOOGhUDAAAAAA1BjYLUgw8+WOm50+lUYWGh7Ha7AgICCFIAAAAAzmg1mrUvKyur0pKfn6+tW7eqT58+TDYBAAAA4IxXoyBVldatW2vy5MnH9VYBAAAAwJmm1oKUVDEBxf79+2vzkAAAAADgdWp0jdRnn31W6blhGEpNTdXrr7+uCy+8sFYKAwAAAABvVaMgdd1111V6brFY1LhxY1122WX629/+Vht1AQAAAIDXqlGQcrlctV0HAAAAADQYtXqNFAAAAACcDWrUIzV+/PhTbjt16tSavAQAAAAAeK0aBam1a9dq7dq1cjqdOueccyRJ27Ztk81mU9euXd3tLBZL7VQJAAAAAF6kRkHq6quvVnBwsObMmaPw8HBJFTfpvfPOO3XRRRfpz3/+c60WCQAAAADepEbXSP3tb3/TpEmT3CFKksLDw/X8888zax8AAACAM16NglRubq4OHjx43PqDBw8qLy/vtIsCAAAAAG9WoyB1/fXX684779THH3+svXv3au/evfroo480atQo3XDDDbVdIwAAAAB4lRpdIzVz5kw9/PDDuvXWW+V0OisO5OOjUaNG6eWXX67VAgEAAADA29QoSAUEBOgf//iHXn75Ze3cuVOS1LJlSwUGBtZqcQAAAADgjU7rhrypqalKTU1V69atFRgYKMMwaqsuAAAAAPBaNQpSmZmZ6tevn9q0aaNBgwYpNTVVkjRq1CimPgcAAABwxqtRkHrooYfk6+urlJQUBQQEuNcPGzZMixYtqrXiAAAAAMAb1egaqa+//lpfffWV4uPjK61v3bq1kpOTa6UwAAAAAPBWNeqRKigoqNQTdcShQ4fkcDhOu6ij7du3T7fddpsaNWokf39/derUSb/++qt7u2EYeuqppxQbGyt/f3/1799f27dvr9UaAAAAAOBoNQpSF110kebOnet+brFY5HK5NGXKFPXt27fWisvKytKFF14oX19f/e9//9OmTZv0t7/9TeHh4e42U6ZM0fTp0zVz5kytXLlSgYGBGjBggIqLi2utDgAAAAA4Wo2G9k2ZMkX9+vXTr7/+qtLSUj366KP6/fffdejQIf3000+1VtxLL72khIQEzZo1y72uefPm7seGYejVV1/VX//6V1177bWSpLlz5yo6OloLFy7UzTffXGu1AAAAAMARNeqR6tixo7Zt26Y+ffro2muvVUFBgW644QatXbtWLVu2rLXiPvvsM3Xv3l033nijoqKidN555+nNN990b09KSlJaWpr69+/vXhcaGqqePXtqxYoV1R63pKREubm5lRYAAAAAOFWme6ScTqeuvPJKzZw5U3/5y1/qoia3Xbt26Y033tD48eP1xBNP6JdfftEDDzwgu92uESNGKC0tTZIUHR1dab/o6Gj3tqpMmjRJzzzzTJ3WDgAAAODMZbpHytfXVxs2bKiLWo7jcrnUtWtXvfjiizrvvPM0evRo3XPPPZo5c+ZpHXfChAnKyclxL3v27KmligEAAACcDWo0tO+2227TW2+9Vdu1HCc2Nlbt27evtK5du3ZKSUmRJMXExEiS0tPTK7VJT093b6uKw+FQSEhIpQUAAAAATlWNJpsoKyvT22+/rW+//VbdunVTYGBgpe1Tp06tleIuvPBCbd26tdK6bdu2qWnTppIqJp6IiYnR4sWLde6550qScnNztXLlSv3pT3+qlRoAAAAA4FimgtSuXbvUrFkz/fbbb+rataukimBzNIvFUmvFPfTQQ+rdu7defPFF3XTTTVq1apX+9a9/6V//+pf7tcaNG6fnn39erVu3VvPmzfXkk08qLi5O1113Xa3VAQAAAABHMxWkWrdurdTUVH333XeSpGHDhmn69OnHTfZQW84//3x98sknmjBhgp599lk1b95cr776qoYPH+5u8+ijj6qgoECjR49Wdna2+vTpo0WLFsnPz69OagIAAAAAU0HKMIxKz//3v/+poKCgVgs61lVXXaWrrrqq2u0Wi0XPPvusnn322TqtAwAAAACOqNFkE0ccG6wAAAAA4GxgKkhZLJbjroGqzWuiAAAAAKAhMD20b+TIkXI4HJKk4uJi/d///d9xs/Z9/PHHtVchAAAAAHgZU0FqxIgRlZ7fdttttVoMAAAAADQEpoLUrFmz6qoOAAAAAGgwTmuyCQAAAAA4GxGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAkwhSAAAAAGASQQoAAAAATCJIAQAAAIBJBCkAAAAAMIkgBQAAAAAmEaQAAAAAwCSCFAAAAACYRJACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAkwhSAAAAAGASQQoAAAAATCJIAQAAAIBJBCkAAAAAMKlBBanJkyfLYrFo3Lhx7nXFxcUaM2aMGjVqpKCgIA0ZMkTp6emeKxIAAADAGa/BBKlffvlF//znP9W5c+dK6x966CH997//1YIFC/T9999r//79uuGGGzxUJQAAAICzQYMIUvn5+Ro+fLjefPNNhYeHu9fn5OTorbfe0tSpU3XZZZepW7dumjVrlpYvX66ff/652uOVlJQoNze30gIAAAAAp6pBBKkxY8Zo8ODB6t+/f6X1q1evltPprLS+bdu2SkxM1IoVK6o93qRJkxQaGupeEhIS6qx2AAAAAGcerw9S8+bN05o1azRp0qTjtqWlpclutyssLKzS+ujoaKWlpVV7zAkTJignJ8e97Nmzp7bLBgAAAHAG8/F0ASeyZ88ePfjgg/rmm2/k5+dXa8d1OBxyOBy1djwAAAAAZxev7pFavXq1Dhw4oK5du8rHx0c+Pj76/vvvNX36dPn4+Cg6OlqlpaXKzs6utF96erpiYmI8UzQAAACAM55X90j169dPGzdurLTuzjvvVNu2bfXYY48pISFBvr6+Wrx4sYYMGSJJ2rp1q1JSUtSrVy9PlAwAAADgLODVQSo4OFgdO3astC4wMFCNGjVyrx81apTGjx+viIgIhYSE6P7771evXr10wQUXeKJkAABqRUpKijIyMjxdhltkZKQSExM9XQYAeA2vDlKn4u9//7usVquGDBmikpISDRgwQP/4xz88XRYAADWWkpKitu3aqaiw0NOluPkHBGjL5s2EKQA4rMEFqaVLl1Z67ufnpxkzZmjGjBmeKQgAgFqWkZGhosJCDX/sZUUntvR0OUpP2al3X3pEGRkZBCkAOKzBBSkAAM4W0YktFd+6g6fLAABUwatn7QMAAAAAb0SQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAkwhSAAAAAGASQQoAAAAATCJIAQAAAIBJBCkAAAAAMIkgBQAAAAAm+Xi6AFTmLDdkC2qk7FKLXIcKVeIsV7nLULlhyGVIFovka7XK12aRr82qALtNgQ4fOXysslgsni4fABq0lJQUZWRkeLoMbd682dMlAABOgiDlRTbszdawj9IUP2aOFqdJStt3yvvarBYFO3wUHmhXRIBd4YG+igr2U6NAu6xWAhYAnExKSoratmunosJCT5filp+f7+kSAADVIEh5kfAAuyTJcJXLz8eqIH+HHL5W2awW2SwWWS0WGZKc5S6VlRsqLXepsKRMxWUulbsMZRc5lV3kVJIK3Mf0sVrUONih2FA/JYQHKC7MX3YfRnQCwLEyMjJUVFio4Y+9rOjElh6tZfOq7/W/OdNUXFzs0ToAANUjSHmRuDB/zb0uWpf06qHxMz5SfOs2p7RfWblLhaXlyilyKquwVFkFTmUWlCg9r0SlZS6l5hQrNadYa1KyZbVIMSF+ahYZqJaNgxQe4MuQQAA4SnRiS8W37uDRGtJTdnr09QEAJ0eQ8iI2q0VBdqskw9R+PjarQvytCvH3VUJEgHu9YRjKLnQqLbdY+7KLtOdQoXKLy7Q/p1j7c4q1fGemwgJ81bJxkM6JDlbjYEctvyMAAADgzESQOoNZLBaFB9oVHmhXu9gQSVJOkVPJmQXalVGgvYeKlF3o1OrkLK1OzlKjQLvOiQlW25hgBfv5erh6AAAAwHsRpM4yof6+6hwfps7xYSopK1dyZqG2pedpd0ahMgtKtXxnplbszFSzyEDFWiySheupAAAAgGMRpM5iDh+b2kQHq010sIqd5dpxIF+b03K1P7tYSRkFSpKvmvzfv7VwS75atXcqhF4qAAAAQBJBCof5+drUsUmoOjYJ1aGCUv22P0e/782SQqI0d0OePt66RLf0SNCdFzZXXJi/p8sFAAAAPIpxWzhORKBdF7durEFNnMr4cpriQ3yUX1KmN39I0kVTvtOD89bqt305ni4TAAAA8BiCFKpls0gFG7/RqwMiNWvk+erVopHKXYY+XbdfV732o25982et2Jnp6TIBAACAesfQPpyU1WJR37ZR6ts2Sr/ty9GbP+zS5xtStXxnppbvzFTvlo00/vI26t4swtOlAgAAAPWCHimY0rFJqKbdfJ6WPdpXt1/QVL42i5bvzNTQmSt0x9urtG5PtqdLBAAAAOocQQo10iTMX89d11HfPXypbumRIB+rRcu2HdR1M37SqNm/cA0VAAAAzmgM7cNpiQ8P0KQbOutPl7TS9CXb9fGavVq85YAWbzmgwZ1j9eiAc9S0UaCnywRwjJSUFGVkZHi6DElSZGSkEhMTPV0GAACmEKRQKxIbBeiVG7vovktbavri7fp0/X59sSFVX/+eptsuaKr7L2utiEC7p8sEoIoQ1bZdOxUVFnq6FEmSf0CAtmzeTJgCADQoBCnUqhaNg/Tqzedp9MUtNXnRFi3bdlCzftqtD3/dqz/1bam7LmwuP1+bp8sEzmoZGRkqKizU8MdeVnRiS4/Wkp6yU+++9IgyMjIIUgCABoUghTrRPi5Ec+/qoR+2H9SkL7doU2qupizaqv+sSNafrzhH15/XRDarxdNlAme16MSWim/dwdNlAADQIBGkUKcuat1YF94fqU/X79MrX23TvuwiPbxgvd7+MUl/HdxOvVtFerpEADghwzBUbhgqdxlyuXTU44r1hlH9vhaLZLNaZLNYZLVaZD3quc1qkcXCH5QAoKEiSKHOWa0WXX9evAZ2jNXcFbv12pId2pSaq1v/vVL92kZpwqB2ahUV5OkyAZyhSstcyiosVWZ+qQ4VlCqzoESHCkqVV1ym/JKKpaCkTPsOHFL0LZO0ONVHOrhbpeUulZa5VOY6QVI6TXabVb42i3xtVvn6/PG4UHEK73+vdpcGS3uy5edrlZ+PTX6+NgXYKxYfGxPvAoAnEaRQb/x8bRp9cUsN7Zag6Yu3652fk7V4ywEt3XZQt/ZI1Lj+rdUoyOHpMgE0AIZhKKvQqbScYqXlFik1p1jpOcVKzy1RZkGpDh0OS5mHA9Op8kvspGynJKez2jZWS8WNym1Wi6wWi450KlXqW7JIMiSXUdGD5XIZchmGjs1kpeUulZZLUvkxrxKqkG5XK7lMSt52sMo6HD5WBdp9FOCwKdDho0C7TUEOH4X4+yrEz1fBfj5y+Fjp9QKAOkKQQr2LCLTr6Ws66I5eTTXpf1v0zaZ0/efnZC1cu09jLmulkb2bMSEFcJYrKi3X3qxCpRwq1J5DhUrNLa4ITTnFSsstVmpOsUrLXKd8PKul4v+e8AC7IgLtahRkV6i/rwLtPgry81GQw0eZafv17FNP6Nq7xysuobnsPlbZD/cS1dZwvKOHCZaVG3KWu+QsN1Ra7qp4XOZSablLOzdv1Lrl36ndxVcrMCJaxWXlKna6VOwsV2FpucpdhkrKXCopK9WhE0y+aLdZFezvoxA/X4X6+Sos4MhiV7Cfj6yELACoMYIUPKZF4yC9eUd3rdiZqRe+3KTf9uVq8v+26J2fk/XolW11dedY/pIKnKEMw1B+SZkOFlsU2LGf5v2Wp/9sX6eUQxXh6WBeySkdp1GgXTGhfooN9VNMqJ+igv3UKMiuRoF2RQQ6KkJTYEVosp5kgps1a7L1+JYfFOv/kJqE+9fG2zyOxWKRj8UiH6vkOMFP4OLNh7T0h3fUuv/FOrfTuZW2GUZFiCooKVNBabkKD38tKClTXkmZ8oqdyi0qU5GzXKXlLmXmVwxrPJbNYlGIv4/CAuyKCLAf9bnZGTYIAKeAIAWP69WykT4b00efrN2nl7/aqr1ZRXrg/bWa9VOS/jq4vbo1Dfd0iQBqqMRZrqxCp7IKSw8vFY+zC50qdxmSfBU5+CHN35QvKb/SvsEOHyVEBCghwl9xYf6KDfVTdIifYkMrHkeFOOTwOft6ry0Wi/x8K66XanSCds5yl/KK/whWOUVOZRdVfPbZRRWff8X3w6kkFfxxfEmhAb5qFGhXoyCHIgPtFSMdLYQrADgaQQpewWq1aEi3eA3qFKs3f9ilmd/v1NqUbA15Y7kGd4rVY1e2VWKjAE+XCaAKhmEor6TMPZlDVmGpsgoqQlOR89hrf/5gtUj+NkMZO9bpmssuVNc2iUqI8FdiRIASIwIU6u9Lr/Rp8LVZFXG4h+lYLsNQfnGZO9QemYwjo6BExU5XRdgqdGrnwSMBy67E8R/qz18fVLed69U5PlSdmoSqXWwIQ7EBnLUIUvAq/nabHujXWjefn6Cp32zT/F/36IuNqfpmU7pGXthMY/q2Uqi/r6fLBM5KhmGosLRcmQWlyswvOfy1IjyVlld/vVKg3abwALvCAn0VHmA/vFRMiLB/5yZNfeFJ/enR1era1bM3Bz6bWC2Wikkp/H3V9KhuraO/xxn5JRXDAgtKlJFXrHIfu5Kyy5S0eq8+XL1XUsVU7m2ig9W5Sag6xoeqc5NQtY0NPit7CgGcfQhS8EpRIX6aPKSzRvRuphe/3KwftmfoX8t2acGve/Rgv9YafkFT+TKGH6gzxc7KgelQfsUMeNX1MFktck/kEB5YEZSOhCa7D/9WGwqLxVIxA6DDR4kRf4wC2LPtd732lz/ptf98rEK/SG3cm62N+3KUkV+qzam52pyaqw9+3SNJ8rFadE5MsDrHh+q8xHB1axquFpGB9C4COOMQpODV2sWGaO5dPbR020G98MVm7TiQr6f/u0lzVyRrwqB26t8uih/OwGkwDEO5xWU6mFeig/klFV/zSpRfUv2U4WH+vocnJnC4JygIC7DLdpLJHNBwWSxSWU66ejTxU9eubSRVnDupOcXauC9HG/fmaMO+HG3cm62sQqd+35+r3/fn6v1VFeEqLMBXXRPD1TUxTF2bhqtLfJgCTzTbBgA0AF79v9ikSZP08ccfa8uWLfL391fv3r310ksv6ZxzznG3KS4u1p///GfNmzdPJSUlGjBggP7xj38oOjrag5WjNlksFvU9J0oXtYrUvF/26O/fbNOujALdM/dXXdAiQn8d3F4dm4R6ukzA65WWubT9QJ6WJBUqvN89+j7dR7n7d1U7jXiwn48iAu2KPCowhQfa6Q2GpIr/m+PCKiYCGdAhRlJFuNqXXaSNe3O0bm+21iZna/3ebGUXOrVkywEt2XJAUsWQwLYxwerWNFxdE8PVvVm44sO5DhZAw+LVQer777/XmDFjdP7556usrExPPPGErrjiCm3atEmBgYGSpIceekhffPGFFixYoNDQUI0dO1Y33HCDfvrpJw9Xj9rmY7Pqtgua6tpz4/TG0p36949J+nnXIV39+o+6/rwmemTAOYoNrZspi4GGpqCkTL/vz9Vv+3K0KTVXm/bnavuBPDnLK+4IG9L9WmWUSJJLNotFEUF2NQ5yqHGwQ42DHIoMtnOdC0yzWCyKDw9QfHiABnaKlVQR4Den5mp1cpZWp2RpbXKW9ucUu3ut5q5IliQ1CfNXj+YR6tE8Qj2bR6g5wwEBeDmvDlKLFi2q9Hz27NmKiorS6tWrdfHFFysnJ0dvvfWW3nvvPV122WWSpFmzZqldu3b6+eefdcEFF3iibNSxYD9fPXplW93aM1Evf7VVn67br4/X7NOXG1M1+qIWuveSlgwZwVml2FmuLWl52rA3W+v35GjjvmztOJAvl3F82xA/HyUGW7X8y/m6bMBVatOqhSICGZaHumP3sapLQpi6JITpLjWXJKXmFGlNcrY7XP2+L0f7sov0ydp9+mTtPklS42CHO1T1aB6hNlHBJ70XGADUpwb122ZOTo4kKSIiQpK0evVqOZ1O9e/f392mbdu2SkxM1IoVK6oNUiUlJSop+eNmj7m5uXVYNepKfHiApt18nu68sLle+GKTftmdpelLduj9X/boz5e30dBu8dxUEmccZ7lL29PztWFvtjbsy9GGvdnamvZHT9PRYkP91CEuVB3iQtQhLkTt40LUJMxfa9euVbeH/62mQwapcbDDA+8CZ7vYUH8N7uyvwZ0req0KS8u0Jjlbq5IytTLpkNbuydbBvBJ9sSFVX2xIlVRxndX5zSqCVVN/p8KU7xV/AIiMjFRiYqKnywDgAQ0mSLlcLo0bN04XXnihOnbsKElKS0uT3W5XWFhYpbbR0dFKS0ur9liTJk3SM888U5floh6dmxCm+ff20qLf0jR50RYlZxbq8Y836p/LdunBfq11dZc4r/hhC5jlchnalVFQEZr2VoSm3/fnqqSKa5oiAu3qHB+qzvFh6twkVJ3jQxUV4ueBqgHzAuw+6tM6Un1aR0qq6GXdsDfHHaxWJ2cpu9Cpbzal65tN6ZIkV0mhSvZuUnHKRhXv2ajStB2SUf00/HXFPyBAWzZvJkwBZ6EGE6TGjBmj3377TT/++ONpH2vChAkaP368+3lubq4SEhJO+7jwHIvFooGdYnVZuyj9Z0WyZny3Q0kZBRr3wTq9tmS7HuzfRld1imVYSD1ISUlRRkaGp8uQ1LD+UmwYhvZmFWn93mxt3Juj9Xuz9du+3Cpnzwt2+KjTkdAUXxGamoT5cz0Jzhh+vjb39VJjVdET+/v+XK3clalv1iVpVVKmrH5B8m/ZXf4tu0uSfCyGGjkMNfZzqbHDUJjdUF3/l5+eslPvvvSIMjIyGsz/NQBqT4MIUmPHjtXnn3+uZcuWKT4+3r0+JiZGpaWlys7OrtQrlZ6erpiYmGqP53A45HAwnOVM5PCx6e6LWujmHomas3y3/rVsl3YeLNAD76/V60u2a1z/NrqyQwyBqo6kpKSobbt2Kios9HQpkrz7L8XpucVav6fiXjzr9/4xbfSx/Hyt6hhXOTQ1axTIOYyziq/NqnMTwnRuQpjOD85Rt4cG6K6pH8kZHKt92UXam1WkkjKX0ostSi+2Ht6nYlbB+DB/xYcHqHGwg9EJAGqVVwcpwzB0//3365NPPtHSpUvVvHnzStu7desmX19fLV68WEOGDJEkbd26VSkpKerVq5cnSoaXCHL4aEzfVrqjV1PN/mm33vxhl7al5+u+d9eobUyw7uvbSoM6xnANVS3LyMhQUWGhhj/2sqITW3q0Fm/6S3FWQWnF9Ux7sitC075speeWHNfO12ZRu9iQisDUJEydE0LVqnEQ5ylwLMOlMLuh+MRwnZcYLsMwlJFfejhUFWpfVpGKy1xKzixUcmahpMyKYBXqrybh/ooP91dUsB/BCsBp8eogNWbMGL333nv69NNPFRwc7L7uKTQ0VP7+/goNDdWoUaM0fvx4RUREKCQkRPfff7969erFjH2QVDHD3/39WuuO3s309o9JevvHJG1Jy9MD76/VlHB/3XNRC93UPUH+dqZ5rk3RiS0V37qDp8vwiLxip37bl/vHdU37srXnUNFx7awWqU10sDo1CVXnhDB1iQ/VOTHBTDkO1IDFYqmYuj/YoXMTwqoPVocKlXyoosecYAXgdHl1kHrjjTckSZdeemml9bNmzdLIkSMlSX//+99ltVo1ZMiQSjfkBY4W6u+rhy5vozsvbKa5K5I1e/lu7c0q0sTPfter327TiN7NdEevZooItHu6VDQgxc5y/b6/IjQdua5pV0aBjCqmHW8RGei+rqlLfKjax4UowO7V/wUDDdZJg1V2kYqdxwer2NCKUEWwAnAqvPqnuFHVbyPH8PPz04wZMzRjxox6qAgNXViAXQ/0a617LmqhD1fv0Zs/JCnlUKFe/Xa7Zn6/U8O6J+iO3s3UsnGQp0uFlyktc2lrWp427DsSmnK0LT1P5VXcrKlJmL97Br0u8aHq0CRUof6+HqgagFR1sMosKNXerMrBKuVQoVKqCFZNwvwVHUKwAlCZVwcpoK742226vVcz3dIjUYt+T9M/v9+ljftyNGdFsuasSFbvlo102wVNdXn7aPlyfcpZ58i9mjbuqxiet3Ffjrak5qm0/PiplSODHOpy1Ax6neJDFRl0/GQ23jSb4ebNmz1dwnG8oSZvqMHbecNnVBs1WCwWRQY5FBl0fLDal1WkvdmFxwUrH2vF5BVNwismsIjm9gI4A3jTz6aGNNPuEQQpnNV8bFZd1TlOgzvFasXOTL31Y5KWbD2g5TsztXxnphoHO3Tz+Qm6uUeimoT5e7pc1IFyl6FdB/Pd92nasC9Hm6q5V1NYgK86NQmtuK4pPkxdEkIVE+J30mnHvW02wyPy8/M9XYJyDx2UJN12220eruQP3vC5eJsz/ftUXbDal1UxI+C+7CIVOcuPC1YRdh+F9LpJmzNK1bHMJbsPf3hDw+FtP5u8eabd6hCkAFX8EO3dKlK9W0Vqb1ah5q3ao3m/7NHBvBK9tmSHZny3Q5e1jdLQbgm69JzG8vNlQoCGyOUytDuzQBv35VT0NO3N0W/7c1RYWn5c2yP3aup0ZAa9+FDFh9fsXk3eNJuhJG1e9b3+N2eaiouLPV2KivJzJUmD7/2LzunczaO1eNPn4m3Otu/T0cGqy7HBKrui16rIWa4DxVaFX3yH/rIkU8/98JW6N43QBS0idEGLRuocH0awglfzpp9N3jTTrhkEKeAY8eEBenjAOXqgX2t9syld7/ycrBW7MvXt5gP6dvMBBfv56MoOMbr23Cbq1bIRY+a9VLkh+Ua10OJdhfps7+/atD9Xm1KrvsFtgN12+F5Noe4JIZpGBNT6vZq8ZTbD9JSdni7hOI3imnr8s/HGz8XbnK3fp6qC1aGCUv22bZd+WvGzYrtcrNwSl37ckaEfd1QMk/Lztap70wj1bB6hC1o2Upd6CFbeNExLaphDtc5G3vKzqSEiSAHVsPtYNbhzrAZ3jtWOA/la8OsefbZ+v1JzirVg9V4tWL1XjYMduqpzrK49t4m6xIfWqLcCp6/EWa6D+SU6mFfi/pqZ76u4O6drxq85knLcbR0+VnWIC1Hn+LDDQ/RC1aJxEIEYwCmzWCxqFORQy2CXPv10shY9OVTB8W30867Mw8shHSoo/SNYfVMRrLo1DdcFzRupR/MIdUkIq9XRDd42TEtqmEO1ADMIUsApaBUVpAmD2umxK9vql92H9On6/fpyY6oO5pVo1k+7Neun3YoJ8VPfto116TlRurBVpIIc/POqbYZhKLe4TJnHhKbc4uN7mSSLyovydG7TRurZpok6NAlR+9hQtWwcyA1uAdQqi8WiNtHBahMdrDt6NZNhGNpxIN8dqn7elanMglL9tCNTP+3IlFRxjVWHuBB1bRqubk3D1TUxXHGncS2uNw3TkhruUC3ADH7TA0ywWi3q2aKRerZopKev7qAfdxzUp+v26+vf05WWW6z3V+3R+6v2yNdmUY/mEep7TpT6to1Si8hAeqtMMAxD+SVlyswvVWZBqTILSpSZX6pDBaUqq2K6cUkK8fNR4+CKoTdRwQ6VZSRr5oO36NPVq9W1a/t6fgcAzmYWi0Wto4PVOjpYt1cRrFbtPqSDeSVaf/hWCrN+2i1Jig31U9fEcHe4ah8bYno4IMO0gPpDkAJqyO5j1WVto3VZ22gVO8u1MumQvttyQN9tPaDkzEL3Xx6f/2KzokMc6t40Qt2O/HCMC2FadVXMmJdb5FRWUamyC506VFARljLzS6ucalySbFaLwgN81TjIocjgitAUGeQ4bojM3ux6eAMAcAqqClZ7s4q0JiVLa5KztDolS5tT85SaU6wvNqbqi42pkiqGIneOD1XXwz1WXRPD1Tj4+NsrAPAMghRQC/x8bbqkTWNd0qaxnlYHJWUUaMmWA1q69YBW7jqk9NySSj8c/X1t6pIQqu5NI9SxSajOiQlWYkRAja/T8ZYLjKu6v4vLMJRXXKbswoqwlFVYquwip7ILncotdqq6+25bLRU3UG4UeHgJcqhRoF2h/r61PgkEANQni8WihIgAJUQE6Npzm0iSCkvLtH5PTqVwlV3o1C+7s/TL7iz3vk3C/Cuu70wIVZf4MHWKD1WIHzf8BjyBIAXUgeaRgRrVp7lG9WmuotJyrd+brdXJWe4lp8h5eNz8Ifc+Dh+rWkUF6ZzoYLWJCVab6CA1axSouDD/E16Q7OkLjC2+frIFRcgnpLFsIVEK7XOrVqQZsubtVV5xmfKKnapmNJ4kyddmUZi/XWEBvgoPsKtRkF0RgXaFB9iZAALAWSPA7qNeLRupV8tGkiqGOCdlFGh1cpbWpGRrTXKWth3I077sivtaLfo9zb1vi8hAxQeUK7j7NcoosSi63MWoB6AeEKSAOuZvt+mCFo10QYuKH44ul6GdB/P16+FQtTUtT9sP5KnY6dLv+3P1+/7c444REWhXbKifYkP91STMT7Fh/moc5FCIv6/S9uxTWWCUhtz/oOLim8rHItXkcizDqJgy3OmSnC6LSo967HRJpS6puNyiknKLig8/Li6Xyo3jX2x/qaTSIvdzm9WiMH9fhQX4ukNTxWJXoN3G9WMAcAyLxaIWjYPUonGQbuyeIEnKK3bqt3257puHb9ibrT2HirQro0C7JEX0G63v06VlB3aqUaBd0SF+igp2KDrET42C7PKxEq6A2kSQAuqZ1frHWPlbelTMZFTuMrTnUKG2pudpe3qetqbna1tanvZkFaqwtNx97VBVIUuS4u56Xb9K0l7JIsnHZpHVcmSp+IFstUjWw4Gl3DBU7qpYXMaRrzV/T742i4L9fGUUHFLK2h/UqceFOqdNawU7fBXs76Nghw9hCQBOU7Cfb6VeK0k6VFCqDXuztWjVZr29cLEizumhYpdFGfmlysgv1e+H21ktUnigXY2DHO5rTBsHOeRv5wbzQE0RpAAvYLNa1CwyUM0iAzWgQ4x7vWEYyi0q0/6cIqXmFGlfdrFSs4uUmlOszIJS5RY5dTA7TympGfINCpNLFhmSnOWGpJolI4ulYpihw8d2+Ovhx75WBdp9FGC3KcBhU4DdR4H2iq9HZpVavXi91n09Q00v7KK2MSG18MkAAE4kItCuS8+JUkjBXr10x3O6fcbHCks4R+l5xUrPLVZ6bokO5BaruMxVMRNqfqm2KM+9f5DDR5FBdjU+HKwaBzsU6u/LH7+AU0CQAryYxWJRaICvQgN81S626mCyZs0ades2UONnfKyYFu1UUuaSs9wlw6iY6MF1+OuR54YqgpvNYqn4evix1Sr5WK3ytVn4AQoADViQn4+C/ILUsnGQpD9uKXEwv0QZeaXu+/DlFDmVX1Km/JIy7c784zpbX5tFkYd7ro5ct9ookN4r4FgEKeAM4mOzcrPZY1Q1k+DZWAOAs5fFUjH8OtjPVy0i/1hfUlauzPw/glVGfoky8kvlLDeUmlOs1JziSsfx97WpUWBFsIoIsrsfB9j5dRJnJ858AGek3EMHJUm33Xabhyv5Q35+vqdLAAA3h49NcWH+igvzd69zuQxlFZYeDlalyswv0aGCUuUWl6nIWa692UXam11U6Tj+vraKcBX4R7gqLq/vdwPUP4IUgDNSUX7FxByD7/2LzunczaO1bF71vf43Z5qKi4tP3hgAPMhqtVTcty+o8o1/neWuP26afvjroYJS5RQ5VeQsd0/L/ge7EsbN15+/PqgOW9aoeWRgpSUswF6/bwyoAwQpAGe0RnFNFd+6g0drSE/Z6dHXB4DT5WuzKjrET9EhfpXWO8tdyjoqXGW6A1aprI4AJWWXKSk79bjjhQf4qtmRYNUoUM0bB6pZo4pJl4Ic/HqKhoEzFQAAADXia7MqKsRPUccErORtv2vGUw/otdkfyBoaraSMQiVl5Gt3RqHScouVVehUVkq21qZkH3fM8ABfxYcHKCHCXwnhAYqPCFB8+OHH4Se+ST1QnwhSAAAAqFU2i1R2aK96NPFT164tK20rKCnT7swC7T4crpLcXwsqAlahU1mFOdq4L6fKYzcOdigh3F8JEQHucBUfHqDYMD/Fhvox+QXqDWcaAAAA6k2gw0cd4kLVIS70uG15xU7tOVSkvVmF2pNVpD2HCrU3q1B7Dz8uKC2vmGUwr0RrqujNkqRQf1/FhvopJtRPsaH+ig31O7z4KybUT3FhhC3UDs4iAAAAeIVgP1+1j/NV+7jj751oGIayCp0VIetQkfZkFR4OWhUTXaRmF6mgtFw5RU7lFDm1JS2vileoEOLno7gwf0WH+Ckq2KGokIr7ZkWF+KlxsENRwRU3JyZw4UQ4O9BgpKSkKCMjw9NluEVGRioxMdHTZQAA4LXq6j56sZJig6UewZKa+kgKlhSsglKXMovKlVnkUkZhuTILy5VZVK7cMpuySuQOW7nFZcpNyzth2JKkIIePGgdXhKzG7rB1VOg6/DwiwC6r9dRuZu8tv89wj8PTR5BCg5CSkqK27dqpqLDw5I3riX9AgLZs3kyYAgDgGN52L7+jf2bnFTvdNxxOyylyDxU8cNTXA3nFKna6lF9SpvySMiVlFJzw+FaLjrqXlsN9w+IjjyMPbyvNy9SVl12kwkMHJRn18+ZPgnsc1hxBCg1CRkaGigoLNfyxlxWd2PLkO9Sx9JSdevelR5SRkUGQAgDgGN50L79jf2YH+/kq2M9XbaKDq93HMAwVlJbrQG7xcSHr4OGgdTCvRBn5JcosKJXLkDLyS5WRXyrpxMGk8T1vSzLksEoO2yl8tUm+Fslyah1ep4x7HJ4+ghQalOjElh6/JxAAADg13nAvv5qwWCwKcvgoqHGQWjQOOmHbo++llZlfqsyCkop7auUfWVfivsfWgZxCFTgNSRaVuKQS16mlI6tF8ve1KcDuI3+7TQF2W8VX38Nf7T6V1vnYrCc9Jvc4PH0EKQAAAKCGqruXVlXWrFmjbuf31J/+Pl9h8a1UWFqmIme5ikrLVeQsV2Hp8Y9Ly11yGVJBabkKSstPqSa7zfpH4PKt+FophPnaVCC7rP4hMrxjhGGDRJACAAA4Dd5w0b431IBT5CqTv0/F/bAkx0mbl7lcFeGqtFyFh0NXoft52R+PD38tNwyVlrtUWuRSTpHzBEduqYQH3tOyIkO//rBL/nabAu0+CnRUfA1y+CjAYVOQw0eB9orHPtaT93SdTQhSAAAANeBtEypITBxwJvKxWhXsZ1Wwn+9J2xqHQ9TR4aqwtOy4EFZYWqa8wiKVyUeS5fC6cmWq9ITH9/O1Hg5blQNXkF/F12A/H/n72mSp7Qu6vBRBCgAAoAa8aUIFJg6AVHFtl8PHJoePTeEBJ267evFnevflxzXsqX+qRaceKiwtqxg+WFJ2eClXQekfj8sNQ8VOl4qdFdd7VcdmtbhDVfDhkBXs8FWw3+HHfj5y+Nhq+Z17BkEKAADgNHjDhApMHIAacZXLYXGddJihYRgqKauYDr6gpHLgOjJFfH5xxfpyl+G+KXJ17DarO1SF+PnKKLAqoN3FSs0rq4M3WXcIUgAAAACqZbFY5Odrk5+vTZFB1QeucpehgpIy5RWXKa/EqbziioCVV1KmvGKn8ovLVFzmUmm5S4cKSnXI3bPlo8bXPKrvk4s0uH7eUq0gSAEAAAA4bTarRSH+vgrx95XkX2UbZ7lL+cVlyi12VgSsojKlHTiobVs3q2nvPvVb8GkiSOGkvGEmIG+oAQAANFze8LuEN9Tgab42q8ID7QoPtLvX7XWl6YeJj6vXn1d7sDLzCFKoFrMRAQCAho7fZ1BXCFKoFrMRAQCAho7fZ1BXCFI4KWYjAgAADR2/z6C2cXtiAAAAADCJHingNHjDRaPeUAMAAMDZhiAF1AAXrgIAAJzdCFJADXDhKgAAwNmNIAWcBi5cBQAAODsx2QQAAAAAmESQAgAAAACTzpggNWPGDDVr1kx+fn7q2bOnVq1a5emSAAAAAJyhzogg9cEHH2j8+PGaOHGi1qxZoy5dumjAgAE6cOCAp0sDAAAAcAY6I4LU1KlTdc899+jOO+9U+/btNXPmTAUEBOjtt9/2dGkAAAAAzkANfta+0tJSrV69WhMmTHCvs1qt6t+/v1asWFHlPiUlJSopKXE/z8nJkSTl5ubWbbGn4Mi9gPZu/10lRYUereXIbHBpu7dpZ2AAtRzFm+qhFmoxy5vqoRbvr0XyrnqoxftrkbyrHmrx/loO7k2SVPF7sDf8Pn6kBsMwTtjOYpyshZfbv3+/mjRpouXLl6tXr17u9Y8++qi+//57rVy58rh9nn76aT3zzDP1WSYAAACABmTPnj2Kj4+vdnuD75GqiQkTJmj8+PHu5y6XS4cOHVKjRo1ksVg8WFlFAk5ISNCePXsUEhLi0VrQMHDOwCzOGZjFOQOzOGdghredL4ZhKC8vT3FxcSds1+CDVGRkpGw2m9LT0yutT09PV0xMTJX7OBwOORyOSuvCwsLqqsQaCQkJ8YoTCQ0H5wzM4pyBWZwzMItzBmZ40/kSGhp60jYNfrIJu92ubt26afHixe51LpdLixcvrjTUDwAAAABqS4PvkZKk8ePHa8SIEerevbt69OihV199VQUFBbrzzjs9XRoAAACAM9AZEaSGDRumgwcP6qmnnlJaWprOPfdcLVq0SNHR0Z4uzTSHw6GJEyceN/QQqA7nDMzinIFZnDMwi3MGZjTU86XBz9oHAAAAAPWtwV8jBQAAAAD1jSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkPKAGTNmqFmzZvLz81PPnj21atWqE7ZfsGCB2rZtKz8/P3Xq1ElffvllPVUKb2HmnHnzzTd10UUXKTw8XOHh4erfv/9JzzGcecz+P3PEvHnzZLFYdN1119VtgfAqZs+X7OxsjRkzRrGxsXI4HGrTpg0/m84yZs+ZV199Veecc478/f2VkJCghx56SMXFxfVULTxt2bJluvrqqxUXFyeLxaKFCxeedJ+lS5eqa9eucjgcatWqlWbPnl3ndZpFkKpnH3zwgcaPH6+JEydqzZo16tKliwYMGKADBw5U2X758uW65ZZbNGrUKK1du1bXXXedrrvuOv3222/1XDk8xew5s3TpUt1yyy367rvvtGLFCiUkJOiKK67Qvn376rlyeIrZc+aI3bt36+GHH9ZFF11UT5XCG5g9X0pLS3X55Zdr9+7d+vDDD7V161a9+eabatKkST1XDk8xe8689957evzxxzVx4kRt3rxZb731lj744AM98cQT9Vw5PKWgoEBdunTRjBkzTql9UlKSBg8erL59+2rdunUaN26c7r77bn311Vd1XKlJBupVjx49jDFjxrifl5eXG3FxccakSZOqbH/TTTcZgwcPrrSuZ8+exr333lundcJ7mD1njlVWVmYEBwcbc+bMqasS4WVqcs6UlZUZvXv3Nv79738bI0aMMK699tp6qBTewOz58sYbbxgtWrQwSktL66tEeBmz58yYMWOMyy67rNK68ePHGxdeeGGd1gnvJMn45JNPTtjm0UcfNTp06FBp3bBhw4wBAwbUYWXm0SNVj0pLS7V69Wr179/fvc5qtap///5asWJFlfusWLGiUntJGjBgQLXtcWapyTlzrMLCQjmdTkVERNRVmfAiNT1nnn32WUVFRWnUqFH1USa8RE3Ol88++0y9evXSmDFjFB0drY4dO+rFF19UeXl5fZUND6rJOdO7d2+tXr3aPfxv165d+vLLLzVo0KB6qRkNT0P5/dfH0wWcTTIyMlReXq7o6OhK66Ojo7Vly5Yq90lLS6uyfVpaWp3VCe9Rk3PmWI899pji4uKO+w8JZ6aanDM//vij3nrrLa1bt64eKoQ3qcn5smvXLi1ZskTDhw/Xl19+qR07dui+++6T0+nUxIkT66NseFBNzplbb71VGRkZ6tOnjwzDUFlZmf7v//6PoX2oVnW//+bm5qqoqEj+/v4eqqwyeqSAM9jkyZM1b948ffLJJ/Lz8/N0OfBCeXl5uv322/Xmm28qMjLS0+WgAXC5XIqKitK//vUvdevWTcOGDdNf/vIXzZw509OlwUstXbpUL774ov7xj39ozZo1+vjjj/XFF1/oueee83RpwGmhR6oeRUZGymazKT09vdL69PR0xcTEVLlPTEyMqfY4s9TknDnilVde0eTJk/Xtt9+qc+fOdVkmvIjZc2bnzp3avXu3rr76avc6l8slSfLx8dHWrVvVsmXLui0aHlOT/2NiY2Pl6+srm83mXteuXTulpaWptLRUdru9TmuGZ9XknHnyySd1++236+6775YkderUSQUFBRo9erT+8pe/yGrl7/qorLrff0NCQrymN0qiR6pe2e12devWTYsXL3avc7lcWrx4sXr16lXlPr169arUXpK++eabatvjzFKTc0aSpkyZoueee06LFi1S9+7d66NUeAmz50zbtm21ceNGrVu3zr1cc8017pmSEhIS6rN81LOa/B9z4YUXaseOHe7ALUnbtm1TbGwsIeosUJNzprCw8LiwdCSIG4ZRd8WiwWowv/96eraLs828efMMh8NhzJ4929i0aZMxevRoIywszEhLSzMMwzBuv/124/HHH3e3/+mnnwwfHx/jlVdeMTZv3mxMnDjR8PX1NTZu3Oipt4B6ZvacmTx5smG3240PP/zQSE1NdS95eXmeeguoZ2bPmWMxa9/Zxez5kpKSYgQHBxtjx441tm7danz++edGVFSU8fzzz3vqLaCemT1nJk6caAQHBxvvv/++sWvXLuPrr782WrZsadx0002eeguoZ3l5ecbatWuNtWvXGpKMqVOnGmvXrjWSk5MNwzCMxx9/3Lj99tvd7Xft2mUEBAQYjzzyiLF582ZjxowZhs1mMxYtWuSpt1AlgpQHvPbaa0ZiYqJht9uNHj16GD///LN72yWXXGKMGDGiUvv58+cbbdq0Mex2u9GhQwfjiy++qOeK4WlmzpmmTZsako5bJk6cWP+Fw2PM/j9zNILU2cfs+bJ8+XKjZ8+ehsPhMFq0aGG88MILRllZWT1XDU8yc844nU7j6aefNlq2bGn4+fkZCQkJxn333WdkZWXVf+HwiO+++67K302OnCcjRowwLrnkkuP2Offccw273W60aNHCmDVrVr3XfTIWw6BPFQAAAADM4BopAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQBAg7J06VJZLBZlZ2efVpvacOmll2rcuHGn3H7kyJG67rrr6qweAED9IUgBAOrVwYMH9ac//UmJiYlyOByKiYnRgAED9NNPP9Xaa/Tu3VupqakKDQ2tleNVF8w+/vhjPffcc6d8nGnTpmn27Nnu52aDGADAe/h4ugAAwNllyJAhKi0t1Zw5c9SiRQulp6dr8eLFyszMrLXXsNvtiomJqbXjVSciIsJU+9oKdgAAz6NHCgBQb7Kzs/XDDz/opZdeUt++fdW0aVP16NFDEyZM0DXXXKPdu3fLYrFo3bp1lfaxWCxaunRppWP99NNP6ty5s/z8/HTBBRfot99+c2+rqgfpxx9/1EUXXSR/f38lJCTogQceUEFBgXt7SUmJHnvsMSUkJMjhcKhVq1Z66623tHv3bvXt21eSFB4eLovFopEjR0qq3KP0xBNPqGfPnse95y5duujZZ5+VVHlo38iRI/X9999r2rRpslgsslgsSkpKUqtWrfTKK69UOsa6detksVi0Y8cOMx83AKAOEaQAAPUmKChIQUFBWrhwoUpKSk7rWI888oj+9re/6ZdfflHjxo119dVXy+l0Vtl2586duvLKKzVkyBBt2LBBH3zwgX788UeNHTvW3eaOO+7Q+++/r+nTp2vz5s365z//qaCgICUkJOijjz6SJG3dulWpqamaNm3aca8xfPhwrVq1Sjt37nSv+/3337Vhwwbdeuutx7WfNm2aevXqpXvuuUepqalKTU1VYmKi7rrrLs2aNatS21mzZuniiy9Wq1atavRZAQBqH0EKAFBvfHx8NHv2bM2ZM0dhYWG68MIL9cQTT2jDhg2mjzVx4kRdfvnl6tSpk+bMmaP09HR98sknVbadNGmShg8frnHjxql169bq3bu3pk+frrlz56q4uFjbtm3T/Pnz9fbbb+v6669XixYt1K9fPw0bNkw2m809hC8qKkoxMTFVDtHr0KGDunTpovfee8+97t1331XPnj2rDEChoaGy2+0KCAhQTEyMYmJiZLPZNHLkSG3dulWrVq2SJDmdTr333nu66667TH9GAIC6Q5ACANSrIUOGaP/+/frss8905ZVXaunSperatWulSRhORa9evdyPIyIidM4552jz5s1Vtl2/fr1mz57t7hELCgrSgAED5HK5lJSUpHXr1slms+mSSy45nbem4cOHu4OUYRh6//33NXz4cFPHiIuL0+DBg/X2229Lkv773/+qpKREN95442nVBgCoXQQpAEC98/Pz0+WXX64nn3xSy5cv18iRIzVx4kRZrRU/lgzDcLetbrieGfn5+br33nu1bt0697J+/Xpt375dLVu2lL+//2m/hiTdcsst2rp1q9asWaPly5drz549GjZsmOnj3H333Zo3b56Kioo0a9YsDRs2TAEBAbVSIwCgdjBrHwDA49q3b6+FCxeqcePGkqTU1FSdd955klRp4omj/fzzz0pMTJQkZWVladu2bWrXrl2Vbbt27apNmzZVe41Rp06d5HK59P3336t///7Hbbfb7ZKk8vLyE76P+Ph4XXLJJXr33XdVVFSkyy+/XFFRUdW2t9vtVR5z0KBBCgwM1BtvvKFFixZp2bJlJ3xdAED9o0cKAFBvMjMzddlll+mdd97Rhg0blJSUpAULFmjKlCm69tpr5e/vrwsuuECTJ0/W5s2b9f333+uvf/1rlcd69tlntXjxYv32228aOXKkIiMjq73Z7WOPPably5dr7NixWrdunbZv365PP/3UPdlEs2bNNGLECN11111auHChkpKStHTpUs2fP1+S1LRpU1ksFn3++ec6ePCg8vPzq32Pw4cP17x587RgwYKTDutr1qyZVq5cqd27dysjI0Mul0uS3NdKTZgwQa1bt640jBEA4B0IUgCAehMUFKSePXvq73//uy6++GJ17NhRTz75pO655x69/vrrkqS3335bZWVl6tatm8aNG6fnn3++ymNNnjxZDz74oLp166a0tDT997//dfccHatz5876/vvvtW3bNl100UU677zz9NRTTykuLs7d5o033tDQoUN13333qW3btrrnnnvc06M3adJEzzzzjB5//HFFR0dXmu3vWEOHDlVmZqYKCwurDXZHPPzww7LZbGrfvr0aN26slJQU97ZRo0aptLRUd9555wmPAQDwDItx9EB0AADOAF999ZUGDhyo4uLiasOVt/vhhx/Ur18/7dmzR9HR0Z4uBwBwDK6RAgCcUdLT0/Xpp5+qdevWDTJElZSU6ODBg3r66ad14403EqIAwEsxtA8AcEYZNGiQvv32W82YMcPTpdTI+++/r6ZNmyo7O1tTpkzxdDkAgGowtA8AAAAATKJHCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAkwhSAAAAAGDS/wPVS5jt8lyymAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "# Plot histogram for polarity\n", + "plt.figure(figsize=(10, 5))\n", + "sns.histplot(df['polarity'], bins=20, kde=True)\n", + "plt.title('Polarity Distribution')\n", + "plt.xlabel('Polarity')\n", + "plt.ylabel('Frequency')\n", + "plt.show()\n", + "\n", + "# Plot histogram for subjectivity\n", + "plt.figure(figsize=(10, 5))\n", + "sns.histplot(df['subjectivity'], bins=20, kde=True)\n", + "plt.title('Subjectivity Distribution')\n", + "plt.xlabel('Subjectivity')\n", + "plt.ylabel('Frequency')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "31e4b7f7-293b-4611-9348-05e3b725a36f", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 27502061568904eb72ad07b5995594b69c98208b Mon Sep 17 00:00:00 2001 From: Aditya Gahlot Date: Sat, 31 Aug 2024 00:03:22 +1000 Subject: [PATCH 5/5] Analyzing user behaviour patterns .ipynb file --- .../UserBehaviourPatterns_EV.ipynb | 372 ++++++++++++++++++ 1 file changed, 372 insertions(+) create mode 100644 personal-work/aditya-gahlot/UserBehaviourPatterns_EV.ipynb diff --git a/personal-work/aditya-gahlot/UserBehaviourPatterns_EV.ipynb b/personal-work/aditya-gahlot/UserBehaviourPatterns_EV.ipynb new file mode 100644 index 0000000..0158ffa --- /dev/null +++ b/personal-work/aditya-gahlot/UserBehaviourPatterns_EV.ipynb @@ -0,0 +1,372 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "543677b6-33cc-40aa-88fd-c68101983522", + "metadata": {}, + "source": [ + "# Analyzing User Behaviour Patterns\n", + "\n", + "For analyzing user behaviour patterns of EVs over a certain period of time, we can analyse the number of charging points across Australia. More concentration of charging points means more users are inclined to use EVs more often. First, we import the necessary libraries for data manipulation and visualization." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "99feacbe-449d-4124-9808-27d8ac373c4f", + "metadata": {}, + "outputs": [], + "source": [ + "import json\n", + "import pandas as pd\n", + "import requests\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "id": "10625422-bcff-422b-9f2a-7a65ba48c42a", + "metadata": {}, + "source": [ + "The best source of EV charger data in Australia is Open Charge Map which contains data on location of each and every charging points all over the world. In this cell, we make an API request to the Open Charge Map to retrieve EV charging point data for Australia. We have defined various variables for making the API request, like **url**, which represents the endpoint for the API request. The **headers** variable contains the API key for authentication. The **response** variable represents the result of the API request. Then we print the first two records to verify the data retrieval." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "99a5b247-959f-46c0-961c-0c4bba1b36d4", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'DataProvider': {'WebsiteURL': 'http://openchargemap.org', 'Comments': None, 'DataProviderStatusType': {'IsProviderEnabled': True, 'ID': 1, 'Title': 'Manual Data Entry'}, 'IsRestrictedEdit': False, 'IsOpenDataLicensed': True, 'IsApprovedImport': True, 'License': 'Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)', 'DateLastImported': None, 'ID': 1, 'Title': 'Open Charge Map Contributors'}, 'OperatorInfo': {'WebsiteURL': 'https://www.bp.com/en_au/australia/home/products-services/bppulse.html', 'Comments': None, 'PhonePrimaryContact': None, 'PhoneSecondaryContact': None, 'IsPrivateIndividual': False, 'AddressInfo': None, 'BookingURL': None, 'ContactEmail': None, 'FaultReportEmail': None, 'IsRestrictedEdit': False, 'ID': 3659, 'Title': 'BP Pulse (AU)'}, 'UsageType': {'IsPayAtLocation': False, 'IsMembershipRequired': True, 'IsAccessKeyRequired': True, 'ID': 4, 'Title': 'Public - Membership Required'}, 'StatusType': {'IsOperational': True, 'IsUserSelectable': True, 'ID': 50, 'Title': 'Operational'}, 'SubmissionStatus': {'IsLive': True, 'ID': 200, 'Title': 'Submission Published'}, 'UserComments': None, 'PercentageSimilarity': None, 'MediaItems': None, 'IsRecentlyVerified': True, 'DateLastVerified': '2024-08-14T03:03:00Z', 'ID': 302585, 'UUID': '2700862A-909F-48A0-93D8-83CFA5593669', 'ParentChargePointID': None, 'DataProviderID': 1, 'DataProvidersReference': None, 'OperatorID': 3659, 'OperatorsReference': None, 'UsageTypeID': 4, 'UsageCost': '65c/kWh', 'AddressInfo': {'ID': 302972, 'Title': 'BP South Bound', 'AddressLine1': 'Leary Road', 'AddressLine2': 'Baldivis', 'Town': None, 'StateOrProvince': 'Western Australia', 'Postcode': '6171', 'CountryID': 18, 'Country': {'ISOCode': 'AU', 'ContinentCode': 'OC', 'ID': 18, 'Title': 'Australia'}, 'Latitude': -32.30983528619279, 'Longitude': 115.83240066607163, 'ContactTelephone1': None, 'ContactTelephone2': None, 'ContactEmail': None, 'AccessComments': None, 'RelatedURL': None, 'Distance': None, 'DistanceUnit': 0}, 'Connections': [{'ID': 568719, 'ConnectionTypeID': 33, 'ConnectionType': {'FormalName': 'IEC 62196-3 Configuration FF', 'IsDiscontinued': False, 'IsObsolete': False, 'ID': 33, 'Title': 'CCS (Type 2)'}, 'Reference': None, 'StatusTypeID': 50, 'StatusType': {'IsOperational': True, 'IsUserSelectable': True, 'ID': 50, 'Title': 'Operational'}, 'LevelID': 3, 'Level': {'Comments': '40KW and Higher', 'IsFastChargeCapable': True, 'ID': 3, 'Title': 'Level 3: High (Over 40kW)'}, 'Amps': None, 'Voltage': None, 'PowerKW': 150, 'CurrentTypeID': 30, 'CurrentType': {'Description': 'Direct Current', 'ID': 30, 'Title': 'DC'}, 'Quantity': 6, 'Comments': None}], 'NumberOfPoints': 6, 'GeneralComments': None, 'DatePlanned': None, 'DateLastConfirmed': None, 'StatusTypeID': 50, 'DateLastStatusUpdate': '2024-08-14T03:03:00Z', 'MetadataValues': None, 'DataQualityLevel': 1, 'DateCreated': '2024-08-14T03:03:00Z', 'SubmissionStatusTypeID': 200}, {'DataProvider': {'WebsiteURL': 'http://openchargemap.org', 'Comments': None, 'DataProviderStatusType': {'IsProviderEnabled': True, 'ID': 1, 'Title': 'Manual Data Entry'}, 'IsRestrictedEdit': False, 'IsOpenDataLicensed': True, 'IsApprovedImport': True, 'License': 'Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0)', 'DateLastImported': None, 'ID': 1, 'Title': 'Open Charge Map Contributors'}, 'OperatorInfo': {'WebsiteURL': 'https://exploren.com.au/', 'Comments': None, 'PhonePrimaryContact': None, 'PhoneSecondaryContact': None, 'IsPrivateIndividual': False, 'AddressInfo': None, 'BookingURL': None, 'ContactEmail': None, 'FaultReportEmail': None, 'IsRestrictedEdit': False, 'ID': 3622, 'Title': 'Exploren'}, 'UsageType': {'IsPayAtLocation': False, 'IsMembershipRequired': True, 'IsAccessKeyRequired': True, 'ID': 4, 'Title': 'Public - Membership Required'}, 'StatusType': {'IsOperational': True, 'IsUserSelectable': True, 'ID': 50, 'Title': 'Operational'}, 'SubmissionStatus': {'IsLive': True, 'ID': 200, 'Title': 'Submission Published'}, 'UserComments': None, 'PercentageSimilarity': None, 'MediaItems': None, 'IsRecentlyVerified': True, 'DateLastVerified': '2024-08-06T13:19:00Z', 'ID': 302397, 'UUID': 'D3C20FB4-E2AE-4F1F-89D3-7FABA3C17762', 'ParentChargePointID': None, 'DataProviderID': 1, 'DataProvidersReference': None, 'OperatorID': 3622, 'OperatorsReference': None, 'UsageTypeID': 4, 'UsageCost': None, 'AddressInfo': {'ID': 302784, 'Title': 'Miller Grove', 'AddressLine1': 'Miller Grove', 'AddressLine2': 'Mount Waverley', 'Town': None, 'StateOrProvince': 'Victoria', 'Postcode': '3149', 'CountryID': 18, 'Country': {'ISOCode': 'AU', 'ContinentCode': 'OC', 'ID': 18, 'Title': 'Australia'}, 'Latitude': -37.875016711913474, 'Longitude': 145.128081929617, 'ContactTelephone1': None, 'ContactTelephone2': None, 'ContactEmail': None, 'AccessComments': None, 'RelatedURL': None, 'Distance': None, 'DistanceUnit': 0}, 'Connections': [{'ID': 567076, 'ConnectionTypeID': 25, 'ConnectionType': {'FormalName': 'IEC 62196-2 Type 2', 'IsDiscontinued': False, 'IsObsolete': False, 'ID': 25, 'Title': 'Type 2 (Socket Only)'}, 'Reference': None, 'StatusTypeID': 50, 'StatusType': {'IsOperational': True, 'IsUserSelectable': True, 'ID': 50, 'Title': 'Operational'}, 'LevelID': 2, 'Level': {'Comments': 'Over 2 kW, usually non-domestic socket type', 'IsFastChargeCapable': False, 'ID': 2, 'Title': 'Level 2 : Medium (Over 2kW)'}, 'Amps': 32, 'Voltage': 400, 'PowerKW': 22, 'CurrentTypeID': 20, 'CurrentType': {'Description': 'Alternating Current - Three Phase', 'ID': 20, 'Title': 'AC (Three-Phase)'}, 'Quantity': 1, 'Comments': None}], 'NumberOfPoints': 2, 'GeneralComments': None, 'DatePlanned': None, 'DateLastConfirmed': None, 'StatusTypeID': 50, 'DateLastStatusUpdate': '2024-08-06T13:19:00Z', 'MetadataValues': None, 'DataQualityLevel': 1, 'DateCreated': '2024-08-03T13:14:00Z', 'SubmissionStatusTypeID': 200}]\n" + ] + } + ], + "source": [ + "# API Request to Open Charge Map\n", + "url = \"https://api.openchargemap.io/v3/poi/?output=json&countrycode=AU\"\n", + "\n", + "headers = {\n", + " \"X-API-Key\": \"2f5df05b-4b9d-46a3-b38e-c138e919abea\" # Replace 'YOUR_API_KEY' with your actual API key\n", + "}\n", + "response = requests.get(url, headers=headers)\n", + "\n", + "# Check if the request was successful\n", + "if response.status_code == 200:\n", + " data = response.json()\n", + " print(data[:2])\n", + "else:\n", + " print(f\"Failed to retrieve data. Status code: {response.status_code}\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "5ad3b3f2-cfac-490b-9396-3f59eeaa61ee", + "metadata": {}, + "source": [ + "In this cell, we calculate and print the total number of records (instances) in the dataset to get an overview of the data size using the **len()** function with the **data** list as parameter." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "19f0bdb7-e947-4ed3-bad7-8906b8340f69", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total number of instances in the dataset: 100\n" + ] + } + ], + "source": [ + "# Print the total number of instances in the dataset\n", + "total_instances = len(data)\n", + "print(f\"Total number of instances in the dataset: {total_instances}\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "d263dcd6-b2bc-4736-b2c0-d7861f3bd283", + "metadata": {}, + "source": [ + "In the below cell, we create a DataFrame from the JSON data and print the column names to understand the structure of the dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "74c8f753-75ed-4b6d-9eee-93346058fb62", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index(['DataProvider', 'OperatorInfo', 'UsageType', 'StatusType',\n", + " 'SubmissionStatus', 'UserComments', 'PercentageSimilarity',\n", + " 'MediaItems', 'IsRecentlyVerified', 'DateLastVerified', 'ID', 'UUID',\n", + " 'ParentChargePointID', 'DataProviderID', 'DataProvidersReference',\n", + " 'OperatorID', 'OperatorsReference', 'UsageTypeID', 'UsageCost',\n", + " 'AddressInfo', 'Connections', 'NumberOfPoints', 'GeneralComments',\n", + " 'DatePlanned', 'DateLastConfirmed', 'StatusTypeID',\n", + " 'DateLastStatusUpdate', 'MetadataValues', 'DataQualityLevel',\n", + " 'DateCreated', 'SubmissionStatusTypeID'],\n", + " dtype='object')\n" + ] + } + ], + "source": [ + "\n", + "# Assuming `data` is your JSON data\n", + "df = pd.DataFrame(data)\n", + "\n", + "# Print the column names\n", + "print(df.columns)\n", + "data = []\n" + ] + }, + { + "cell_type": "markdown", + "id": "58299fa2-6582-44f1-ab3b-56b23a88fa2b", + "metadata": {}, + "source": [ + "In this cell, we extract relevant information about charger types, number of points, and power from the dataset for the purpose of data visualization. First of all, 3 empty lists are created, **charger_types**, **points**, and **power_kW**. The **for** loop is used for looping through each station in the **data** list, where **data** is expected to be a list of dictionaries and each dictionary represents a charging station. Inside each station dictionary, there is a key **'Connections'** which is a list of connection types available at that station. This loop iterates over each connection type. The **charger_types.append()** function extracts the title of the connection type and appends it to the **charger_types** list. The **points.append()** function gets the number of charging points available at the station. If this key is not present, it defaults to 0. The result is appended to the **points** list. Lastly, the **power_kW.append()** function retrieves the power output (in kW) of the connection.\n", + "\n", + "After that, we create a DataFrame using the pandas library. Each key in the dictionary passed to **pd.DataFrame()** becomes a column in the DataFrame. The print statements in the end help in verifying the extracted data before performing further analysis." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "45c87183-6e23-4f1b-acd3-5f4b2b68a151", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['CCS (Type 2)', 'Type 2 (Socket Only)', 'CCS (Type 2)', 'CCS (Type 2)', 'CCS (Type 2)', 'CCS (Type 2)', 'CCS (Type 2)', 'CCS (Type 2)', 'CCS (Type 2)', 'CCS (Type 2)', 'Type 2 (Socket Only)', 'CCS (Type 2)', 'CCS (Type 2)', 'CCS (Type 2)', 'Type 2 (Tethered Connector) ', 'Type 2 (Socket Only)', 'CCS (Type 2)', 'CCS (Type 2)', 'CCS (Type 2)', 'CCS (Type 2)', 'CHAdeMO', 'CHAdeMO', 'CCS (Type 2)', 'CCS (Type 2)', 'CHAdeMO', 'CCS (Type 2)', 'CCS (Type 2)', 'CCS (Type 2)', 'CHAdeMO', 'CCS (Type 2)', 'CHAdeMO', 'Type 2 (Tethered Connector) ', 'Type 2 (Tethered Connector) ', 'Type 2 (Socket Only)', 'CCS (Type 2)', 'CHAdeMO', 'CCS (Type 2)', 'CCS (Type 2)', 'Type 2 (Socket Only)', 'CCS (Type 2)', 'Unknown', 'CCS (Type 2)', 'Type 2 (Socket Only)', 'CHAdeMO', 'Type 2 (Socket Only)', 'CCS (Type 2)', 'Type 2 (Socket Only)', 'Type 2 (Socket Only)', 'CCS (Type 2)', 'Type 2 (Socket Only)', 'Three Phase 5-Pin (AS/NZ 3123)', 'CCS (Type 2)', 'CHAdeMO', 'CCS (Type 2)', 'CCS (Type 2)', 'CCS (Type 2)', 'Type 2 (Socket Only)', 'CCS (Type 2)', 'CCS (Type 2)', 'CCS (Type 2)', 'CHAdeMO', 'CHAdeMO', 'CCS (Type 2)', 'CHAdeMO', 'CCS (Type 2)', 'CCS (Type 2)', 'CHAdeMO', 'CCS (Type 2)', 'CHAdeMO', 'CCS (Type 2)', 'CHAdeMO', 'CHAdeMO', 'CCS (Type 2)', 'CCS (Type 2)', 'CCS (Type 2)', 'CCS (Type 2)', 'CHAdeMO', 'Type 2 (Socket Only)', 'CCS (Type 2)', 'CHAdeMO', 'CCS (Type 2)', 'CCS (Type 2)', 'CHAdeMO', 'CCS (Type 2)', 'CHAdeMO', 'CCS (Type 2)', 'CHAdeMO', 'CCS (Type 2)', 'CHAdeMO', 'CCS (Type 2)', 'CCS (Type 2)', 'Type 2 (Socket Only)', 'Unknown', 'Three Phase 5-Pin (AS/NZ 3123)', 'CCS (Type 2)', 'Type 2 (Socket Only)', 'Type 2 (Socket Only)', 'Type 2 (Socket Only)', 'Type 2 (Tethered Connector) ', 'CCS (Type 2)', 'CHAdeMO', 'CHAdeMO', 'CCS (Type 2)', 'CCS (Type 2)', 'CCS (Type 2)', 'CCS (Type 2)', 'CCS (Type 2)', 'Type 2 (Tethered Connector) ', 'CCS (Type 2)', 'CCS (Type 2)', 'CHAdeMO', 'CCS (Type 2)', 'Type 2 (Socket Only)', 'CCS (Type 2)', 'CCS (Type 2)', 'CHAdeMO', 'CCS (Type 2)', 'CHAdeMO', 'CCS (Type 2)', 'Type 2 (Socket Only)', 'CCS (Type 2)', 'CHAdeMO', 'CCS (Type 2)', 'CCS (Type 2)', 'CHAdeMO', 'Unknown', 'CCS (Type 2)', 'CCS (Type 2)', 'Type 2 (Socket Only)', 'Type 2 (Socket Only)', 'CCS (Type 2)', 'CCS (Type 2)', 'Type 2 (Socket Only)', 'CCS (Type 2)', 'CHAdeMO', 'CCS (Type 2)', 'CHAdeMO', 'CCS (Type 2)', 'CHAdeMO', 'CCS (Type 2)', 'CHAdeMO', 'Type 2 (Socket Only)', 'Type 2 (Tethered Connector) ', 'CCS (Type 2)', 'CCS (Type 2)', 'CHAdeMO', 'CCS (Type 2)', 'Type 2 (Socket Only)', 'Type 2 (Socket Only)', 'CCS (Type 2)', 'CCS (Type 2)', 'CHAdeMO', 'Type 2 (Socket Only)', 'Type 2 (Socket Only)', 'CCS (Type 2)', 'CHAdeMO', 'Type 2 (Tethered Connector) ', 'Type 2 (Socket Only)', 'CCS (Type 2)']\n", + "[6, 2, 6, 6, 6, 6, 6, 6, 4, 2, 2, 6, 2, 2, 1, 3, 1, 12, 6, 1, 1, 3, 3, 1, 1, 12, 3, 1, 1, 1, 1, 2, 2, 4, 1, 1, 2, 3, 3, 1, 1, 7, 7, 7, 3, 12, 8, 1, 2, 2, 1, 1, 1, 4, 4, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 4, 4, 4, 1, 1, 12, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 4, 1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 4, 4, 2, 1, 1, 1, 2, 2, 4, 4, 4, 1, 1, 2, 2, 6, 6, 6, 2, 2, 2, 1, 1, 1, 1, 6, 2, 2, 1, 1, 1, 1, 6, 6, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 3, 1, 1]\n" + ] + } + ], + "source": [ + "#Extract information from the dataset\n", + "charger_types = []\n", + "points = []\n", + "power_kW = []\n", + "\n", + "for station in data:\n", + " for connection in station['Connections']:\n", + " charger_types.append(connection['ConnectionType']['Title'])\n", + " points.append(station.get('NumberOfPoints', 0))\n", + " power_kW.append(connection.get('PowerKW', 0))\n", + "\n", + "# Create a DataFrame for analysis\n", + "df = pd.DataFrame({\n", + " 'ChargerType': charger_types,\n", + " 'NumberOfPoints': points,\n", + " 'Power_kW': power_kW\n", + "})\n", + "print(charger_types)\n", + "print(points)\n", + "# Aggregate data by ChargerType\n", + "popularity_df = df.groupby('ChargerType').agg({\n", + " 'NumberOfPoints': 'sum',\n", + " 'Power_kW': 'sum'\n", + "}).reset_index()" + ] + }, + { + "cell_type": "markdown", + "id": "5f005511-48cc-4515-b87e-73e469aae3e2", + "metadata": {}, + "source": [ + "In this cell, we create two bar plots to visualize the popularity of different charger types based on the total number of charging points and their power output." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "0cb5d438-52e3-452c-8224-7bce6ad7aadb", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAK8CAYAAADlH45BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACz+0lEQVR4nOzdd3gUVf/+8XsTUoAUSEgIJfTemxQBUUGqdBR4QIog4EORKmABAaWJSpGijzSlKV2QXkRBiiAoAtIFBAOBQEJNSHJ+f/DLfrMEMIMJu4H367pywZ6Z3f1sZmey954zZ2zGGCMAAAAAQLK5ObsAAAAAAEhrCFIAAAAAYBFBCgAAAAAsIkgBAAAAgEUEKQAAAACwiCAFAAAAABYRpAAAAADAIoIUAAAAAFhEkAIAAAAAiwhSAFzOs88+q2effTZFH/PPP/+UzWbTrFmzUvRx/60PP/xQ+fLlk7u7u8qUKZMij/n999/LZrNp0aJFKfJ4ePTy5MmjF1980dllOJXNZlOPHj2cXUayxMbG6s0331RoaKjc3NzUpEmTR/K8rnpcA54UBCngCTNr1izZbDb7j7e3twoVKqQePXro/Pnzzi7vkVq1apXee+89pz3/unXr9Oabb6pq1aqaOXOmRo4c+Y/3+f7779WsWTOFhITI09NTwcHBatiwoZYsWfIIKnY9HTp0cHg/3++nQ4cOzi7V5SR8CLfZbFq8eHGS5e+9955sNpsuXrzohOrSlhkzZujDDz9UixYtNHv2bPXp0+e+6z777LMO782AgAA99dRTmjFjhuLj4x9ZzTdu3NB7772n77///pE9J/C4SefsAgA4x/Dhw5U3b17dunVLW7du1dSpU7Vq1Sr9/vvvypAhg7PLS3G5c+fWzZs35eHhYW9btWqVJk+e7LQwtWnTJrm5uWn69Ony9PT8x/WHDh2q4cOHq2DBgurataty586tS5cuadWqVWrevLnmzp2r//znP4+gctfRtWtX1apVy3775MmTGjJkiLp06aLq1avb2/Pnz++M8tKM4cOHq1mzZrLZbM4uJU3atGmTcuTIoU8++SRZ6+fMmVOjRo2SJIWHh+vLL79Up06ddOTIEY0ePTrZz3uv41py3bhxQ8OGDZOkFB8BADwpCFLAE6pevXqqUKGCJKlz584KDAzUxx9/rOXLl6t169ZOri7lxMbGKj4+Xp6envL29nZ2OQ4uXLig9OnTJytELVq0SMOHD1eLFi00b948hw9OAwYM0Nq1a3X79u3ULDeJ69evK2PGjI/kuW7duiVPT0+5uTkOpKhSpYqqVKliv717924NGTJEVapUUdu2bR9JbWldmTJltG/fPi1dulTNmjVzdjmP1P3eV1ZduHBBmTJlSvb6/v7+Du/Prl27qnDhwvr00081YsSIZAejhFEFAJyDoX0AJEnPP/+8pDvf6Et3AsiIESOUP39+eXl5KU+ePHrrrbcUHR3tcL+EcznWrVunMmXKyNvbW8WKFUsy1CxhmNDdEoYa/vnnn/etLSYmRkOGDFH58uXl7++vjBkzqnr16tq8ebPDeglDlcaNG6fx48fbaz948GCScwk6dOigyZMnS5LDMBtjjPLkyaPGjRsnqePWrVvy9/dX165dH/i7TM7vzmazaebMmbp+/br9uR90nsO7776rgIAAzZgx454fsurUqZPknJr4+Hh98MEHypkzp7y9vVWzZk0dO3bMYZ0ff/xRL730knLlyiUvLy+FhoaqT58+unnzpsN6HTp0kI+Pj44fP6769evL19dXbdq0kSTdvHlTvXr1UpYsWeTr66tGjRrp7NmzstlsSXr7zp49q1dffVVZs2aVl5eXihcvrhkzZjisk3CO14IFC/TOO+8oR44cypAhg6Kiou77+7mfzZs3y2azaenSpUmWzZs3TzabTdu3b3d4jSdOnFCdOnWUMWNGZc+eXcOHD5cxJsnvdvz48SpevLi8vb2VNWtWde3aVZcvX3ZYb/fu3apTp46yZMmi9OnTK2/evHr11VeTXf+D9qsTJ07IZrPdsxfkp59+ks1m0/z58//xOVq1aqVChQrd83XeLU+ePPccJnn3eY0J2/Cbb77RsGHDlCNHDvn6+qpFixaKjIxUdHS0evfureDgYPn4+Khjx45Jji0J5s6dq8KFC8vb21vly5fXDz/8kGSd1HpfXb9+Xf369VNoaKi8vLxUuHBhjRs3zv57SjiubN68WQcOHLDvy1aHy2XIkEGVK1fW9evXFR4eLunO9n3ppZcUEBBgX/7dd9853O9e50glvI/Pnj2rJk2ayMfHR0FBQerfv7/i4uLs9wsKCpIkDRs2zF53wv4aFhamjh07KmfOnPLy8lK2bNnUuHHjBx6ngScRPVIAJEnHjx+XJAUGBkq600s1e/ZstWjRQv369dPOnTs1atQoHTp0KMmH0qNHj6ply5bq1q2b2rdvr5kzZ+qll17SmjVr9MILL/zr2qKiovTFF1+odevWeu2113T16lVNnz5dderU0a5du5JM0jBz5kzdunVLXbp0kZeXlwICApKce9C1a1edO3dO69ev11dffWVvt9lsatu2rcaOHauIiAgFBATYl61YsUJRUVH/2NORnN/dV199pc8//1y7du3SF198IUl6+umn7/l4R48e1R9//KFXX31Vvr6+yf69jR49Wm5uburfv78iIyM1duxYtWnTRjt37rSvs3DhQt24cUOvv/66AgMDtWvXLk2aNEl//fWXFi5c6PB4sbGxqlOnjqpVq6Zx48bZh4B26NBB33zzjV555RVVrlxZW7ZsUYMGDZLUc/78eVWuXNk+iUBQUJBWr16tTp06KSoqSr1793ZYf8SIEfL09FT//v0VHR2drJ67uz377LMKDQ3V3Llz1bRpU4dlc+fOVf78+R16tOLi4lS3bl1VrlxZY8eO1Zo1azR06FDFxsZq+PDh9vW6du2qWbNmqWPHjurVq5dOnjypTz/9VHv37tW2bdvk4eGhCxcuqHbt2goKCtKgQYOUKVMm/fnnn8k+n+2f9qt8+fKpatWqmjt3bpJzcubOnStfX997fiFwN3d3d73zzjtq165divdKjRo1SunTp9egQYN07NgxTZo0SR4eHnJzc9Ply5f13nvvaceOHZo1a5by5s2rIUOGONx/y5Yt+vrrr9WrVy95eXlpypQpqlu3rnbt2qUSJUpISr33lTFGjRo10ubNm9WpUyeVKVNGa9eu1YABA3T27Fl98sknCgoK0ldffaUPPvhA165dsw/XK1q0qOXf1YkTJ+Tu7q5MmTLp/Pnzevrpp3Xjxg316tVLgYGBmj17tho1aqRFixYleS/fLS4uTnXq1FGlSpU0btw4bdiwQR999JHy58+v119/XUFBQZo6dapef/11NW3a1L7NS5UqJUlq3ry5Dhw4oJ49eypPnjy6cOGC1q9fr9OnTytPnjyWXxvw2DIAnigzZ840ksyGDRtMeHi4OXPmjFmwYIEJDAw06dOnN3/99ZfZt2+fkWQ6d+7scN/+/fsbSWbTpk32tty5cxtJZvHixfa2yMhIky1bNlO2bFl729ChQ829DjkJ9Zw8edLeVqNGDVOjRg377djYWBMdHe1wv8uXL5usWbOaV1991d528uRJI8n4+fmZCxcuOKyfsGzmzJn2tu7du9+zpsOHDxtJZurUqQ7tjRo1Mnny5DHx8fFJ7pPAyu+uffv2JmPGjPd9rATLly83kswnn3zyj+saY8zmzZuNJFO0aFGH39uECROMJLN//357240bN5Lcf9SoUcZms5lTp0451CrJDBo0yGHdPXv2GEmmd+/eDu0dOnQwkszQoUPtbZ06dTLZsmUzFy9edFi3VatWxt/f315LQv358uW7Z30P8vPPPyfZzoMHDzZeXl7mypUr9rYLFy6YdOnSOdSX8Bp79uxpb4uPjzcNGjQwnp6eJjw83BhjzI8//mgkmblz5zo895o1axzaly5daiSZn3/+2dJrMCb5+9Vnn31mJJlDhw7Z22JiYkyWLFlM+/btH/gcCfvEhx9+aGJjY03BggVN6dKl7e/vhH024XUn1HWvx717n03YhiVKlDAxMTH29tatWxubzWbq1avncP8qVaqY3LlzO7RJMpLM7t277W2nTp0y3t7epmnTpva21HpfLVu2zEgy77//vkN7ixYtjM1mM8eOHXN4/cWLF//Hx0xYt0iRIiY8PNyEh4ebQ4cOmV69ehlJpmHDhsYYY3r37m0kmR9//NF+v6tXr5q8efOaPHnymLi4OGPMvY9rCe/j4cOHOzxv2bJlTfny5e23w8PDk+yjxtw5tia8LwA8GEP7gCdUrVq1FBQUpNDQULVq1Uo+Pj5aunSpcuTIoVWrVkmS+vbt63Cffv36SVKS4SXZs2d3+IbUz89P7dq10969exUWFvava3V3d7d/axwfH6+IiAjFxsaqQoUK+uWXX5Ks37x5c/uwlYdRqFAhVapUSXPnzrW3RUREaPXq1WrTps0DT8i3+rtLjoShR1Z6oySpY8eODt+2J0y+cOLECXtb+vTp7f+/fv26Ll68qKefflrGGO3duzfJY77++usOt9esWSNJ+u9//+vQ3rNnT4fbxhgtXrxYDRs2lDFGFy9etP/UqVNHkZGRSbZl+/btHep7WO3atVN0dLTDdPBff/21YmNj79m7mHjK7YRejpiYGG3YsEHSnV48f39/vfDCCw6vo3z58vLx8bEPOU04Z2blypUPdf5acvarl19+Wd7e3g7v1bVr1+rixYuWzhFL6JX69ddftWzZMsu13k+7du0chqJWqlRJxpgkwxsrVaqkM2fOKDY21qG9SpUqKl++vP12rly51LhxY61du1ZxcXGp+r5atWqV3N3d1atXL4f2fv36yRij1atXJ/v3cLc//vhDQUFBCgoKUtGiRTVp0iQ1aNDAPhxx1apVqlixoqpVq2a/j4+Pj7p06aI///xTBw8e/Mfn6Natm8Pt6tWrO+z795Nw3ub333+fZKgqAEcEKeAJNXnyZK1fv16bN2/WwYMH7eeFSNKpU6fk5uamAgUKONwnJCREmTJl0qlTpxzaCxQokCRcFCpUSJJSbEz97NmzVapUKXl7eyswMFBBQUH67rvvFBkZmWTdvHnz/uvna9eunbZt22Z/rQsXLtTt27f1yiuvPPB+Vn93yeHn5ydJunr1qqX75cqVy+F25syZJcnhw9Hp06fVoUMHBQQE2M+lqFGjhiQl+d2mS5dOOXPmdGhLeL13/87vfv3h4eG6cuWKPv/8c/sHyISfjh07Srpzwn5iKbEdJalIkSJ66qmnHMLG3LlzVbly5SR1urm5KV++fA5td7+Xjx49qsjISAUHByd5LdeuXbO/jho1aqh58+YaNmyYsmTJosaNG2vmzJn3PRfobsnZrzJlyqSGDRtq3rx5Dq8tR44c9vMek6tNmzYqUKBAss6VSq6734P+/v6SpNDQ0CTt8fHxSd5zBQsWTPKYhQoV0o0bNxQeHp6q76tTp04pe/bsSb7ASBi29zD7coI8efJo/fr12rBhg7Zu3aqwsDCtXLlSWbJksT924cKFk9wvuc/t7e2d5MukzJkzJysYeXl5acyYMVq9erWyZs2qZ555RmPHjk2RL8WAxw3nSAFPqIoVK9pn7buflJwK+X6PlXDy84PMmTNHHTp0UJMmTTRgwAAFBwfL3d1do0aNsp/blVhK9GK0atVKffr00dy5c/XWW29pzpw5qlChwj0/3NxLSv7uihQpIknav3+/pfu5u7vfsz3hQ3JcXJxeeOEFRUREaODAgSpSpIgyZsyos2fPqkOHDknOK/Py8nro2c0SHqtt27Zq3779PddJOD8jQUpsxwTt2rXTG2+8ob/++kvR0dHasWOHPv3004d6rPj4eAUHBzsEs8QSPsAmXBR5x44dWrFihdauXatXX31VH330kXbs2CEfH5+Hfj2JtWvXTgsXLtRPP/2kkiVL6ttvv9V///tfy9sqoVeqQ4cOWr58+T3XedB+fK/32/3eg//03kwuZ7+vHlbGjBkdpu1Paff7/SZX79691bBhQy1btkxr167Vu+++q1GjRmnTpk0qW7ZsClUJpH0EKQBJ5M6dW/Hx8Tp69KjDSdPnz5/XlStXlDt3bof1jx07JmOMw4esI0eOSJL9xOSE3pArV644TBOcnG91Fy1apHz58mnJkiUOzzF06FDLry2xB4WdgIAANWjQQHPnzlWbNm20bds2jR8//h8f0+rvLjkKFSqkwoULa/ny5ZowYUKKfQDfv3+/jhw5otmzZ6tdu3b29vXr1yf7MRJe78mTJx16D+6eHTAoKEi+vr6Ki4tL1Q+Q99OqVSv17dtX8+fPt193p2XLlknWi4+P14kTJ+w9P1LS93L+/Pm1YcMGVa1aNVkfyitXrqzKlSvrgw8+0Lx589SmTRstWLBAnTt3fuD9krNfSVLdunUVFBSkuXPnqlKlSrpx48Y/9pzeT9u2bfX+++9r2LBhatSoUZLlmTNn1pUrV5K0nzp1KklPXko4evRokrYjR44oQ4YM9sCaWu+r3Llza8OGDbp69apDr9Qff/xhX55acufOrcOHDydpT8nn/qcve/Lnz69+/fqpX79+Onr0qMqUKaOPPvpIc+bM+dfPDTwuGNoHIIn69etLUpLg8PHHH0tSkhnZzp075zCTX1RUlL788kuVKVNGISEhkv7vgqiJpy6+fv26Zs+e/Y/1JHy7mvjb6p07d9qnrX5YCddAutcHQ0l65ZVXdPDgQQ0YMEDu7u5q1arVPz6m1d9dcg0bNkyXLl1S586dk5xHIt2ZJnvlypWWHvNev1djjCZMmJDsx0gYDjplyhSH9kmTJiV5rubNm2vx4sX6/fffkzxOwpTPqSVLliyqV6+e5syZo7lz56pu3br2YVR3S9xTZYzRp59+Kg8PD9WsWVPSnfOS4uLiNGLEiCT3jY2Ntb+fLl++nKSHJWGGyeQM70vOfiXdGXLZunVrffPNN5o1a5ZKliyZpBcmuRJ6pfbt26dvv/02yfL8+fNrx44diomJsbetXLlSZ86ceajn+yfbt293OMfpzJkzWr58uWrXri13d/dUfV/Vr19fcXFxSXouP/nkE9lsNtWrV++hHzs5z71r1y6HY9z169f1+eefK0+ePCpWrNi/fo6EWTfvPv7duHFDt27dcmjLnz+/fH19kz0sFXhS0CMFIInSpUurffv2+vzzz3XlyhXVqFFDu3bt0uzZs9WkSRM999xzDusXKlRInTp10s8//6ysWbNqxowZOn/+vGbOnGlfp3bt2sqVK5c6depkDyYzZsxQUFCQTp8+/cB6XnzxRS1ZskRNmzZVgwYNdPLkSU2bNk3FihXTtWvXHvp1JpzE3qtXL9WpUydJWGrQoIECAwO1cOFC1atXT8HBwf/4mFZ/d8nVsmVL7d+/Xx988IH27t2r1q1bK3fu3Lp06ZLWrFmjjRs3OpwnkxxFihRR/vz51b9/f509e1Z+fn5avHixpRPMy5cvr+bNm2v8+PG6dOmSffrzhJ6TxN96jx49Wps3b1alSpX02muvqVixYoqIiNAvv/yiDRs2KCIiwlL9VrVr104tWrSQpHuGIOnOuSVr1qxR+/btValSJa1evVrfffed3nrrLXsPSI0aNdS1a1eNGjVK+/btU+3ateXh4aGjR49q4cKFmjBhglq0aKHZs2drypQpatq0qfLnz6+rV6/qf//7n/z8/OyB+0GSs18lfm0TJ07U5s2bNWbMmH/xW7pzrtSIESO0b9++JMs6d+6sRYsWqW7dunr55Zd1/PhxzZkzx/5FSUorUaKE6tSp4zD9uXTni4UEqfW+atiwoZ577jm9/fbb+vPPP1W6dGmtW7dOy5cvV+/evVPtNUvSoEGDNH/+fNWrV0+9evVSQECAZs+erZMnT2rx4sX/+gLC0p0hjsWKFdPXX3+tQoUKKSAgQCVKlFBsbKxq1qypl19+WcWKFVO6dOm0dOlSnT9/PllfJgFPlEc+TyAAp0qYbvyfpmS+ffu2GTZsmMmbN6/x8PAwoaGhZvDgwebWrVsO6+XOnds0aNDArF271pQqVcp4eXmZIkWKmIULFyZ5zD179phKlSoZT09PkytXLvPxxx8na/rz+Ph4M3LkSJM7d27j5eVlypYta1auXGnat2/vMGVy4umc73avaYJjY2NNz549TVBQkLHZbPecCv2///2vkWTmzZv3wN/Xw/zukjv9eWIbN240jRs3NsHBwSZdunQmKCjINGzY0Cxfvty+TsI0z3dvg3v9Dg4ePGhq1aplfHx8TJYsWcxrr71mfv3113tOqXy/Wq9fv266d+9uAgICjI+Pj2nSpIl9CvnRo0c7rHv+/HnTvXt3Exoaajw8PExISIipWbOm+fzzz/+x/uS41/TnCaKjo03mzJmNv7+/uXnzZpLlCa/x+PHjpnbt2iZDhgwma9asZujQofbpphP7/PPPTfny5U369OmNr6+vKVmypHnzzTfNuXPnjDHG/PLLL6Z169YmV65cxsvLywQHB5sXX3zRYTrv+7GyXyUoXry4cXNzM3/99dc/Pr4xD95fEvZL3TX9uTHGfPTRRyZHjhzGy8vLVK1a1ezevfu+05/fXe/9jj/3mmpdkunevbuZM2eOKViwoH3f37x5c5J6U+t9dfXqVdOnTx+TPXt24+HhYQoWLGg+/PDDJJdAsDr9eXLWPX78uGnRooXJlCmT8fb2NhUrVjQrV650WOd+05/fa1+91yUofvrpJ1O+fHnj6elpnwr94sWLpnv37qZIkSImY8aMxt/f31SqVMl88803yXp9wJPEZkwKTc0D4ImUJ08elShRwvKwsrSiT58+mj59usLCwuxDYfDP9u3bp7Jly2rOnDlq06aNs8uRdGfYXfbs2dWwYUNNnz49yfIOHTpo0aJF/6qX05nKli2rgIAAbdy40dmlAMATgXOkAOA+bt26pTlz5qh58+aEqAe4efNmkrbx48fLzc1NzzzzjBMqurdly5YpPDzcYWKNx8Xu3bu1b9++x/K1AYCr4hwpALjLhQsXtGHDBi1atEiXLl3SG2+84eySXNrYsWO1Z88ePffcc0qXLp1Wr16t1atXq0uXLkmuF+QMO3fu1G+//aYRI0aobNmy9utkPQ5+//137dmzRx999JGyZct2z5kIAQCpgyAFAHc5ePCg2rRpo+DgYE2cONE+0xru7emnn9b69es1YsQIXbt2Tbly5dJ7772nt99+29mlSZKmTp2qOXPmqEyZMpo1a5azy0lRixYt0vDhw1W4cGHNnz9f3t7ezi4JAJ4YnCMFAAAAABZxjhQAAAAAWESQAgAAAACLOEdKUnx8vM6dOydfX1+Hi0cCAAAAeLIYY3T16lVlz579gRfAJkhJOnfunEvMLAUAAADANZw5c0Y5c+a873KClCRfX19Jd35Zfn5+Tq4GAAAAgLNERUUpNDTUnhHuhyAl2Yfz+fn5EaQAAAAA/OMpP0w2AQAAAAAWEaQAAAAAwCKCFAAAAABYRJACAAAAAIsIUgAAAABgEUEKAAAAACwiSAEAAACARQQpAAAAALCIIAUAAAAAFhGkAAAAAMAighQAAAAAWESQAgAAAACLCFIAAAAAYBFBCgAAAAAsIkgBAAAAgEUEKQAAAACwiCAFAAAAABYRpAAAAADAIoIUAAAAAFiUztkFIKnRey86u4Qn3qCyWZxdAgAAAFwYPVIAAAAAYBFBCgAAAAAsIkgBAAAAgEUEKQAAAACwiCAFAAAAABYRpAAAAADAIoIUAAAAAFhEkAIAAAAAiwhSAAAAAGARQQoAAAAALHJqkBo1apSeeuop+fr6Kjg4WE2aNNHhw4cd1nn22Wdls9kcfrp16+awzunTp9WgQQNlyJBBwcHBGjBggGJjYx/lSwEAAADwBEnnzCffsmWLunfvrqeeekqxsbF66623VLt2bR08eFAZM2a0r/faa69p+PDh9tsZMmSw/z8uLk4NGjRQSEiIfvrpJ/39999q166dPDw8NHLkyEf6egAAAAA8GZwapNasWeNwe9asWQoODtaePXv0zDPP2NszZMigkJCQez7GunXrdPDgQW3YsEFZs2ZVmTJlNGLECA0cOFDvvfeePD09U/U1AAAAAHjyuNQ5UpGRkZKkgIAAh/a5c+cqS5YsKlGihAYPHqwbN27Yl23fvl0lS5ZU1qxZ7W116tRRVFSUDhw4cM/niY6OVlRUlMMPAAAAACSXU3ukEouPj1fv3r1VtWpVlShRwt7+n//8R7lz51b27Nn122+/aeDAgTp8+LCWLFkiSQoLC3MIUZLst8PCwu75XKNGjdKwYcNS6ZUAAAAAeNy5TJDq3r27fv/9d23dutWhvUuXLvb/lyxZUtmyZVPNmjV1/Phx5c+f/6Gea/Dgwerbt6/9dlRUlEJDQx+ucAAAAABPHJcY2tejRw+tXLlSmzdvVs6cOR+4bqVKlSRJx44dkySFhITo/PnzDusk3L7feVVeXl7y8/Nz+AEAAACA5HJqkDLGqEePHlq6dKk2bdqkvHnz/uN99u3bJ0nKli2bJKlKlSrav3+/Lly4YF9n/fr18vPzU7FixVKlbgAAAABPNqcO7evevbvmzZun5cuXy9fX135Ok7+/v9KnT6/jx49r3rx5ql+/vgIDA/Xbb7+pT58+euaZZ1SqVClJUu3atVWsWDG98sorGjt2rMLCwvTOO++oe/fu8vLycubLAwAAAPCYcmqP1NSpUxUZGalnn31W2bJls/98/fXXkiRPT09t2LBBtWvXVpEiRdSvXz81b95cK1assD+Gu7u7Vq5cKXd3d1WpUkVt27ZVu3btHK47BQAAAAApyak9UsaYBy4PDQ3Vli1b/vFxcufOrVWrVqVUWQAAAADwQC4x2QQAAAAApCUEKQAAAACwiCAFAAAAABYRpAAAAADAIoIUAAAAAFhEkAIAAAAAiwhSAAAAAGARQQoAAAAALCJIAQAAAIBFBCkAAAAAsIggBQAAAAAWEaQAAAAAwCKCFAAAAABYRJACAAAAAIsIUgAAAABgEUEKAAAAACwiSAEAAACARQQpAAAAALCIIAUAAAAAFhGkAAAAAMAighQAAAAAWESQAgAAAACLCFIAAAAAYBFBCgAAAAAsIkgBAAAAgEUEKQAAAACwiCAFAAAAABYRpAAAAADAIoIUAAAAAFhEkAIAAAAAiwhSAAAAAGARQQoAAAAALCJIAQAAAIBFBCkAAAAAsIggBQAAAAAWEaQAAAAAwCKCFAAAAABYRJACAAAAAIsIUgAAAABgEUEKAAAAACwiSAEAAACARQQpAAAAALCIIAUAAAAAFhGkAAAAAMAighQAAAAAWESQAgAAAACLCFIAAAAAYBFBCgAAAAAsIkgBAAAAgEUEKQAAAACwiCAFAAAAABYRpAAAAADAIoIUAAAAAFhEkAIAAAAAiwhSAAAAAGARQQoAAAAALCJIAQAAAIBFBCkAAAAAsIggBQAAAAAWEaQAAAAAwCKCFAAAAABYRJACAAAAAIsIUgAAAABgEUEKAAAAACwiSAEAAACARQQpAAAAALCIIAUAAAAAFhGkAAAAAMAighQAAAAAWESQAgAAAACLCFIAAAAAYBFBCgAAAAAsIkgBAAAAgEUEKQAAAACwyKlBatSoUXrqqafk6+ur4OBgNWnSRIcPH3ZY59atW+revbsCAwPl4+Oj5s2b6/z58w7rnD59Wg0aNFCGDBkUHBysAQMGKDY29lG+FAAAAABPEKcGqS1btqh79+7asWOH1q9fr9u3b6t27dq6fv26fZ0+ffpoxYoVWrhwobZs2aJz586pWbNm9uVxcXFq0KCBYmJi9NNPP2n27NmaNWuWhgwZ4oyXBAAAAOAJYDPGGGcXkSA8PFzBwcHasmWLnnnmGUVGRiooKEjz5s1TixYtJEl//PGHihYtqu3bt6ty5cpavXq1XnzxRZ07d05Zs2aVJE2bNk0DBw5UeHi4PD09//F5o6Ki5O/vr8jISPn5+aXqa0yO0XsvOruEJ96gslmcXQIAAACcILnZwKXOkYqMjJQkBQQESJL27Nmj27dvq1atWvZ1ihQpoly5cmn79u2SpO3bt6tkyZL2ECVJderUUVRUlA4cOHDP54mOjlZUVJTDDwAAAAAkl8sEqfj4ePXu3VtVq1ZViRIlJElhYWHy9PRUpkyZHNbNmjWrwsLC7OskDlEJyxOW3cuoUaPk7+9v/wkNDU3hVwMAAADgceYyQap79+76/ffftWDBglR/rsGDBysyMtL+c+bMmVR/TgAAAACPj3TOLkCSevTooZUrV+qHH35Qzpw57e0hISGKiYnRlStXHHqlzp8/r5CQEPs6u3btcni8hFn9Eta5m5eXl7y8vFL4VQAAAAB4Uji1R8oYox49emjp0qXatGmT8ubN67C8fPny8vDw0MaNG+1thw8f1unTp1WlShVJUpUqVbR//35duHDBvs769evl5+enYsWKPZoXAgAAAOCJ4tQeqe7du2vevHlavny5fH197ec0+fv7K3369PL391enTp3Ut29fBQQEyM/PTz179lSVKlVUuXJlSVLt2rVVrFgxvfLKKxo7dqzCwsL0zjvvqHv37vQ6AQAAAEgVTg1SU6dOlSQ9++yzDu0zZ85Uhw4dJEmffPKJ3Nzc1Lx5c0VHR6tOnTqaMmWKfV13d3etXLlSr7/+uqpUqaKMGTOqffv2Gj58+KN6GQAAAACeMC51HSln4TpSuBvXkQIAAHgypcnrSAEAAABAWkCQAgAAAACLCFIAAAAAYBFBCgAAAAAsIkgBAAAAgEUEKQAAAACwiCAFAAAAABYRpAAAAADAIoIUAAAAAFhEkAIAAAAAiwhSAAAAAGARQQoAAAAALCJIAQAAAIBFBCkAAAAAsIggBQAAAAAWEaQAAAAAwCKCFAAAAABYRJACAAAAAIsIUgAAAABgEUEKAAAAACwiSAEAAACARQQpAAAAALCIIAUAAAAAFhGkAAAAAMAighQAAAAAWESQAgAAAACLLAep2bNn67vvvrPffvPNN5UpUyY9/fTTOnXqVIoWBwAAAACuyHKQGjlypNKnTy9J2r59uyZPnqyxY8cqS5Ys6tOnT4oXCAAAAACuJp3VO5w5c0YFChSQJC1btkzNmzdXly5dVLVqVT377LMpXR8AAAAAuBzLPVI+Pj66dOmSJGndunV64YUXJEne3t66efNmylYHAAAAAC7Ico/UCy+8oM6dO6ts2bI6cuSI6tevL0k6cOCA8uTJk9L1AQAAAIDLsdwjNXnyZFWpUkXh4eFavHixAgMDJUl79uxR69atU7xAAAAAAHA1lnukoqKiNHHiRLm5OWaw9957T2fOnEmxwgAAAADAVVnukcqbN68uXryYpD0iIkJ58+ZNkaIAAAAAwJVZDlLGmHu2X7t2Td7e3v+6IAAAAABwdcke2te3b19Jks1m05AhQ5QhQwb7sri4OO3cuVNlypRJ8QIBAAAAwNUkO0jt3btX0p0eqf3798vT09O+zNPTU6VLl1b//v1TvkIAAAAAcDHJDlKbN2+WJHXs2FETJkyQn59fqhUFAAAAAK7M8qx9M2fOTI06AAAAACDNsBykrl+/rtGjR2vjxo26cOGC4uPjHZafOHEixYoDAAAAAFdkOUh17txZW7Zs0SuvvKJs2bLJZrOlRl0AAAAA4LIsB6nVq1fru+++U9WqVVOjHgAAAABweZavI5U5c2YFBASkRi0AAAAAkCZYDlIjRozQkCFDdOPGjdSoBwAAAABcnuWhfR999JGOHz+urFmzKk+ePPLw8HBY/ssvv6RYcQAAAADgiiwHqSZNmqRCGQAAAACQdlgOUkOHDk2NOgAAAAAgzbB8jhQAAAAAPOmS1SMVEBCgI0eOKEuWLMqcOfMDrx0VERGRYsUBAAAAgCtKVpD65JNP5OvrK0kaP358atYDAAAAAC4vWUGqffv29/w/AAAAADyJLE82IUlxcXFatmyZDh06JEkqXry4GjVqJHd39xQtDgAAAABckeUgdezYMdWvX19nz55V4cKFJUmjRo1SaGiovvvuO+XPnz/FiwQAAAAAV2J51r5evXopf/78OnPmjH755Rf98ssvOn36tPLmzatevXqlRo0AAAAA4FIs90ht2bJFO3bsUEBAgL0tMDBQo0ePVtWqVVO0OAAAAABwRZZ7pLy8vHT16tUk7deuXZOnp2eKFAUAAAAArsxykHrxxRfVpUsX7dy5U8YYGWO0Y8cOdevWTY0aNUqNGgEAAADApVgOUhMnTlT+/PlVpUoVeXt7y9vbW1WrVlWBAgU0YcKE1KgRAAAAAFyK5XOkMmXKpOXLl+vYsWP26c+LFi2qAgUKpHhxAAAAAOCKkh2k4uPj9eGHH+rbb79VTEyMatasqaFDhyp9+vSpWR8AAAAAuJxkD+374IMP9NZbb8nHx0c5cuTQhAkT1L1799SsDQAAAABcUrKD1JdffqkpU6Zo7dq1WrZsmVasWKG5c+cqPj4+NesDAAAAAJeT7CB1+vRp1a9f3367Vq1astlsOnfuXKoUBgAAAACuKtlBKjY2Vt7e3g5tHh4eun37dooXBQAAAACuLNmTTRhj1KFDB3l5ednbbt26pW7duiljxoz2tiVLlqRshQAAAADgYpIdpNq3b5+krW3btilaDAAAAACkBckOUjNnzkzNOgAAAAAgzUj2OVIAAAAAgDsIUgAAAABgEUEKAAAAACwiSAEAAACARckKUuXKldPly5clScOHD9eNGzdStSgAAAAAcGXJClKHDh3S9evXJUnDhg3TtWvXUrUoAAAAAHBlyZr+vEyZMurYsaOqVasmY4zGjRsnHx+fe647ZMiQFC0QAAAAAFxNsnqkZs2apcDAQK1cuVI2m02rV6/W0qVLk/wsW7bM0pP/8MMPatiwobJnzy6bzZbk/h06dJDNZnP4qVu3rsM6ERERatOmjfz8/JQpUyZ16tSJHjMAAAAAqSpZPVKFCxfWggULJElubm7auHGjgoOD//WTX79+XaVLl9arr76qZs2a3XOdunXrOlwM2MvLy2F5mzZt9Pfff2v9+vW6ffu2OnbsqC5dumjevHn/uj4AAAAAuJdkBanE4uPjU+zJ69Wrp3r16j1wHS8vL4WEhNxz2aFDh7RmzRr9/PPPqlChgiRp0qRJql+/vsaNG6fs2bOnWK0AAAAAkOChpj8/fvy4evbsqVq1aqlWrVrq1auXjh8/ntK1SZK+//57BQcHq3Dhwnr99dd16dIl+7Lt27crU6ZM9hAlSbVq1ZKbm5t27tx538eMjo5WVFSUww8AAAAAJJflILV27VoVK1ZMu3btUqlSpVSqVCnt3LlTxYsX1/r161O0uLp16+rLL7/Uxo0bNWbMGG3ZskX16tVTXFycJCksLCzJEMN06dIpICBAYWFh933cUaNGyd/f3/4TGhqaonUDAAAAeLxZHto3aNAg9enTR6NHj07SPnDgQL3wwgspVlyrVq3s/y9ZsqRKlSql/Pnz6/vvv1fNmjUf+nEHDx6svn372m9HRUURpgAAAAAkm+UeqUOHDqlTp05J2l999VUdPHgwRYq6n3z58ilLliw6duyYJCkkJEQXLlxwWCc2NlYRERH3Pa9KunPelZ+fn8MPAAAAACSX5SAVFBSkffv2JWnft29fiszk9yB//fWXLl26pGzZskmSqlSpoitXrmjPnj32dTZt2qT4+HhVqlQpVWsBAAAA8OSyPLTvtddeU5cuXXTixAk9/fTTkqRt27ZpzJgxDsPlkuPatWv23iVJOnnypPbt26eAgAAFBARo2LBhat68uUJCQnT8+HG9+eabKlCggOrUqSNJKlq0qOrWravXXntN06ZN0+3bt9WjRw+1atWKGfsAAAAApBqbMcZYuYMxRuPHj9dHH32kc+fOSZKyZ8+uAQMGqFevXrLZbMl+rO+//17PPfdckvb27dtr6tSpatKkifbu3asrV64oe/bsql27tkaMGKGsWbPa142IiFCPHj20YsUKubm5qXnz5po4caJ8fHySXUdUVJT8/f0VGRnpEsP8Ru+96OwSnniDymZxdgkAAABwguRmA8tBKrGrV69Kknx9fR/2IVwCQQp3I0gBAAA8mZKbDSwP7UssrQcoAAAAAHgYD3VBXgAAAAB4khGkAAAAAMAighQAAAAAWGQpSN2+fVs1a9bU0aNHU6seAAAAAHB5loKUh4eHfvvtt9SqBQAAAADSBMtD+9q2bavp06enRi0AAAAAkCZYnv48NjZWM2bM0IYNG1S+fHllzJjRYfnHH3+cYsUBAAAAgCuyHKR+//13lStXTpJ05MgRh2U2my1lqgIAAAAAF2Y5SG3evDk16gAAAACANOOhpz8/duyY1q5dq5s3b0qSjDEpVhQAAAAAuDLLQerSpUuqWbOmChUqpPr16+vvv/+WJHXq1En9+vVL8QIBAAAAwNVYDlJ9+vSRh4eHTp8+rQwZMtjbW7ZsqTVr1qRocQAAAADgiiyfI7Vu3TqtXbtWOXPmdGgvWLCgTp06lWKFAQAAAICrstwjdf36dYeeqAQRERHy8vJKkaIAAAAAwJVZDlLVq1fXl19+ab9ts9kUHx+vsWPH6rnnnkvR4gAAAADAFVke2jd27FjVrFlTu3fvVkxMjN58800dOHBAERER2rZtW2rUCAAAAAAuxXKPVIkSJXTkyBFVq1ZNjRs31vXr19WsWTPt3btX+fPnT40aAQAAAMClWO6RkiR/f3+9/fbbKV0LAAAAAKQJDxWkLl++rOnTp+vQoUOSpGLFiqljx44KCAhI0eIAAAAAwBVZHtr3ww8/KE+ePJo4caIuX76sy5cva+LEicqbN69++OGH1KgRAAAAAFyK5R6p7t27q2XLlpo6darc3d0lSXFxcfrvf/+r7t27a//+/SleJAAAAAC4Ess9UseOHVO/fv3sIUqS3N3d1bdvXx07dixFiwMAAAAAV2Q5SJUrV85+blRihw4dUunSpVOkKAAAAABwZcka2vfbb7/Z/9+rVy+98cYbOnbsmCpXrixJ2rFjhyZPnqzRo0enTpUAAAAA4EJsxhjzTyu5ubnJZrPpn1a12WyKi4tLseIelaioKPn7+ysyMlJ+fn7OLkej9150dglPvEFlszi7BAAAADhBcrNBsnqkTp48mWKFAQAAAEBal6wglTt37tSuAwAAAADSjIe6IO+5c+e0detWXbhwQfHx8Q7LevXqlSKFAQAAAICrshykZs2apa5du8rT01OBgYGy2Wz2ZTabjSAFAAAA4LFnOUi9++67GjJkiAYPHiw3N8uzpwMAAABAmmc5Cd24cUOtWrUiRAEAAAB4YllOQ506ddLChQtToxYAAAAASBMsD+0bNWqUXnzxRa1Zs0YlS5aUh4eHw/KPP/44xYoDAAAAAFf0UEFq7dq1Kly4sCQlmWwCAAAAAB53loPURx99pBkzZqhDhw6pUA4AAAAAuD7L50h5eXmpatWqqVELAAAAAKQJloPUG2+8oUmTJqVGLQAAAACQJlge2rdr1y5t2rRJK1euVPHixZNMNrFkyZIUKw4AAAAAXJHlIJUpUyY1a9YsNWoBAAAAgDTBcpCaOXNmatQBAAAAAGmG5XOkAAAAAOBJZ7lHKm/evA+8XtSJEyf+VUEAAAAA4OosB6nevXs73L59+7b27t2rNWvWaMCAASlVFwAAAAC4LMtB6o033rhn++TJk7V79+5/XRAAAAAAuLoUO0eqXr16Wrx4cUo9HAAAAAC4rBQLUosWLVJAQEBKPRwAAAAAuCzLQ/vKli3rMNmEMUZhYWEKDw/XlClTUrQ4AAAAAHBFloNUkyZNHG67ubkpKChIzz77rIoUKZJSdQEAAACAy7IcpIYOHZoadQAAAABAmsEFeQEAAADAomT3SLm5uT3wQrySZLPZFBsb+6+LAgAAAABXluwgtXTp0vsu2759uyZOnKj4+PgUKQoAAAAAXFmyg1Tjxo2TtB0+fFiDBg3SihUr1KZNGw0fPjxFiwMAAAAAV/RQ50idO3dOr732mkqWLKnY2Fjt27dPs2fPVu7cuVO6PgAAAABwOZaCVGRkpAYOHKgCBQrowIED2rhxo1asWKESJUqkVn0AAAAA4HKSPbRv7NixGjNmjEJCQjR//vx7DvUDAAAAgCeBzRhjkrOim5ub0qdPr1q1asnd3f2+6y1ZsiTFintUoqKi5O/vr8jISPn5+Tm7HI3ee9HZJTzxBpXN4uwSAAAA4ATJzQbJ7pFq167dP05/DgAAAABPgmQHqVmzZqViGQAAAACQdjzUrH0AAAAA8CQjSAEAAACARQQpAAAAALCIIAUAAAAAFhGkAAAAAMCiZM3a9+233yb7ARs1avTQxQAAAABAWpCsINWkSZNkPZjNZlNcXNy/qQcAAAAAXF6yglR8fHxq1wEAAAAAaQbnSAEAAACARcnqkbrb9evXtWXLFp0+fVoxMTEOy3r16pUihQEAAACAq7IcpPbu3av69evrxo0bun79ugICAnTx4kVlyJBBwcHBBCkAAAAAjz3LQ/v69Omjhg0b6vLly0qfPr127NihU6dOqXz58ho3blxq1AgAAAAALsVykNq3b5/69esnNzc3ubu7Kzo6WqGhoRo7dqzeeuut1KgRAAAAAFyK5SDl4eEhN7c7dwsODtbp06clSf7+/jpz5kzKVgcAAAAALshykCpbtqx+/vlnSVKNGjU0ZMgQzZ07V71791aJEiUsPdYPP/yghg0bKnv27LLZbFq2bJnDcmOMhgwZomzZsil9+vSqVauWjh496rBORESE2rRpIz8/P2XKlEmdOnXStWvXrL4sAAAAAEg2y0Fq5MiRypYtmyTpgw8+UObMmfX6668rPDxcn332maXHun79ukqXLq3Jkyffc/nYsWM1ceJETZs2TTt37lTGjBlVp04d3bp1y75OmzZtdODAAa1fv14rV67UDz/8oC5dulh9WQAAAACQbDZjjHF2EZJks9m0dOlSNWnSRNKd3qjs2bOrX79+6t+/vyQpMjJSWbNm1axZs9SqVSsdOnRIxYoV088//6wKFSpIktasWaP69evrr7/+Uvbs2ZP13FFRUfL391dkZKT8/PxS5fVZMXrvRWeX8MQbVDaLs0sAAACAEyQ3G1jukXr++ed15cqVez7h888/b/Xh7uvkyZMKCwtTrVq17G3+/v6qVKmStm/fLknavn27MmXKZA9RklSrVi25ublp586d933s6OhoRUVFOfwAAAAAQHJZDlLff/99kovwStKtW7f0448/pkhRkhQWFiZJypo1q0N71qxZ7cvCwsIUHBzssDxdunQKCAiwr3Mvo0aNkr+/v/0nNDQ0xeoGAAAA8PhL9gV5f/vtN/v/Dx486BBU4uLitGbNGuXIkSNlq0slgwcPVt++fe23o6KiCFMAAAAAki3ZQapMmTKy2Wyy2Wz3HMKXPn16TZo0KcUKCwkJkSSdP3/ePrlFwu0yZcrY17lw4YLD/WJjYxUREWG//714eXnJy8srxWoFAAAA8GRJdpA6efKkjDHKly+fdu3apaCgIPsyT09PBQcHy93dPcUKy5s3r0JCQrRx40Z7cIqKitLOnTv1+uuvS5KqVKmiK1euaM+ePSpfvrwkadOmTYqPj1elSpVSrBYAAAAASCzZQSp37tySpPj4+BR78mvXrunYsWP22ydPntS+ffsUEBCgXLlyqXfv3nr//fdVsGBB5c2bV++++66yZ89un9mvaNGiqlu3rl577TVNmzZNt2/fVo8ePdSqVatkz9gHAAAAAFYlO0gldvz4cY0fP16HDh2SJBUrVkxvvPGG8ufPb+lxdu/ereeee85+O+G8pfbt22vWrFl68803df36dXXp0kVXrlxRtWrVtGbNGnl7e9vvM3fuXPXo0UM1a9aUm5ubmjdvrokTJz7MywIAAACAZLF8Ham1a9eqUaNGKlOmjKpWrSpJ2rZtm3799VetWLFCL7zwQqoUmpq4jhTuxnWkAAAAnkzJzQaWe6QGDRqkPn36aPTo0UnaBw4cmCaDFAAAAABYYfk6UocOHVKnTp2StL/66qs6ePBgihQFAAAAAK7McpAKCgrSvn37krTv27cvycVxAQAAAOBxlOyhfcOHD1f//v312muvqUuXLjpx4oSefvppSXfOkRozZozDRW4BAAAA4HGV7Mkm3N3d9ffffysoKEjjx4/XRx99pHPnzkmSsmfPrgEDBqhXr16y2WypWnBqYLIJ3I3JJgAAAJ5MKT7ZRELestls6tOnj/r06aOrV69Kknx9ff9luQAAAACQdliate/u3iYCFAAAAIAnkaUgVahQoX8cuhcREfGvCgIAAAAAV2cpSA0bNkz+/v6pVQsAAAAApAmWglSrVq2Y4hwAAADAEy/Z15FKi7PxAQAAAEBqSHaQSuYs6QAAAADw2Ev20L74+PjUrAMAAAAA0oxk90gBAAAAAO4gSAEAAACARQQpAAAAALCIIAUAAAAAFhGkAAAAAMAighQAAAAAWESQAgAAAACLCFIAAAAAYBFBCgAAAAAsIkgBAAAAgEUEKQAAAACwiCAFAAAAABYRpAAAAADAIoIUAAAAAFhEkAIAAAAAiwhSAAAAAGARQQoAAAAALCJIAQAAAIBFBCkAAAAAsIggBQAAAAAWEaQAAAAAwCKCFAAAAABYRJACAAAAAIsIUgAAAABgEUEKAAAAACwiSAEAAACARQQpAAAAALCIIAUAAAAAFhGkAAAAAMAighQAAAAAWESQAgAAAACLCFIAAAAAYBFBCgAAAAAsIkgBAAAAgEUEKQAAAACwiCAFAAAAABYRpAAAAADAIoIUAAAAAFhEkAIAAAAAiwhSAAAAAGARQQoAAAAALErn7AKAJ9HovRedXQIkDSqbxdklII1jX3Y+9mMAzkKPFAAAAABYRJACAAAAAIsIUgAAAABgEUEKAAAAACwiSAEAAACARQQpAAAAALCIIAUAAAAAFhGkAAAAAMAighQAAAAAWESQAgAAAACLCFIAAAAAYBFBCgAAAAAsIkgBAAAAgEUEKQAAAACwiCAFAAAAABYRpAAAAADAIoIUAAAAAFhEkAIAAAAAiwhSAAAAAGCRSwep9957TzabzeGnSJEi9uW3bt1S9+7dFRgYKB8fHzVv3lznz593YsUAAAAAngQuHaQkqXjx4vr777/tP1u3brUv69Onj1asWKGFCxdqy5YtOnfunJo1a+bEagEAAAA8CdI5u4B/ki5dOoWEhCRpj4yM1PTp0zVv3jw9//zzkqSZM2eqaNGi2rFjhypXrvyoSwUAAADwhHD5HqmjR48qe/bsypcvn9q0aaPTp09Lkvbs2aPbt2+rVq1a9nWLFCmiXLlyafv27Q98zOjoaEVFRTn8AAAAAEByuXSQqlSpkmbNmqU1a9Zo6tSpOnnypKpXr66rV68qLCxMnp6eypQpk8N9smbNqrCwsAc+7qhRo+Tv72//CQ0NTcVXAQAAAOBx49JD++rVq2f/f6lSpVSpUiXlzp1b33zzjdKnT//Qjzt48GD17dvXfjsqKoowBQAAACDZXLpH6m6ZMmVSoUKFdOzYMYWEhCgmJkZXrlxxWOf8+fP3PKcqMS8vL/n5+Tn8AAAAAEBypakgde3aNR0/flzZsmVT+fLl5eHhoY0bN9qXHz58WKdPn1aVKlWcWCUAAACAx51LD+3r37+/GjZsqNy5c+vcuXMaOnSo3N3d1bp1a/n7+6tTp07q27evAgIC5Ofnp549e6pKlSrM2AcAAAAgVbl0kPrrr7/UunVrXbp0SUFBQapWrZp27NihoKAgSdInn3wiNzc3NW/eXNHR0apTp46mTJni5KoBAAAAPO5cOkgtWLDggcu9vb01efJkTZ48+RFVBAAAAABp7BwpAAAAAHAFBCkAAAAAsIggBQAAAAAWEaQAAAAAwCKCFAAAAABYRJACAAAAAIsIUgAAAABgEUEKAAAAACwiSAEAAACARQQpAAAAALCIIAUAAAAAFhGkAAAAAMAighQAAAAAWESQAgAAAACLCFIAAAAAYBFBCgAAAAAsIkgBAAAAgEUEKQAAAACwiCAFAAAAABYRpAAAAADAIoIUAAAAAFhEkAIAAAAAiwhSAAAAAGARQQoAAAAALCJIAQAAAIBFBCkAAAAAsIggBQAAAAAWEaQAAAAAwCKCFAAAAABYRJACAAAAAIsIUgAAAABgEUEKAAAAACwiSAEAAACARQQpAAAAALCIIAUAAAAAFhGkAAAAAMAighQAAAAAWESQAgAAAACLCFIAAAAAYBFBCgAAAAAsIkgBAAAAgEUEKQAAAACwiCAFAAAAABYRpAAAAADAIoIUAAAAAFhEkAIAAAAAiwhSAAAAAGARQQoAAAAALCJIAQAAAIBFBCkAAAAAsIggBQAAAAAWEaQAAAAAwCKCFAAAAABYRJACAAAAAIsIUgAAAABgEUEKAAAAACxK5+wCAAAAXNnovRedXcITb1DZLM4uAUiCHikAAAAAsIggBQAAAAAWEaQAAAAAwCKCFAAAAABYRJACAAAAAIsIUgAAAABgEUEKAAAAACwiSAEAAACARQQpAAAAALCIIAUAAAAAFhGkAAAAAMAighQAAAAAWESQAgAAAACLCFIAAAAAYFE6ZxcAAAAAONPovRedXcITb1DZLM4uwTJ6pAAAAADAIoIUAAAAAFj02ASpyZMnK0+ePPL29lalSpW0a9cuZ5cEAAAA4DH1WJwj9fXXX6tv376aNm2aKlWqpPHjx6tOnTo6fPiwgoODnV0egCcUY+6dLy2OuQcApA2PRY/Uxx9/rNdee00dO3ZUsWLFNG3aNGXIkEEzZsxwdmkAAAAAHkNpvkcqJiZGe/bs0eDBg+1tbm5uqlWrlrZv337P+0RHRys6Otp+OzIyUpIUFRWVusUm061rV51dwhMvKsozVR+fbewa2M6PP7bx4y+1t7HEdnYF7MuPv0exLydXQiYwxjxwvTQfpC5evKi4uDhlzZrVoT1r1qz6448/7nmfUaNGadiwYUnaQ0NDU6VGpD1J3x14HLGdH39s48cf2/jJwHZ+/LniNr569ar8/f3vuzzNB6mHMXjwYPXt29d+Oz4+XhEREQoMDJTNZnNiZWlfVFSUQkNDdebMGfn5+Tm7HKQStvPjj238ZGA7P/7Yxk8GtnPKMsbo6tWryp49+wPXS/NBKkuWLHJ3d9f58+cd2s+fP6+QkJB73sfLy0teXl4ObZkyZUqtEp9Ifn5+7MhPALbz449t/GRgOz/+2MZPBrZzynlQT1SCND/ZhKenp8qXL6+NGzfa2+Lj47Vx40ZVqVLFiZUBAAAAeFyl+R4pSerbt6/at2+vChUqqGLFiho/fryuX7+ujh07Ors0AAAAAI+hxyJItWzZUuHh4RoyZIjCwsJUpkwZrVmzJskEFEh9Xl5eGjp0aJKhk3i8sJ0ff2zjJwPb+fHHNn4ysJ2dw2b+aV4/AAAAAICDNH+OFAAAAAA8agQpAAAAALCIIAUAAAAAFhGkAAAAAMAighSShTlJACBt4bgNAKmLIIV/FBERIZvNZr/NH+fHT8I2jY+Pd3IlSE1377vsy4+f6dOn6/jx44qOjnY4bgMAUh5BCg/06aefqlq1avr444+1du1aSeKP82MkITjFxcVJkq5fv+6wnA/aj4+YmBi1adNGn3/+uXbs2CGJfflxc+bMGU2YMEF9+/bVU089pQ0bNujs2bPOLgsAHltcRwoPdPz4cf3yyy9avHix9u7dq4oVK2rkyJHKmTMnH8LSuPj4eLm5uenIkSOaNGmSfvnlF126dElVq1ZVvXr11KJFC0l3whTbOu07f/68vvnmG61cuVJRUVHKkSOHPvzwQ+XIkUOenp7OLg8pJCYmRhcuXND777+v77//Xk899ZS6dOmi6tWrO7s0pICE4zYef/f628v2dz0EKdzT3TvrpUuXdPDgQbVr107BwcEaMWKEatasKXd3dydWiYeVsH1/++03Pffcc2rYsKECAgLk4+OjGTNmKC4uTu3bt9fo0aMlEaYeJ+Hh4frzzz/VqVMn2Ww29ejRQ61atZKvr6+zS8O/cK8PWAsXLtS8efN09uxZjRgxQnXq1HFSdfi35s+fr9q1a8vPz08eHh7OLgepLOFv7pYtW7Rr1y7dunVLffr0kY+Pj7NLw10IUkiWhJ362rVrqlu3rmJiYjRu3Dg988wzzi4ND+mvv/7Sc889p5YtW+r999+3tx89elTvvvuuNmzYoH79+mnw4MFOrBIP637hN/EH7vbt2+vAgQNq1aqVXn/9dWXMmPFRl4kU9ttvv6lUqVL229u2bdOUKVN05swZffLJJypfvrwTq8PD2Lx5s0aNGqUzZ87Yv/iqV6+es8tCKluxYoVeeuklPfXUUzpy5Ij8/f01Z84cVaxY0dmlIRH6B5HEtm3bNHnyZE2YMEHff/+9pDvnUty+fVs+Pj5at26djDF699137efQkMfTnl9++UXZs2dXz549FRsbK0mKjY1VwYIF9cEHH6h06dJasGCBTpw44eRKYVXiELVx40YtWbJEc+bMkSS5ubkpOjpakjR79mxVrlxZ8+bN09atW+33Rdr0448/qkyZMtq7d6+9rWrVqnrttdfk7e2tJUuWKDo6mm2cxtSoUUPr1q3TiBEj5OXlpQYNGqhfv346efKks0tDCkvYN69fv65vv/1W06ZN0+bNm3X06FHly5dPzZo107Zt25xcJRwYIJHp06ebrFmzmpo1a5qCBQuasmXLmsWLF9uXx8bGGmOMOX/+vAkODjaDBg1yVqn4l9555x0TGhqapD0+Pt4YY8yWLVuMm5ub+fbbbx91afgXErafMcYMGjTI5M+f35QqVcp4eXmZLl262Jfdvn3b/v/atWubihUrPtI6kfKOHz9uqlevbqZPn26MMSYmJsa+bNKkSSY4ONgcO3bMGOP4PoHrSryfJli5cqXJlCmTadWqlfnll1+cUBVS048//miKFStmnn/+ebNjxw6HZXXq1DE5cuQw27Ztc1J1uBs9UrBbuXKlBg4cqAkTJmjDhg1asWKFChUqpC1btki6802Ju7u74uLiFBwcrLFjx2r37t06c+YM33C6uHtNax4QEKDbt2/rzz//vOfykiVLKjg4WOfOnXsUJSKFJPREDRs2TNOnT9e8efP03XffacqUKdq2bZu9NypdunT27f71118rPDxcH374odPqhjX32mfz5cunMmXK6P3331dcXJw8PDzsM3L26NFDNWrU0OjRoznnMQ1Jly6dJOmzzz7TgQMHFBcXpwYNGmjNmjXasWOHxo0bp8jISCdXiX8r8WeoIkWKyNvbW5s3b7Zv24T9fc2aNSpTpoxq1qypnTt3OqVWOCJIQZIUGRmpxYsXq127dmrZsqUkqXDhwqpataq+++473bhxw/6HN2GCiSpVqujcuXP6448/+KPswhLOiTl16pRWrlypGzduSJKeeeYZhYeH66uvvrKfM2OMsR/QIyIilDVrVhUqVMhptePhrFmzRnPmzNE333yjihUrKmfOnMqbN69CQkL01VdfacKECbpw4YLc3NxkjJG/v79ef/11/fnnn84uHcmUsM+eOXPG4bIF7777rnx9fTVt2jRJd47XCR/CGjRokOS6gHBNiYPyxIkT1b17d3sAjo+PV6VKlbRgwQItXLhQ06dPd2KlSAk2m02bNm3SuHHjlCVLFq1Zs0YVKlRQnz59dPz4cfuxWrrzpXeDBg0UEBDg5KohEaTw/7m7u6t48eKqXbu2pP/7dqRw4cKy2Wz3/MNbqFAhtWrVSrt27bJ/6wnX4+bmpjNnzqhgwYLq16+fVq9erWvXrql8+fLq0aOHhg4dqo8//ljSnYN5wge0L774QrGxsSpatKgzy8dDqFatmnr27GnfdnFxcXr99dd1+vRpLV68WGPHjlW9evUUFhZm37+rVKmipUuX6vjx406uHvfTpk0bNW/e3H573rx5KlmypDp37qwNGzbIGKOgoCBVqFBB69evt6+XcPxu1qyZsmXLplOnTj3y2mFNwnF4+/bt8vT01Pz581WiRAm5ubnJzc3NHqY+/fRTffjhh/rll1+cXDH+jdjYWP3yyy/66quvtHv3bgUFBWnlypXy8vJS06ZNdeLECdlsNvtns0WLFqlgwYJOrhqSOEcK/+fChQv2/yeMn9+/f78pUaKEuXLlin3Z6tWr7f8/cuSI2b9//6MrEg/l+PHjxsfHx3h4eJgyZcqYRYsWmfj4eHPixAnzyiuvGJvNZpo3b24mT55sZsyYYbp27Wp8fX0Zf5+GxcXF2f/ft29fU69ePXP+/HljzJ1zZzJnzmyGDx9ujPm//X3x4sUmKirq0ReLfxQfH28WLFhg/Pz8TOfOne3tU6ZMMV27djWenp6mVatWZs6cOeb33383GTJkMEuXLrWvl3B+68WLFx916XhIe/bsMTabzbi5uZkvv/zynuucO3fOtGjRwsyePdsYw7lvacnd22r37t2mRo0a9uOyMXfORy9btqwpV66cOXLkyKMuEclAkMID/fTTTyZXrlzm1q1bxhhj6tata0qWLOnwIQ2uLWFbffTRR6Zv376mbt26JmfOnGbJkiXGGGPCwsLM1KlTTe7cuU1QUJApXry4adasGQE5DUj8h/jChQvmr7/+uuey/fv3mxs3bthvX79+3VSuXNl8/PHHDo938+bNVKwW/1ZcXJxZvny58fX1Ne3bt3dYtmXLFtO3b1+TM2dOU6FCBRMYGGg6depkYmNj73m85gO367t+/br54osvjL+/v/nvf/973/XeffddU65cObZpGrR+/XrTt29f+xcds2fPNp6enmb37t32dS5cuGDy5s1rqlat6jCBDFwDQQoPtHHjRpM7d24TFRVlGjVqZAoXLmzfkQlTrunu7ZLwx3XBggWmfPnyJjw83HTo0MEepqKjo40xxly5csWcPXvWXLlyhQ/UaUDiD02jRo0yVapUMTlz5jTlypUzJ0+eNMbce8YvY+70UJYrV84eppF2xMbGmuXLlxsfHx/TsWPHJMuioqLM22+/bZ5//nmTMWNGvsVOI+739/T27dtmypQpxt3d3aGnIvF9IiIizMiRI01ERESq14mUER8fb6Kjo03BggWNzWYztWrVMkuXLjWXL182/fv3NxUrVjRhYWH29cPDw82JEyecWDHuhwvy4oH279+v1q1by8vLS5GRkTp06JA8PDwUGxtrn00IriPxxBK///67SpUqpdDQUPvyBg0aqGDBgho/fryaNm2qffv2ady4capXr54yZMjgxMrxsN555x1Nnz5dH374oby8vDRt2jSdP39ev/76q31imATR0dEKCwtTw4YNVbRoUX399ddOqhrJlfgCyglu376tVatWqW3btnr55Zftkw3cvn1bHh4ekqRLly6pXbt2yp07tyZOnCh3d3cmmXBRibfxjBkzdOzYMf39999q166dSpcurYCAAE2ePFm9evXSsGHD9M477zjcPy4uTseOHVPhwoWdUT4sMHfNmLllyxYNHTpUxhjlzZtXN2/eVJEiRXT8+HFVrVpVXbt2TbL/w7XwSfgJc68/yvdqS3Djxg0dPHhQZcuWJUSlAW5ubjp9+rTy5s0rX19f5cyZU/3791eFChVUsmRJde/eXZMnT9bt27e1dOlSNWrUSIMHD1ZMTIyaNWsmLy8vZ78EWLBy5UotX75c8+fP17PPPivpztS5jRo10t69e1WhQgX7uteuXdP8+fM1ceJEFSpUyB6iHrT/w7kSb5tt27bpypUrqlixooKCgtS4cWPNmTNHbdu2lSRNnz7d4fgcGBiosmXLau/evRyvXVzCNh4wYIBmzpypOnXq6MCBA/rxxx9Vt25dvfXWW+revbvc3NzUu3dvRUVFaezYsfb7u7u7E6LSCJvNpq1btypz5szKkyePKleurKefflr+/v566qmntGfPHg0ZMkQ2m02//vqrWrdurUyZMjm7bDwAfz2fIIn/KO/fv1+//PKLTpw48cAPUdmzZ9fw4cO1c+dOQlQa4eHhoUKFCil79uwqX768pkyZokGDBqlHjx7KlSuX9u7dq/Hjx0uSvv32W4WGhmrMmDGKiYlxbuGw7O+//1ZwcLDKlCljbytUqJBiY2N1/vx5h3UTvvHs2rWrFi9eLIkQ5eoSts2bb76pF198UZ07d1bBggU1Z84cXb9+3R6mFi5cqC5duki6c92hhIEm0dHROn36tK5du8a1/lzcxo0b9fXXX2vt2rWaO3eu9u3bp+7du+u3337ThAkTdOvWLb366qsaOXKkduzYwfZMo4wxeuutt/Tiiy/q/fffV3h4uJo2bap58+Ypc+bMGjBggNauXavKlSvr3LlzunbtmrNLxj9x2qBCPFKJz6d4++23TcGCBU2RIkVMpkyZzODBg+1Xu3+Q+51vAdeRMGb+1KlTplSpUqZt27Zm1qxZZvPmzaZ69eqmadOmxtfX15QvX95hlsYzZ844q2T8C7Gxsebnn3+2346OjjYxMTGmePHiZuPGjfb2e+27nOPouhIfr7ds2WLKlCljvv/+e/P333+bHj16mICAADN16lRz9epVY4wxy5cvNzabzYwcOdJ+vxMnTphmzZqZPXv2PPL68c8SJhdIsGjRIpMrV64kx+Jhw4aZPHnymEuXLhlj7uzLCe8PJpdIuz7++GPToEEDkytXLrN161bTrVs3U7ZsWXP58mVjjDFnz5414eHhzi0SycJXkU+IhDG548aN0//+9z9Nnz5dhw4dUuvWrfXpp58m68ro9ES5voTtnCtXLi1ZskS//vqrFixYIB8fH/3www/q3bu3unbtql69eikoKEixsbGSpJw5czqzbPwDc49vn+Pj4+Xu7u4wfM/Dw8N+jkzCPn3p0iX7+XCJ0RPluhL248mTJ2vDhg2qV6+eatSooZCQEE2aNEnt27fXO++8o7lz5+ratWtq1KiRtmzZogEDBtgfI2/evJo9e7bKlSvnrJeBB0g4f3HLli2SJE9PT8XFxenmzZuS7pzvJt0Z7nfx4kVt2rRJ0p2/wwnXE+KcN9eXcOw+evSofvvtN/3444+SpD59+ujTTz9V27ZtVbduXUVGRur8+fOaMWOGbt++rezZsytLlizOLB3J5eQgh0coLi7ONG/e3EycONEYc+eaMZkyZTJTpkwxxhim1UzDEr6ZvHbtmomPj7dfC+jIkSOmVKlS5tlnnzU//vijM0vEQ0r8rfOGDRvM8ePH//E+hQsXNitWrDARERGmePHipnLlyqlZIlJA4h7ChP/XqVPH2Gw28+KLL9ovQZGgT58+Jjg42IwbN85havvEPRZwPUuXLjXNmzc3xhjTu3dvU6FCBfvxulixYua5555zmDX1xIkTpmjRombLli1OqRcPL2E/TOhtzJs3r/Hx8TF169Y1u3fvti9fs2aNefnll43NZjPVqlVz2J/h+ghST4i4uDhz9epVU6xYMbN9+3bz008/GR8fHzNt2jRjjDG3bt0yH3zwgcO1C5A2JByMV61aZVq0aGGqV69uXn75ZfPDDz8YY+5MdV2mTBlTq1Yts2nTJmeWin9h6NChxmazmU6dOpmzZ8/ec53bt2+bmJgYU6lSJTN37lxToUIFU6dOHftyhvO5rqioKBMVFWXOnz/vEJo6dOhgvL29zeLFi+2XKkjw6quvmnr16hGc0oj4+HizZs0akz59elOqVCnj5+dnDhw4YF/++++/m7x585qnnnrKzJkzx3z77bemfv36pkKFCkmGAiJt2LZtm/Hx8THTp083+/btM/v27TNFixY1VatWdRiWHRYWZpYuXcrlCtIggtRj6n4fmLp162aKFStmvL29zaxZs+ztFy5cMDVq1LD3TiFtWb58ufH29jbvv/++mTFjhmnWrJmx2Wz2g/LJkydNhQoVTMWKFe0BC2nHt99+a4oXL27efPNNkz59etOhQweHi+8mdvv2bVOkSBF7T0YCQpTrWrhwoWnUqJEJDQ01Pj4+pnbt2mbSpEn25c2aNTOZM2c2y5cvTzJyIGG7EqbSjsaNGxubzWbq1atnb0vYfmfOnDG1atUyhQsXNkWLFjX16tWzb3PCVNrzySefmOrVqzv0FF++fNkUKlTINGnSxMnVISUQpB5DiT8wnT592hw7dsy+A//www+mXLlyplKlSvbu40uXLpl69eqZqlWrcqBOQxK2c1RUlHnhhRfMuHHjjDHG/PXXXyZ37tzmtddec1jvyJEjpnr16ubUqVPOKRgPJSYmxnz99dfmjTfeMMYYs3XrVuPh4fHAMFWvXj3TsGFD+21ClOv64osvTMaMGc2oUaPMjBkzzLRp00ylSpWMl5eX6dmzp329Zs2amYCAAPPtt98m6Zli+7q2xNvn1q1bZsGCBWby5MkmMDDQtGzZ0r4scUi+ePGiOX36tP1vN5M9pS0J2+3NN980ZcqUsbcnfO7aunWr8ff3N7/99htfgqRxBKnH2MCBA02RIkWMt7e3qVu3rpkwYYIxxpiZM2eacuXKmWzZsplnn33WVKhQwZQrV45vvdKADz/80IwaNcqhLTw83OTOndv8+uuv5vz58yZHjhymS5cu9uVz5swxJ0+eNMbwxzitOnfunPnzzz/tt7///vt7hqkrV64YY+6cK5eAD9mua+vWrSZHjhxm8eLFDu2HDx82r7/+urHZbGb48OH29pYtWxqbzcb5jmlI4v1v8uTJZvTo0eb06dPGGGNWr15tMmfO7BCmjDFm5cqV930MpC3btm0zXl5e5rPPPnNo//HHH02BAgXMiRMnnFQZUgrTsD1G7r46+pw5c/TJJ58offr0WrJkiWbNmqXw8HCNGDFCVapU0YoVK3Tjxg2FhoaqXbt2cnd35zpRLuzGjRsKDw/XpEmTlDFjRvXs2VOS5Ofnp4oVK2rjxo0aP368XnzxRX366aeSpLCwMK1du1aenp7KnTu3faYouCaTaCauxPtztmzZ7OvExsaqRo0a2rBhg2rVqiVJGj16tK5cuaJhw4apX79+Kl++vP3xmJ3PdR04cEBFixZVnTp17MdeY4wKFSqk/v376+zZs/rmm2/UsmVLFSpUSAsWLFDBggVVuXJlZ5eOZEp8LbCZM2fqo48+ss/kVqdOHc2fP19t2rRRs2bNNGzYMPvMi/Xr17cfC9iHXV/CsXv//v06duyYihYtqhw5cujpp59W7969NXr0aMXHx6tbt266ceOG1q1bJ09PT/n4+Di7dPxbTo1xSBUbN240Q4YMMZMnT7a3Xbp0yYwePdqULl3aLFmy5J73oyfK9f39999m2LBhxt/f33zyySf29m7duhmbzWYaN27s0Os0cOBAU6xYMfs3oHBdiYd3fPbZZ6Zjx46mZcuWSb7JNOb/9tUffvjBeHt7m6ZNm5rg4GDToEGDR1Yv/r327dubsmXL3nf5qlWrjM1mM9u2bUuyjN7ltGPx4sUmZ86cZufOnUmWxcXFmR9++MHkyJHDFC5c2FSqVMk+OoQhX2nLokWLTEBAgMmZM6fJli2bGThwoAkLCzMXL140gwcPNl5eXqZQoUKmXLlyJkuWLFzj7TFB18NjIOGb6/j4eJ09e9b+LfXbb79tXycgIEDdu3fXsmXLtGHDBjVt2jTJ49Bb4bri4+Nls9kUEhKixo0b69atW+rbt698fHzUuXNnTZ06VSdPntS+ffv07rvvKjg4WAcOHNCiRYu0ZcsWhYaGOvsl4B8kfPv85ptvas6cOWrbtq327dun6dOnq1y5cvbrRRlj5O7urvj4eFWvXl2ff/652rdvr5YtW2r+/Pn2dbjGjOvLnTu3NmzYoKNHj6pgwYL29oTtV6ZMGfn6+urSpUtJ7svIgbTj8OHDKlCggEqXLm1vS9jGNptN1atX1x9//KGDBw+qQoUKcnNzY3RIGpGwHU+dOqXPPvtMo0ePVrNmzTRt2jR9++23ioiI0PDhwzVy5Ei99NJL2rBhg4KDg1W9enXly5fP2eUjBdBf/BhI6PY/fPiwQkND9dNPP8nX11ebNm3SkSNH7Ov5+PioSpUqOnnypP1if0gb3NzcZLPZtHTpUnXr1k1//PGHvL299d///lcff/yxJGnNmjVq2LChfvnlF3355ZeKiYnR1q1bHf54w7WNHTtW8+fP18qVK+3/Dw8Pt184WboTuOLi4uTm5qY//vhDAwcOVJMmTewhKiF0w/XVrFlTYWFhmj9/vsNFl+Pj4yVJf/31l/Lmzas8efI4qUL8G3FxcZLuDLGOi4uTl5eXjDH2fTQuLk6rV6/W8ePH5ePjo4oVK9q/FCVEpQ02m027d+/WhAkTFBgYqJYtWyowMFBvv/222rZtq19//VVDhgzRiRMnVLZsWQ0YMEDt27cnRD1OnNgbhhS0bt06Y7PZzNGjR40xd05w9PT0NK1atTK//vqrMebO7G4VK1Y0nTt3dmapeEh79+413t7eZurUqebChQtmz549plevXsbX19d8/PHH9vVu3rxpbt68ydCfNObvv/82nTp1MjNmzLC3RUdHm2LFipl69eqZ+vXrm9dff92+LDY21qxcudL85z//sbdxUnrakXhWLzc3NzNq1CgTHh5uXx4TE2Pq1atn6tSpw3ZNI+63nVasWGFsNpuZN2+eQ/vFixdNixYtkkw2grRl4MCBJlOmTCZPnjzmwoULDssmTpxoqlWrZlq1asWMuY8pvvJIo+7u9i9btqyqV6+ulStXqkePHnr66ae1adMm1axZUz/++KPKli2rdOnSKT4+XpMnT5bE8J+05ujRoypQoIDatWunDBkyKCgoSEFBQYqNjdWbb76pTJkyqWPHjvL29nZ2qXgIgYGB6tGjh3LkyCHpTq9E+fLllT59ejVo0EARERGaM2eOunXrpmnTpsnd3V21a9dWgwYN7OtzUrprutexNuH2f//7X928eVNvvfWWVq5cqYoVK8rb21s7duzQhQsXtHfvXnsvBdvXdSXePkuXLtXp06d148YNtW7dWi+++KJ69eqlDh06KDIyUjVr1lR0dLTefPNNhYWFqXHjxk6uHsmVeF/esWOHChQooNGjR8vPz0+ff/65xo4dqwEDBig4OFiS1LNnT928eVMbNmyQh4eHM0tHanFykMNDmD17tnnvvfeSfPvVuXNn89RTTzm07dy502TMmNEUKVLELF++3P4t6N3XIYFrSHxy8d2Tf6xfv974+vqa3bt3O7T/9NNPxtPT09hsNi6onMYl3v4//PCDadSokbl06ZK9rXfv3uapp54yV69edUZ5SCXXrl0zX3/9tXnmmWdMgQIFTMOGDU3//v3tvcr0Lqcd/fv3N3nz5jUvvPCCefHFF43NZjObNm0y586dMyNHjjQZM2Y02bJlM4ULFzbVq1fnsiNpROLepLi4OHPu3DkTEBBgduzYYW9/6623TLly5cw777zj0LtsjDERERGPrFY8WgSpNGbatGnGZrOZn3/+2fz999/m1q1b9mXh4eEme/bsZtKkScaY/xtmsH37duPh4WHatWtnzp8/z0xALiphe124cCHJNoqPjzcnTpwwTz/9tOndu7c5fvy4fdmff/5pmjZtasaOHWsOHz78SGtG6kr4cJXw3vjggw9Ms2bN+NCVRmzdutVs2bLFGGNM9+7dzaeffvrA9WNiYuwX7EzAtk475s2bZ0JCQuxfdi1btszYbDazaNEi+zqHDh0yP/74o9m+fbt9vyYou7b//e9/plKlSmbTpk32ttOnT5vQ0FBz9uxZh+03ePBgU65cOTN06FBz/vx5Z5SLR4yhfWnI7Nmz1bNnTy1ZskRnz57VSy+9pJIlS+q9995T3rx5lSVLFjVq1Eg///yz/WTl2NhYVa5cWZs2bVLdunV19epVTZ482eG6NHANbm5uOn78uIoWLaqKFSuqZ8+eKlKkiEqXLi2bzaa8efOqdevWmjRpkmJjY9WyZUsVKVJEn332mSIiItS5c2dlzpzZ2S8DD2ASDQtJ+L95wBDbhJk03dzc9Pfff2vx4sVq3LgxM2y6OGOMwsLC1KtXL+XPn1/Tpk3TkiVLtGvXrgfez8PDI8nwH7Z12nH69Gm9/PLLKl++vBYtWqSOHTtq2rRpat68uSIjIxUbG6siRYo43IeJJVxfjRo19Mknn+jDDz+UMUbPP/+8bDabMmbMqMDAQKVLl04xMTHy9PTUyJEj5ebmptmzZ8vT01ODBg1iSO7jzqkxDsk2a9YsY7PZTLt27Ywxd4aC/O9//zMtW7Y0gYGB5uWXXzZLly41GzZsMOnSpTM//vijMeZOT0bCN5qbNm0ywcHB5uzZs057HXiw/fv3mwoVKphmzZqZzp07m5w5c5qRI0fat6cxxnz++efmmWeeMV5eXqZIkSImc+bMZu/evc4rGsmSuJfx7bffNkOGDEnW/SIjI82uXbtMyZIlTePGje/5eHBNP/30k8mZM6dJly6dmTlzpr2dbfd4evPNN81//vMfs3z5cuPr6+sw1HratGmmb9++DqNI4PoSPj8dP37clCpVytSuXdts3brV7N271xQsWNBERUXd835jxoxxGDmCx5fNmERzrsIlffbZZ+revbtatmypRYsW6f3337df/VySvv32W23fvl2TJk1S/fr1tXTpUrVu3VqfffaZvL297dOsuru76+bNm0qfPr0TXw3uxxijS5cuqW/fvqpbt67+85//6JtvvtGMGTMUFxenoKAgvfPOOypcuLDc3d31008/6dq1aypWrJhy5szp7PLxACZRr9Pbb7+tUaNGqWDBgvrtt9+ULl26+/Y6xMbGavbs2Vq8eLECAwP11VdfSWJiCVeXsL337t2rLl26KCYmRsWKFVPXrl317LPPSmIbpmX323YrVqzQe++9p4MHD2rMmDHq1auXJOnq1atq3bq1ihQponHjxj3qcvEvJXx+OnHihJo2bap8+fLZe6n69+8vDw8PZc6cWfHx8frrr79UrVo1ValSxdll4xEhSLm4Tz/9VH369NHixYvVqFEjjRs3Tm+++aY++ugj9enTx2HdP//8UzNmzNCmTZt08OBBHTp0SFmzZr3ncCI4X+I/xgkHakmaMmWKRo0apW3btilXrlyKj49X5cqVtXv3bj311FPy9fVVp06d1LhxY2XIkMGZLwHJkHif69Onj+bNm6fOnTvrm2++0e+//y4vL68H3v/ixYv6448/VK1aNUl8AHdl99s233//vQYNGqScOXOqZ8+eqlGjhhOqQ0pIvI2XL1+uqKgohYSE6IUXXlBMTIy6deumTZs2acCAAWrUqJHCw8P19ttv6/z589q1a5fSpUvH3+E04l7b6ejRo2revLkuXLggd3d3hYaG6vbt2/L29tbNmzd1/fp1ffvttypcuLCTqsYj55yOMPyThOsCvfbaaw7XmLh586YZN26csdlsZvz48fb2hJMd4+LiTHR0tKlYsaLp2rXroy0alv3111/m8uXLxhhjn70pOjraNGnSxHz++efGGGM6duxocuXKZX777TezbNky88orr5jAwEATFhbmrLKRTImHcPXu3dv4+fmZX3/91ezatctkyZLlH2ffu9ekI3BNiWdRXbhwofnkk0/Mu+++ax9KvXnzZlO5cmXTsmVLs2HDBmOMMS+88IKZPn26U+qFdYn3v4EDBxofHx9TokQJY7PZTL9+/Ywxd/5G/+c//zGlS5c26dKlMxUrVjTPPfccs/OlMQnbevfu3Wb27Nlmy5Yt5u+//zbG3BnmV7ZsWVOrVi2zbt06+zaNj4+3b2c8OQhSLuiPP/4wzzzzjMNBO/H/7xem4uLi7H/M33vvPdOiRYtHVzQsi4qKMvXq1TNVq1a1T42acEAeNGiQeeGFF0yrVq1M9uzZzc6dOx3umxC+kDb06dPHZMqUyX5x7MOHDxs/Pz/ObXsMDRgwwOTOndvUr1/f1KxZ06RPn94sX77cGGPMhg0bTI0aNUzJkiVNiRIlTL58+fjglQYdOXLEVKpUyezZs8eEh4ebpUuXGg8PD9OlSxdjzJ3j+JkzZ8yaNWvM4cOHmZ0vjVq8eLHx9/c3efPmNblz5zb/+c9/zMGDB40xd94DJUuWNPXr1zdr1qxxcqVwJoKUC4qKijL58uUzn3zyyX3XSQhT7u7uZsKECUmWd+nSxZQuXdpcv349FSvFvxEXF2dmzJhhnnnmGVO/fn2H6wXduHHD5MqVywQEBJj9+/cnuS89E2nH1KlTTfr06e0hyhhjTpw4YTJmzGg2btxob0vYpmzbtGvu3LkmJCTE7Nu3zxhzJzjZbDazZMkS+zo7d+40n3/+uXn//fe5TlQaNHLkSNO2bVvTsWNHh96l7777znh4eJhu3bqZyMjIJPe7+7qPcB2Jt03CFxvnzp0zLVu2NDNmzLBP7lWrVi1Tp04dc+DAAWPMnTAVGhpqmjVrxmetJxhBysUk7NBffPGFef75583vv/9+33Vv3rxpPv74Y2Oz2czXX39tbz916pRp2rRpkgu3wnUk/AGOjo428+bNM88++6xp1KiRuXLlijHmzsH8rbfeMi+++CIXX03jIiMjzbFjx4wx/xeSbt68aYoXL24WLlxojPm/D9KXLl0yI0aMSHIxR7imu0PvmDFjTPfu3Y0xxixYsMD4+vqaqVOnGmPu9CLf60LoDPVKWyZMmGBsNpspXbq0fWRAwvtg1apVJn369KZNmzYct9OY06dP2/+/fft28/LLL5sGDRo4zHL89ddfm5o1a5o6derYe6aOHTvG7HxPOM5YdjEJJ7GWKVNGUVFR+u677xQdHX3Pdb29vdWtWzfNmzdPzZo1s7fnypVLX331lcqXL/9IasY/S3xdL+nOtWESrjvRunVrZc2aVWvXrtUrr7yiiIgIeXh4qF69etq8ebNWrlzpzNLxkEaOHKmZM2fKz89P+fPnV3x8vP3EZW9vb3l4eOjAgQOSpHTp0uny5cuqXLmy1q9fryxZsjizdCRTwvY8f/68JOnMmTMKDw/Xxo0b9dprr2nMmDHq1q2bJOmLL77QW2+9JXPX/E5cJ8p1JRy3E+vVq5dmzpyp/fv369NPP7Xv18YY1atXT3PnztWZM2eYCCgNuXHjhlq1aqUyZcpIkg4fPqyff/5Zu3fvdphs4uWXX1aXLl0kSa+++qoOHz6s/PnzK1++fM4oGy6CIOWiypcvrzZt2ujdd9/VsmXL7rte+vTp1apVK6VLl87+IV2SMmbM+AiqRHIlXGx3yJAh+uOPPyRJnp6ekqSPPvpI69atU+/evXX58mW1bdtWFy9eVLVq1VSnTh1NmTJFMTExST6AwXXdvHlTZ86cUadOnbRw4UJJsn/YSvhwljlzZl28eFGSdPnyZVWrVk0FChTQli1bJInt7eISts+oUaPsM6i+9NJLOn78uOrWravRo0fr9ddflyRdu3ZNP/zwg2JjY5mtLY1IPDvf7t27tXnzZt24cUPx8fFq3769Pv30Uw0dOlRjx451uLh206ZNtWXLFrm5ud0ziMH1eHp6auDAgTLGqH79+mrfvr0+/PBDZciQQX369NG5c+fs67788stq06aNQkJCuJQM7nBaXxjuK/Fwkb59+xpvb2/z5Zdf2ickMIbx1mlF4m25ePFi4+npad544w1z9OhRY4wxo0ePNpkzZzbff/+9MebOORZPP/20adiwobly5Yr56aefGDaQRl24cMG8+eabDkNvE18gu3PnzuaVV14x165dM4ULFza1a9e235f92zW99dZbZvHixQ77dc+ePc2YMWOMMcZcvHjRdO3a1RQvXtyMGTPGXLx40fz888+mfv36pmzZsvYhnJwHl3b079/fZM+e3WTIkMGUL1/ezJ8/39y8edMYY8zkyZONu7u7GTNmDPtsGpV4IpDVq1ebwoULm7p16xpjjJkzZ46pVKmSad++vX3GvgT3uxAvnjwEKRdx90E48R/aQYMGGX9/f9OvXz+zefPm+64H15KwTS9cuGB+/vlnExYWZtauXWty5Mhh3n77bdO/f38TGBho1q1b53Cf+fPnmyJFipg2bdo4q3RYkHgfvHsGtrCwMNOvX78kYcoYY4YOHWqKFy9uihUrZmrVqmW/Dx/IXFNUVJQpWLCgqV69ulm1apV9W7/00ktm9OjR9vXOnTtnXnvtNVO4cGGTPn16U65cOVOzZk2mv04jEu9/q1evNqVKlTIbNmwwBw4cMA0bNjTly5c3n3/+uT1MTZ061dhsNvPVV185q2RYkLB9Ex+rE4epVatWmcKFC5t69eoZY4yZPXu2qVSpkunUqZPD+VJAAoKUE23dutXMnTs3Wet++eWX5qWXXjK5c+c2PXr0MEuXLk3d4vCvJByYDxw4YKpWrWpeeOEF07RpU2OMMbNmzTLBwcHGw8PDzJw5036fhA9YsbGxZuHChebkyZOPumz8C1OmTDFvvPGG2bJli8OJy9evXzdvvPGGsdlsZt68efb2SZMmGZvNZl555RV7GyHKNSVsl4sXL5pq1aqZatWqme+++84YY0zDhg3NBx98YIz5v5B848YNEx4ebjZu3GgOHTrE9Ndp0KJFi0z//v3NsGHD7G3R0dGmVatWpnz58uZ///ufPUwtWbKEbZuG/Pnnn6Z3794OM6ne3TNVtGhR+7H5888/N8WKFTP//e9/+SIESRCknGT27NmmcOHCpnnz5ubnn3++73qJP1hdunTJbN++3bz66qtmxIgRSa4tBNeQ8GHq999/N5kyZTJvvfWWOXXqlMMf2kWLFpmQkBDTt29fc+TIEXs7B+m0I3FP1Pfff29sNpux2WzG19fXVKlSxbz44otmzpw55vTp0+b8+fPm/fffNzabzX6B7YiICNOnTx/7YxCiXFd8fLxDD3OVKlVM5cqVzbp160zz5s3NtGnTTHh4uDl79qw5ffq0CQ8PN/v373fY59m+acetW7dMyZIljc1mM61atXJYlhCmKlasaMaPH+8wEyNhKm347bffTN68eU23bt0cZkZO2Edv3rxpZs+ebYoVK2a2b99ujDFm2rRpfLmJe7IZwxnNj9qXX36p7t27a8qUKapTp46Cg4Mdlpv/f+Lq/W7HxcUx05OLi4iIUOPGjVWuXDlNmDDB3h4bG6t06dJJkubMmaNBgwapefPm6tmzpwoUKOCscvEv/Pjjj6pevbr69++vvXv3Kjg4WK1bt9aXX36pY8eO6dixY6pTp45CQkJ07NgxrV+/XgsWLNDLL79sf4zEJ7bDtSTeNmFhYQoJCVF4eLgaNmwoSTp+/LguXbqkUqVKKSwsTDdv3pSfn5+eeuopLV68mMkl0oC7/8ZKUmRkpFq1aqWTJ09q9OjRatiwof3vbkxMjBo2bKicOXPqiy++YBunQfv27VOnTp1Urlw59e7dW8WLF5f0f5+vIiMjVahQIQ0ePFi9e/d2brFwafzlfsSOHTumMWPG6NNPP9Urr7ziEKL++usvSUln67r7IE2Icn1hYWH6+++/1bx5c4eZm9KlSydzpydYbdu21ZgxY7Rs2TKNHDlSJ06ccGLFeBhnzpxRixYttHbtWr377rsqUaKEzpw5oxMnTmjRokXat2+fPvvsM5UpU0arVq3Sn3/+KUlavny5pP/b1wlRrilxiBo5cqTat2+v33//XUFBQfruu++UIUMGBQYGavjw4Vq2bJm2b9+ujRs3avPmzVq4cCEfsNOAxJcluHjxoq5fv67IyEj5+/tr7ty5CgoK0ocffqjVq1fbj+Wenp767rvv9L///c8+Wx/SljJlyuiLL77QL7/8ovHjx+vgwYOS7ny+io2Nlbu7u8qWLas8efJIYhZV3B9/vR+x8+fPKyYmRjVr1rS3LViwQO3atVORIkVUqlQpzZgxQ7du3XJilfi39u3bp1OnTql69epJpsG12Wyy2Wy6ceOGnn32WU2YMEE7duxgyvo0KEuWLGrbtq02b94sf39/DRo0SBUqVNCcOXP0/vvvS5L9Mga//vqrli1bpvnz52vu3LmSkn5JAteSEKIGDRqkSZMmqU2bNvLy8pIkBQYGauHChQoICND69et19OhR5cmTRxUqVFCBAgXk7u6uuLg4Z5aPf2CMsW/j999/X82bN1fp0qXVoUMHffvttwoICNCyZctks9k0atQorV692r5N06VLZz+2sx+nTWXLlrWHqXHjxmnv3r2S7rwvxo0bpyNHjqhcuXKSOFbjAZwyoPAJtnfvXpMrVy7z6aefmpiYGPPqq6+ap556yjRt2tTMmzfPNGvWzOTKlcscO3bM2aXiX9i2bZvx9vY2ixYtuu86EyZMMC+88IIxxpgrV648qtKQwjZs2GCyZMlifvjhB2PMnZn63njjDVOpUiUzfPjw+96Pc2bShp07d5p8+fKZDRs2OLQnnA8THh5uqlWrZgoVKmR++uknZ5SIf2nIkCEmMDDQzJo1y4wcOdK0a9fOeHh42CeDunTpkqlRo4YpUKCA2bZtm5OrRUrbt2+fqV69uilWrJhp2rSpadGihcmZM6fZu3evs0tDGpDO2UHuSfDHH38oIiJCklShQgW9+OKL+uCDDzR06FBlzpxZI0eOVPXq1RUSEqImTZooMDBQ27dvV/78+Z1cOR5W7ty55efnpy+//FIVKlRQ7ty5JTmOxT99+rTKlCkjY4z8/PycWS7+QeLtduPGDWXIkME+7KtmzZrq2rWrhg8frtmzZyt79ux6++23NXLkSK1evVpubm56++23kzwmw/nShrNnzyo+Pt7+zbR05/2QLl06RUdHK0uWLFq4cKGGDh2qihUrOrFSWBUfH6/w8HCtWbNGn376qVq1aiVJCg8PV/bs2dWtWzeFhoaqevXqWrJkid59911VqlTJyVUjpZUuXVpz5szR0qVL9eOPP6pMmTL64IMPVKhQIWeXhjSAv+SpbN68eXr11Vf18ccfa+fOnfL09NS7776rlStX6n//+58OHjyol156SSEhITLG6MSJEypatKj9gzfSphw5cmjq1Kn2c2cSxl8nDOl76623tGjRInXu3Nk+1A+uKXGImjZtml5//XWdPHnSIQg1bdpUGTNm1O+//y5JCgoK0ltvvaVKlSppxowZ+vbbb51SOx5ewnBcHx8fxcXF6fjx4/Zl5v+f5zhv3jzt3r1bISEh+uyzzxjOlwZcvnxZFy9eVHR0tNzc3BQTE6Pff//dYfh1UFCQunfvrvLly+unn35SfHy8AgICNHnyZLbxYypXrlx64403tGjRIr399tuEKCQbPVKpaNasWerevbs+//xzVatWzR6OQkJCFBIS4vANpyT7B+zAwEBVrVrVGSUjBTVp0kQTJkxQjx499PPPP6tKlSry9vbW2bNntWPHDq1Zs4aDdRqQEKIGDhyoRYsW6aWXXtKlS5eUN29e+zrly5dXUFCQhg4dqtq1a0u682Es4ZypRo0aOaV2JN/dMycm/D80NFSSNGPGDGXNmlWhoaFyc3NTbGys5syZo6eeekoVKlSwB24mA3Jdy5Yt04IFCxQbG6t27dqpUaNGypkzp2rVqqXNmzerVq1a9gmgcubMKU9PTx07dixJ7zHbGEACpj9PJb/88oteeuklvfPOO+rYsaO93dxnmtV169Zp5syZ+uuvv7Rnzx55eHgwJfJjYteuXfrwww917Ngx+fr66umnn1anTp1UsGBBZ5eGZBo1apQmTZqkJUuWqGLFivfcL2NiYlS1alW1atVK/fr1+8fLGMB1JD7Wzps3T6dPn9bly5f1yiuvqESJElqxYoVat26tpk2bqnr16sqaNasmTpyoS5cuaffu3fZLGsB1zZgxQwMGDNB7772nkiVL6tlnn7Uv++ijjzRz5kx17NhRHTp0UGBgoG7cuKE6derohRde0JAhQ5xXOACXRpBKJd98843GjBmj5cuXK3v27A8MROPGjdO2bdvk5+en6dOnK126dA7XG0Lax7W/0q7w8HC1aNFCXbt21X/+8x9Jd0LRX3/9pa1btyooKEihoaEqXLiwPvnkE+3bt0+TJk3ivLc0qF+/fpozZ46KFy+uiIgIHT16VCNHjtQbb7yhdevWacKECfr555+VO3duZcuWTYsXL5aHhwf7t4tbu3at2rRp43AelOR4XB44cKBWrVolPz8/FS1aVIcOHVJkZKT27dvH32IA98XRIZXs3LlTkZGRypkz533XOXbsmKKiotSlSxc1aNBARYoUkc1mU1xcHAfux0ziIE3PRNqS8GEqW7Zs9rZ3331XW7Zs0a5du+Th4aHnnntOkyZNUuPGjfXxxx/rq6++Uvfu3Z1YNaxauXKl5s6dq3Xr1qlYsWLy8PDQO++8oxEjRsjPz08dO3ZUlSpVFB0drfj4eAUFBclms/GllwtLONauX79e9erVU8OGDR2OvwnnO7m7u2vMmDGqXLmyfvrpJ508eVJVq1bVyJEjlS5dOoIygPti3FgqMMYoU6ZMunr1qk6fPm1vSyw+Pl5ffPGF1qxZY/8GzGazKT4+ngP2YyhxcCJEpS25c+dWlSpVNGjQIM2fP1+lSpXS+vXr9cILLygsLEzffvut9uzZo7Vr1ypfvnwaMWKEZsyYYb/4LlxTbGysw+2IiAhly5ZN+fLls++j77//vl555RUNHDhQV65cka+vr7JkyaLg4GD78ZoQ5bpsNpuio6O1bt06+fj4KGPGjEmOvwlfcl24cEENGjTQhx9+qG+++UZjx461jw7hbzKA+yFIpZBff/1Vy5cv19atW2Wz2fTSSy/p2rVr+uijjyTJfvXzhEAVGRmpP/74Q9mzZ3d4HM6JApwjYd9M+DdhFi8PDw/16NFDAQEBGjZsmIoUKaJZs2ZpwIABypw5s55//nllz55dFy5ckCTVrFlTPXr0UGBgoHNeCP7Rli1bNGfOHB0+fNjedvPmTf3555/y9PRUunTpdPPmTUlS7969ZbPZ9OuvvyZ5HI7Xru/27dvKkCGDPQzdvn3bYXnimVR//PFHSY7blaAM4EH4K5AC5s6dqw4dOmjGjBlatWqVpDvfYvfr10+TJk1Sv379FB0dbZ/m+sKFC3rllVfsJzMDcL6Eb6qPHDkiyfHD1IsvvqjVq1dry5Yt+uabb1S0aFGlT59e0p0hurGxsSpcuLCkO7O8tW7dWr6+vo/4FSA5Zs2apXbt2mnnzp26ceOGvf3ll19Wrly59NJLLykuLs6+fW/evClfX19lyJDBWSXjX/Dx8VHlypU1a9YsHTt2zH5Om/R/X5r8+eefunDhAl9+ALCMySb+pS+//FLdunXTjBkzVLduXWXKlMm+7PTp05o4caImTZqkEiVKqHz58rp586aOHj2q27dva8eOHZyoDLiQd999Vx988IF69eqlZ555RvXr15e3t7d9eeJ9NTo6WmfOnFGzZs1UtGhRff31184qG8k0Z84cdenSRTNmzNDzzz9vn+pautMDuXTpUo0YMUKZM2fWhx9+aB9VcOnSJW3dupUeKBd3v5lut2/frvbt28tms2nNmjUOly64fv262rRpIzc3Ny1atIhtDMASgtS/cODAAbVs2VK9e/dW586d7e2JD+YRERHavXu3PvroI125ckW5cuVSuXLlNGDAAGbnA1zM+++/ry1btih79uy6evWqDhw4oNGjR6tw4cIqVqyYfb1jx47p888/16ZNm5QnTx4tWrRI0v0/yMH5Tp06pZdeekmvv/66wyUpYmNjdezYMWXI8P/au+/4Gu///+OPk4WEGKGxtUbVVivGx1YkpEaM1N5C1Co1i9qbGDVipGZiixmtKooYH6KIj4pqi1r5kpAh8/z+8MtpUrS0OCc877dbb5VzruvyPr16nVzP6/1+v972FCxYkO+//56RI0dy4cIF8ubNS548eQgKCtJDr3TiWedo+fLlTJo0idjYWL788kvy58/P77//zpo1a7h3756WHRGRf0R38P/CjRs3iImJoVatWmkqAaV8CRuNRnLkyEHDhg2pW7cuSUlJTzzdVogSMa/U127FihU5d+4c48aNo0CBAnz++eds2LCBc+fO0adPH+rUqUOpUqW4desWGTNmpH379gwaNAhQiLJ0iYmJPHjwgKJFi5pe8/PzY//+/QQEBJAnTx5atGjB3LlzOXr0KOfOncPR0THNArz6vrZMffr0ITQ0lIMHD6apxAd/XN/du3cnV65crFy5ksGDBxMfH0+lSpUoVqwY3377rR5sisg/oh6pf2HKlCnMnj2bu3fvAk8va33x4kXu3r1LrVq1zNFEEXmGhIQEbG1tn3i9du3avPfee/j5+QGP16BxdXXF2dmZYsWKUbhwYfr06UPx4sVNQ3kVoizTqlWr6NChA1ZWVpw7d44aNWowfvx4PvroI6ZNm8b58+cpU6YMDRs25Pbt20yZMoUZM2bQpUuXNOdU59dyJSQkEBAQwNixY/nwww9NvcOpw9Sfz9+lS5eIj48nX758ZM+eXWXsReQf02+Gf6Fo0aJER0ezb98+4OllrVetWsWaNWted9NE5C8kJyfTu3dvduzYYXotZQL6hAkT+PXXXwkPD+e3336jY8eO9OvXj4MHD9KjRw9TxbfU8yF1k215jhw5wtq1a03npkyZMowbN47BgwfTsGFDTpw4wYQJE5gxYwbt27fHw8ODzJkzm6r1pT6nOr+Wy9bWljZt2jBjxgwuXLiAh4cH8McaUfDk+StevDhlypQhR44cpoq6ClEi8k/ot8O/ULFiRezs7Fi6dKlpvSj4oxLQgwcPuHz5MmXKlDFXE0XkKWJjY4mIiEjTm5zy9LpIkSJERUUxadIkXFxcaNy4MVOmTOH999+nU6dOXL16lfnz55uz+fIcSpQowblz51i2bJnptcGDB3P+/Hl27NjB//73P5o0aWIqOJEhQwacnZ3JmTOnuZosLyglKNnZ2ZEpUyZatmzJ1q1b6dKlC5A2TP0Vre0nIv+UgtS/ULhwYRYvXszOnTsZMWIEZ86cAR5/Kf/+++94enpy69Yt+vTpY+aWikhqDg4OuLu7M2XKFK5cuWK6kTIajeTLl49Bgwbh4+NDrVq1WLVqFQ4ODsAfa0ulbCuWKTk5mRw5cjBw4EAOHjzI77//bnqvZMmSVKhQIc329+/fp0ePHtja2tKyZcvX3Vz5h1IefgwZMoShQ4cSGRmJi4sLmzdvplWrVqZtnidMiYj8E+rL/pdSFt7t27cvhw4donTp0iQnJxMZGUlycjJHjhzBxsZG1Z5ELEz9+vXZsmULgYGB9O3blwwZMpiG+dSoUYO6detSvXp14I/5FqmHCOkptuVKOU+VKlViwYIFBAUF0bVr1yfmsYaHhxMYGMiWLVu4efMmwcHBTxQrEMt26NAh/Pz82Lp1KzVr1iQmJsY0Z6pNmzZs2LABa2trzYESkVdCPVL/krW1NT169ODEiRO0aNGC5ORkChQoQMeOHTl27Bi2trYkJibql7KIhSlYsCDlypVj7ty5nDx50vS6wWCgUKFCVKxYkVmzZhETE6PrN52qV68ePXv2xMvLi4MHDz4RfoODg1m5ciX58uXj+PHj+r5Oh+7cuYOtrS1ly5YFwN7enlatWjFo0CA2bdpEz549ARSiROSVUNW+V0xPNkUsT+qeiSZNmhAaGsrWrVspX768aZu7d+/ywQcfMGPGDLp162amlso/lfocd+/enYCAALZs2ULDhg3TbHft2jXy58+PwWDQ97WFe1ZlXFdXV2bNmmUqNAFw+fJlateuza1btxg6dCjTpk173c0VkbeAeqReoqdlUv1SFrE8KTfNAFu3buW9997Dzc2NjRs3cufOHQAyZcrE4sWLFaLSqdQ33LNmzaJjx464u7szdepU03xWgAIFCmAwGEhOTtb3tQVLTk42ndOkpCRTdcV8+fLxwQcfsGbNGn744QfT9nZ2dvznP/9hz549TJ482SxtFpE3n3qkROStlfoJd5cuXbhw4QLvv/8+PXv2pE6dOqbttI5Q+vFX52rJkiWsXbuWR48eUadOHdq0aUOFChV0bi1c6nM6ffp0zpw5w8mTJ+nVqxfNmjXDYDDQtm1bnJ2dqV69OlWqVGHmzJnY2dmxc+dOrKys1NsoIq+EgpSIvLGedlP95+FBqbfZvHkzwcHB+Pn50aJFC9zd3XF3d3+tbZbnd/DgQUJCQnjw4AHVq1enfv36f7tPWFgYYWFhzJ07l9q1a+Pq6ppmSKdYrpEjR7Js2TImTJhAQkICPj4+FCxYkP3793PmzBmWLVvGrl27yJIlCzlz5mTfvn3Y2trqQYiIvDIKUiLyRkr9BPru3bskJyfj7OwM/HWYAjh//jzR0dG89957pnWGxLKsWLGCzz//nBo1ahASEkL+/Pnp27cv7du3f+r2fz7nSUlJJCYmkiFDhtfVZPkXTp8+TYcOHVi+fDnVqlXjyJEj1K1bF19fXzp37mzaLioqioiICPLly4fBYFC1PhF5pfSIRkTeSCkhqlOnTtStW5eaNWsyfvx44MnS5X9+Wl26dGlcXFwUoizUrl27GDFiBIsXL2b79u2cOnUKJycnvvnmm2fuk/qcpyzArBBluVKv2QaPz5mtrS3VqlVj48aNNG7cmHnz5tG5c2eio6PZsWMH4eHhZM6c2VQ8JDk5WSFKRF4pBSkReaMkJiaa/jxkyBBCQkIYOnQo7dq1Y/LkyfTu3duMrZN/6+HDh+zatYv27dvTsmVLkpKSyJUrF506deLw4cNERkb+7TG0BpjlS3m4MWLECL799ltiY2OJjo7Gz8+PXr16MXXqVLy8vAA4fvw4a9eu5e7du089hojIq6JHNSKS7qUetpXyBHr37t3kzZuXxYsXmxbWrVy5Mp6ensDjwgOS/lhbW1OgQAEqVqyY5kY5e/bsPHz40FSNMTXNkUk/Up+rXbt2MWvWLJo1a0bVqlUpX7483bp1Y+bMmXh7ewPw6NEj5syZg62tLcWLFzdn00XkLaQgJSLpWnR0NO7u7qxdu5Y8efIAcODAAZo2bYqtrS1BQUGmbZs0aYK/vz/t2rUDFKbSI3t7e/r27UvWrFmBP2688+fPj5OTU5rKbP7+/nh6eipEpSMp52rVqlVEREQwd+5cqlatCsCYMWMIDw9n1qxZZMmShcjISPbt28fvv//OmTNnsLKyUmgWkddK3zYikq7Fx8dToUIFU4gCqF69OitWrMDOzo49e/ak2b5JkyasX78eX19fVq5c+bqbKy9BSoiCP268ExMTiY2NNQUpV1dXfHx8nphrI5bv6tWrTJo0iYEDBxIREQE87nUuU6YMy5cvx83Njfnz57Nnzx4KFy5MSEgItra2JCYmKkSJyGulqn0ikm79uRLb8OHD6dy5MyVKlCAuLg4/Pz+8vb0ZM2YMY8aMSbPv2bNnKVeu3OtusrwiR44coUWLFvz44494eXkRGhrKhQsXsLW1feL/E7Esfz4/CQkJ7N+/n7Fjx/LgwQNCQkLIkCFDmu3u379P9uzZTfuoOp+ImIOClIikK6lvpiIiIoiNjSVPnjxER0dTrlw5bG1t2bFjB0WLFiUhIYHly5fTr18/xo0bx+jRo584noYCvRkuXLhAy5YtyZw5Mw8fPjSFKN1gW7bU119MTAzR0dHkypULgEOHDtGzZ09y5MjB999/T4YMGYiPj8fOzi7NfgrKImIuunsQkXQj9Q3TjBkzcHNzo3Tp0nzyySfcuHGD4OBgsmbNyscff8zly5extbWle/fuLFy4kC+//JKhQ4c+cUyFKMv0okPyjEYjly9fxtraWiEqnTAajabrb+LEiXh4ePDBBx8wYMAAtm3bRq1atVi0aBGPHj2iXr16Tw1RoCqMImI+6pESkXQhdYgaNGgQ/v7+fPrpp8TExLBs2TJKly7Nt99+y71792jUqBHR0dFs376dYsWKkZCQwLx58zh37hx+fn7m/SDyt1LfKJ84cQKj0UhycjLVqlV75j63b99m0aJFfPHFF1hbWytEpSNffPEFS5YswcfHBycnJ4YOHYqNjQ2BgYE4Oztz8OBBhg4dSlRUFKGhoTqvImIxFKREJF0ZMmQIK1eu5MCBA5QtWxaAoKAgXF1d2bRpEy1btuT//u//cHV1JSYmhq1bt1KsWDGSkpJMhQg0FMhypT43I0eOZNOmTWTIkIEbN27QqlUrRo0aRaFChf7yGApR6cfly5dp06YNs2bNol69evzwww80aNCAxYsX06VLF9N2u3fvJiAggBUrVqSpzCgiYk4a0yIi6cb169eZO3cuLi4ulC1b1rT4bsmSJcmdO7fp5tnJyYk9e/bg4OBAtWrVuH37tkJUOpFybmbPno2vry+rV6/m3LlzDBo0iGXLlnHnzp2/PYZCVPpha2tLUlIStWvXZvPmzbi6ujJ37ly6dOlCTEwMAQEB3Llzh8aNG/P1119jbW391LXCRETMQUFKRNKN/PnzExQUxJEjR+jSpQsJCQnA4zVnHj16hIuLi2lbJycndu7cSb9+/XB2dja9rhCVPoSEhDB27FhcXFzYtGkTs2fPZuHChVSuXJn4+HhzN0/+gZQBMKkHwsTFxXH//n0mTZpEz549mTp1Kl5eXgCcP3+etWvXcuXKlTRzotQjJSKWQkP7RCTd+e677/j444/p3r0777zzDrNnz2bHjh1Ur149zRC+1FSdL30wGo08evSIcuXKMWnSJPLly0ejRo2YMWMGXl5eJCQkMHLkSNzc3Khbt665myvPKaVQBPxRujyld3j48OFMnz6dIUOGMH36dABiY2Np06YNRqORwMBAXbsiYpE0/kFE0p169eqxfft2WrduTUREBNu3b6d69erAs59W60bMMj2tAlumTJno0KEDM2fO5OzZsyxatIiuXbsC8PDhQ0JCQsibN6+CVDoQEBBAmzZtTCFq8uTJ7Ny5E0dHR9zc3PDy8mL48OH89ttvzJ49G1tbWx49esTZs2e5desWZ86cwcrKSg9CRMQi6VtJRCzWnzvMU5fErl+/Plu2bCFLlizs3LmTmJiY1908+ZdS3xxfvXqVixcvmt5LKXddpUoVatasCTyuzNexY0diYmLo37+/Wdosz+/rr79mxIgRjB8/HoCVK1cya9YsWrVqhY2NDevWrWPgwIE4ODjg5+fHxIkTOXz4MFevXqVChQqEhISYytgrRImIJdLQPhGxGH9VCCL1Tbevry9Vq1alTJky7N+/n5YtW9KqVSvmzZuHg4PD62yyvATDhw/H39+fe/fuUaRIETp16oS3tzc7duxg+vTpXL9+nTx58pjWHTp69KipSIHmy1iu8PBwpk+fzqFDh2jYsCEJCQlUrVqVZs2aER8fz7x58wgICKBixYr4+PiQIUMGHj58SJYsWUzH0DkWEUumoX0iYhFSh6jx48fj7OxM7969Te+nhKipU6cyefJk9u7dCzzumdq6dSsNGjSgWrVq9OjR4/U3Xl5I6lC8Zs0aVq9ezbx58yhYsCC+vr6sX7+emzdvMnXqVEqWLMnp06e5du0ahQsXxsPDQ+tEpQMJCQnkzJmTYcOGAfDtt99y/fp1mjRpAoCdnR19+/bFYDCwYcMG+vfvj4+PT5oQZTQaFaJExKKpR0pEzC51iBo4cCArV64kODiYEiVKpNluyZIljBo1inXr1tGwYcM074WGhlKyZMnX1mb597Zt28bVq1extrZOM1Rv8uTJrF+/ngkTJtC8efMn9lMvhWVLSEjA1tYWgIsXL1K0aFG++OILfH19ad26NYsXLzZtGxsby+LFi5k/fz5eXl58/vnn5mq2iMgLU5ASEYsxaNAgVq9eTVBQEBUrVnyi1yEwMJDs2bOb5sw8jSalW66Uc2M0GgkPD6dQoUI8evSIAQMGMGfOnDTb1q1bl6xZs7Jt2zbzNFb+kU2bNnH48GF8fHwYNGgQ+/bt4+zZs0RFRTFlyhT2799P06ZNGTdunGmfmJgYAgMDad26tQKyiKQrGhchIhZh8eLF+Pj48M0331CxYkX279/PunXruHTpEjly5GDEiBG4ubn97XAuhSjLlXJuTp06ReXKlTl58iRt27bl+++/55dffuHdd981bVu7dm2Cg4PT9G6I5TMYDMyfP58TJ04QGhrK4cOHsbGxIVu2bAwbNoykpCT27NkDYApT9vb2eHp6AuptFJH0RXccImIRIiMjqVChAvv37+frr782lbuuUaMG4eHhdOjQgcDAQCBt9T5JX4KDg3FxceHo0aOUKlWKDRs2EB4eTo8ePbhw4QLR0dHExMQQFBSEk5OTQlQ64+HhQZ06dTh+/DjNmzenbNmyGI1GjEYjOXLkYOTIkdSqVYt9+/YxePDgJ/ZXiBKR9ERD+0TEYvj4+ODn58fVq1eZMGEC3t7epl4Md3d3fvvtN86ePWvmVsqLiImJwd7e3vTzb7/9RqdOnWjTpg19+/YF4MKFC7i6uhIXF0fx4sVxdnbmypUrBAcHY2dn95fVHMX8Us5Pyr8nT56MlZUVY8aMoV+/fkybNs1UxtzGxoZ79+4xatQo4uPjWbZsmc6tiKRbClIiYnap5zXNmzeP27dvM3DgQHLlymUa6nPgwAGaNGnC2bNnKVasmJlbLM/Dz8+PX3/9leHDh5MhQwbT68OHD2fVqlWEhYWZQlZoaCienp6Eh4ezefNmqlatisFg0NA+C5d6KF5K6fKU69nf359OnTrRr18/pk+fbhqWe/LkSSpWrIjBYEgTwERE0hsFKRGxCKnDVOr5Mik3WWvWrOGrr75i165dZM+e3YwtleexdOlSvLy8OHnyJPny5cPe3h5HR0cAIiIiaNCgAe3atWPQoEGm9aFCQ0Np0KAB5cqVY/369WTNmlU32BYsPj4eOzs7AGbOnMmxY8e4ceMGVapUwdvbm+LFi7Np0yY6dOhA9+7d6dGjB2PGjOHBgwd8//33ClEiku4pSImIxXjWTdWtW7dwc3OjVq1azJ079/U3TF7I6tWr6datG9u2bcPGxoaWLVvi5uZGx44dadKkCdbW1nh7e3PlyhXTemApQfrChQs0adKEvHnzsnPnTnLkyGHmTyNPs2HDBiIiIujVqxfDhw9n+fLlTJs2jbi4OL766iuSk5MJDg4mS5Ys7Nq1i1atWlGkSBEyZMhAcHCwehlF5I2gYhMiYjH+HKLu3LnD7NmzcXV1JW/evKYQpec/lsvPz4/OnTtTt25dmjRpQqNGjfDx8SFfvny0bt2atm3bsmzZMvr378+RI0fw9/cH/qjoV6pUKQIDA4mIiCAqKsqcH0WeYcmSJXh6elK0aFHCwsLYu3cvW7dupVu3bhQqVIhff/2VAQMGkCVLFpKSkmjSpAmXLl1ixYoVnDx50jRfSkQkvVOPlIi8Nn9V2vhp70VHR/PZZ59hY2PDggULAK0TZcl8fX3x8vKiW7du7N69m+bNm7Nw4ULT+ydPnmTLli1s2LCBzJkzc+PGDVxdXVm5ciVWVlZpzmvqYWNiOfz8/Ojduzf+/v60aNGCY8eO0aZNG3777TcCAwPp0KEDM2bMwMvLi5iYGDZu3Ii7u3uankVdwyLyplCQEpHXInVQmjlzJmFhYTg4OFC9enU8PDyeuV/qRXl1A2a55s6dy+DBg9m1axeurq4sWbKE0aNH4+npyfz5803bJScnk5CQwPTp0wkODua7777j+PHjlC1b1oytl+exevVqOnfuTK9evVi8eDFGo5HQ0FAGDRrExx9/zMiRI5kxYwa9e/cGHpe6X7BgAUOHDqVcuXJmbr2IyMunICUir1WLFi24dOkS7u7uXL9+ne+++47BgwczdOjQv9xPk9It28GDB7l586ZpYdXIyEgCAgIYNWoU7dq1w8fHB0jb0xQREUG3bt3IkSMHixYtwsbGRufYQi1dupQ+ffrg5ubGsWPHmDZtGt27d8doNFKzZk2OHj3KxIkTGTlyJACxsbF4eHhgZ2fHli1b9ABERN5INuZugIi8PZYuXcqVK1fYv38/efLkYfz48ezbt48qVar87b66wbZstWvXBv4IvFmzZjWFqlGjRgGP1wmzs7MzlTTPli0bH374IYcOHVLxAQs2c+ZMRo4cSWBgILVr12bixIkMGjSIpKQkevXqxa5du6hWrRobN24EwN7enh07dnD79m3OnDmDlZWVepNF5I2kICUir821a9coU6YMefLkYfLkycydOxd/f39q167NrVu3+Pnnn6levbq5myn/QurA6+joaApTo0ePxsrKijlz5mBra2sKXLGxsVy/fp2HDx+SOXNmBWYL8vXXX9O5c2eOHTuGn58fTZo0AeDTTz/FYDAwZMgQjEYjvXv35siRI3h5ebFr1y4yZcpE8eLFCQoKwsbGJs3wXBGRN4m+2UTklfhz8Qij0UjGjBnJmzcvCxcuZMaMGfj7+9OwYUOSk5PZsWMHt27dokyZMmTJksWMLZeXKSVMGQwGevfuzbvvvsuAAQMwGAz8+uuv/Pzzz6xbt07n3MIcOXKENWvW0LlzZzZv3gz8MUcxX758fPrppwCmIbm9e/cmICCAqKgo7OzsTMM3FaJE5E2mbzcReelSh6g1a9bQtGlTsmXLRo0aNahXrx7weE5NzZo1Abh58yaLFi2iefPmuqF+Azk6OtK6dWveeecdmjZtanq9UKFCLF++HAcHBzO2Tp6mRIkSXLhwAV9fX3r27AmQZmhe3rx5TWHq888/x9ramh49epA5c2bTNkajUSFKRN5o+oYTkZcqOTnZFKI8PT0JDQ0lISGBDh06UKdOHRYuXMinn37KDz/8wIMHD0xDhIoVK8aYMWMAFZZ4E2XLlo1mzZoBj3sprK2tMRgMClEWKDk5mRw5cjBw4EAOHTpkWiD5z1LClJWVFb169SJ37txpgrKuYRF50ylIichLlfLUun379vz444/s2bOHd955x1RMoE+fPlhZWTFp0iQSExN57733qFGjBr6+voBKnL8N1Eth2VKuv0qVKrFgwQKCgoLo2rXrUx9w5M2bFy8vLwoWLEjjxo3N0VwREbNR+XMReelCQ0Pp3Lkzfn5+lCpVip9//pnz58+zceNGmjdvjoeHBzdv3iQhIQEbGxvT026FKBHLMmHCBCZOnMi+fftMlRn/iuZEicjbREFKRF66K1euUKpUKRYtWkTmzJnZsGEDly5dwsnJiYMHD7J79+4nnl5rOJ+I5Uh9PXbv3p2AgAC2bNlCw4YNTdvowYeIvO30DSgi/0pycvITrxUqVIjPPvuMoUOH0rdvXypXrszSpUs5cOAANWrU4MyZM0/soxAlYjlSX4+zZs2iY8eOuLu7M3XqVEJCQoA/hgDqeayIvK3UIyUi/1jq6nwnT54kPDyc6tWr4+joiMFg4KeffsLR0ZHcuXMDcOvWLRo0aMCwYcPo2LGjOZsuIk/xV71MS5YsYe3atTx69Ig6derQpk0bKlSooF4pEXlrKUiJyD+S+obL09OTs2fPcvPmTYoUKUKnTp3o0KEDTk5OANy5c4cff/yRIUOGUKhQIbZv327OposIj5cgCAkJ4cGDB1SvXp369ev/7T5hYWGEhYUxd+5cateujaurK+XLl3/1jRURsUAKUiLyr3Tt2pX//ve/rFu3jtKlS1OjRg1u3bpFx44dGTBgANmzZ2fdunWsWLGC/Pnz4+fnB2h+hYg5rVixgs8//5waNWoQEhJC/vz56du3L+3bt3/q9n+ew5iUlERiYiIZMmR4XU0WEbE4uosRkX/s2LFj/Pzzz6xatYrSpUuzYMECQkNDKVu2LMuWLWPhwoVERUXx8ccfM2XKFIUoEQuwa9cuRowYweLFi9m+fTunTp3CycmJb7755pn7pA5RRqMRa2trhSgReevpTkZE/rGiRYvy2WefUa5cOdasWcPkyZPZtGkTW7dupUCBAqxYsYIxY8ZgMBioXLky8PgmTCFKxDwePnzIrl27aN++PS1btiQpKYlcuXLRqVMnDh8+TGRk5N8eQ4VhREQe02IPIvJcUheWSJErVy7q169PcnIymzZtwsvLi/r162M0GilQoACJiYk4OTnh4OBg2kc3YSLmY21tTYECBahYsWKaBxrZs2fn4cOHJCUlPbGPepBFRJ5OQUpEnillcc3Ui2yuXLkSgDx58tC4cWMcHByIi4vj/v37PHjwgKSkJGJiYoiOjmb+/PlUrVoV0DpRIpbA3t6evn37kjVrVuCPkJQ/f36cnJzSPCzx9/fH09NTIUpE5Bn07SgiT5WQkECVKlWYOXOmKUQ1b96cESNGMHPmTJo2bcqECRMAyJAhAyVLlmTPnj24ublRvnx5jEajQpSIBUoJUfDHWlCJiYnExsaagpSrqys+Pj5PXSdOREQeU4+UiDyV0WjEzc2NkSNH4uDgwEcffURERATnzp0jLi6O/fv307NnT6Kiopg2bRoLFy5k/PjxREZG4uLiwvjx403HUYgSsWwRERHExMQQFRVFhw4duHLlChcuXMDKykrXsIjIMyhIichT2dnZMXr0aOzt7fH29sbT05Ny5cqRK1cuADp37oyNjQ1du3YFYNq0aYwbNy7NMTS3QiR9yJYtG9mzZ6dJkyY8fPiQCxcuYGtrm2ZYr4iIpKVvRxEB0vYc3bx5Ezs7OzJmzMjIkSOxsrJi7NixNGzYMM0+7du3x2Aw0LVrVx4+fMhXX32V5n2FKBHzeNGHGEajkcuXL1OpUiWFKBGR56S7HBFJE6KmT59Oy5YtKV++PM2aNeOXX35h+PDhTJgwgV27drFgwYI0+7Zr144FCxYQGxtrjqaLyJ+kDlEnTpzg+PHjHDt27C/3yZUrF2PGjOHYsWMKUSIiz8lgNBqN5m6EiJhP6hA1aNAg1qxZw/jx4/nf//7Hd999R0JCAocOHSJnzpxMnz6dkSNHsmDBAvr27fu3xxOR1yv19Tdy5Eg2bdpEhgwZuHHjBq1atWLUqFEUKlToL4+hECUi8nz0TSnylku56Ro9ejS+vr5cvHiRAgUKALB69Wp69erF4cOH8fDwYMCAAQAMGDAAg8FAnz59nnk8EXn9Uq6/2bNn4+vry86dO3FxcWHChAmMHTuWnj17/m2QUogSEXk+GtonIoSGhrJlyxZKly5N7ty5Ta83b96c7Nmzk5CQAECmTJkYMGAAEyZMwNvbm/3795urySLyF0JCQhg7diwuLi5s2rSJ2bNns3DhQipXrkx8fLy5myci8kZQkBIRPvjgA0aPHk3GjBlxd3fn3r17AMyaNYtHjx5Rp04d07aZMmWif//+BAYGUr9+fTO1WESexmg0EhsbS3BwMM7Ozhw9epSuXbsyZcoU+vTpQ0JCAqNGjeLAgQPmbqqISLqn/nuRt5zRaMTKygpPT0+srKxYsGABPXr0oGTJkixdupStW7eSO3dukpKSTIt12tvb07RpU0AlzkXM6c/Xn8FgIFOmTHTo0IGZM2dy9uxZFi1aZFqm4OHDh4SEhJA3b17q1q1rrmaLiLwRdPcj8pYzGAymMNWmTRu8vb25ffs2kydPZuHChdSuXZuEhARTiPozhSgR80gdoq5evcrFixdN79WrV4/4+HiqVKlCzZo1Abh9+zYdO3YkJiaG/v37m6XNIiJvElXtExHgj2pfycnJbNiwgQULFpA9e3b8/PxwcnJK0yMlIpZj+PDh+Pv7c+/ePYoUKUKnTp3w9vZmx44dTJ8+nevXr5MnTx7TA5OjR49ia2ura1pE5F9SkBIRk9RhKiAggEWLFpElSxb8/PzIlSuXuZsnIqTtiVqzZg3Dhg1j3rx5FCxYEF9fX0JCQqhTpw5Tp07l0qVLnD59mmvXrlG4cGE8PDywtrZWiXMRkZdAQUrkLfKs+Uypn0z/uWdq3Lhx9OzZk88+++x1N1dE/sK2bdu4evUq1tbWaYbqTZ48mfXr1zNhwgSaN2/+xH7qiRIReTkUpETeEqlvnvbv309cXBwZM2akXr16QNqQlTpMnThxgqpVq5qt3SLyWMo1ajQaCQ8Pp1ChQjx69IgBAwYwZ86cNNvWrVuXrFmzsm3bNvM0VkTkLaB+fZG3gNFoNIWo1q1bExYWRlRUFFmyZCF//vwEBgY+UfkrZT5FSohKCVciYh4p1+ipU6eoXLkyJ0+epG3btnz//ff88ssvvPvuu6Zta9euTXBwMAkJCdja2pqpxSIibzaV2xJ5C6QEIG9vb3788Ud27tzJTz/9RIUKFdi5c2eaal8pndR/Dk0KUSLmFxwcjIuLC0ePHqVUqVJs2LCB8PBwevTowYULF4iOjiYmJoagoCCcnJwUokREXiEFKZG3RExMDL/88gsLFiwgX758zJw5k23bthEUFESJEiUIDw8HFJhELElMTEyan/PmzUutWrUICQkBoGTJkuzdu5effvqJevXq4erqSufOnYmLi2PlypXAHw9HRETk5VKQEnlLGI1Grly5QnJyMvPmzWPKlCmsXbuWjz76iJiYGHx8fNizZ4+5myki/5+fnx8zZswgLi7O9FrBggWpWrUqEydONIWsUqVKsXfvXpydnQkLC2Pw4MH897//xc7OjoSEBD0cERF5RRSkRN5ASUlJT7xmZ2dHtWrVGDduHOPHjycgIIBGjRoBjxfzPHjw4BNPv0XEPJYuXUq3bt1o2rQp9+/f58GDB6b3hg8fTt68eVm8eDFGo5Hk5GRKliyJv78/AOPHjycyMhKj0aihfSIir5CClMgbJnV1vh9++IHt27dz5coVbG1t6dOnDxcuXMDFxYXChQsTHx/PxYsX+eSTT8ifPz8eHh5mbr2IrF692rSgbnh4OEWKFKF79+4EBgaSlJREtmzZcHFxYd++fRgMBqysrExh6ptvvuHixYu4ublx//59c38UEZE3msqfi7xBUlfWa9u2LefOnSMpKYn4+HgaNWrErFmzOHDgAD169CBnzpzExcVhb29P0aJF2bx58xPHEJHXy8/Pj27dutGgQQP27dsHwLJlyzh//jyLFi3C3d2dxo0bU7NmTSpVqoSvry+enp5pjvHjjz/i6enJ3r17KViwoDk+hojIW0FBSuQN1L9/fw4cOMC2bdsoUqQIbm5uXLp0iZ07d1KiRAkuXLhAWFgYt2/fpnDhwjRo0AB49oK9IvLq+fr64uXlRbdu3di9ezfNmzdn4cKFpvdPnjzJli1b2LBhA5kzZ+bGjRu4urqycuVKrKys0ly78fHx2NnZmeNjiIi8NRSkRN4AqRfqjI6Opnnz5vTu3ZvWrVszc+ZMJk+ezPr162nUqBGRkZHY29s/MXdCIUrEfObOncvgwYPZtWsXrq6uLFmyhNGjR+Pp6cn8+fNN2yUnJ5OQkMD06dMJDg7mu+++4/jx45QtW9aMrRcReTspSImkc6kD0M2bN8mTJw9ly5Zlz5497N69m2HDhuHv70/Dhg2JjIxkwYIFNGrUiEqVKpm55SKS4uDBg9y8edM0TC8yMpKAgABGjRpFu3bt8PHxAdL2NEVERNCtWzdy5MjBokWLsLGx0bBcEZHXyMbcDRCRfy51iKpVqxYJCQkcO3aMYsWKUbFiRR49esTu3bupXr06ALdv32bbtm28//77ClIiFqR27drAH3MUs2bNagpVo0aNAsDHx8dU0tzW1pZs2bLx4YcfcujQIVXnExExAwUpkXTKaDSaQtSZM2dwdnZm8uTJAAwZMoRbt26RmJhI9erViYqK4s6dO7Rs2ZKyZcvSunVrczZdRJ4hdY+So6OjKUyNHj0aKysr5syZg62trSlwxcbGcv36dR4+fEjmzJnVIyUi8hopSImkUyk3TBMnTmTNmjUUK1aMwoULA1ChQgV69+7NzJkzyZUrF/ny5SMpKYn333+fdevWAZoTJZIepIQpg8FA7969effddxkwYAAGg4Fff/2Vn3/+mXXr1pElSxZzN1VE5K2jOVIi6dijR4+YM2cOa9euJTk5mdDQUNN7SUlJhIeHs3nzZuzt7XFycsLd3R1QiBJJbyIiIjh48CBNmzY1rRMHEB0djYODgxlbJiLy9lKQEklHUi+2myIyMpK1a9cyYcIEPvroI1atWgU8OywpRImkb4mJiVhbW2sYn4iImSlIiVi4lLkQqat17dixAysrK4oUKcIHH3zAgwcPWLVqFb6+vlSuXJlly5YBmCali4iIiMjLpcfSIhYsLi6OGjVqcODAAVOIatmyJd26dcPb25vKlSsTGBiIo6MjnTp1okePHpw+fZqePXsCKESJiIiIvCIKUiIWKKWjOD4+njx58tCsWTOOHj3K0aNH+f333zl16hSBgYH07t0bDw8P1q1bh6OjI126dKFr167s3LmT5cuXm/lTiIiIiLy5VLVPxMKkDOUDOHLkCOPGjSNLliw0atSIPn360KxZMwoVKgTAlClTsLW1pXPnzhgMBj755BM6derEBx98wEcffWTOjyEiIiLyRlOQErEgqUNU3759OXDgAAcPHmTWrFnY2toyc+ZM+vXrBzwuGmFra8v48eMxGAx06tSJ6OhoevToYQpRKiwhIiIi8mqo2ISIhUgdogYOHMjq1avZu3cvlStXBuDWrVuMHTuW1atXExQURM2aNU37JCYm0r9/f2JiYvDz8zPjpxARERF5OyhIiViA1CFq0qRJfPHFF/z6668UKFAgTbW+u3fv8tlnn7Flyxb27dtH9erVTfuq90lERETk9dFdl4iZpQ5RgwcP5osvvsDBwYGFCxcCYGdnR2JiIgC5cuVi9uzZtGjRgsaNG3P06FHTvikhSs9GRERERF49zZESMbOUIDRgwADWrVvH4cOHuXr1KoMGDSI2NhYfHx9sbGxITEzExsaGnDlzMmfOHAwGA//5z3/46aefKFq06BPHExEREZFXR0FKxAKEhYUxf/58Tp8+Tfny5SlVqhQxMTGMGjUK4KlhasaMGdSoUSNNiBIRERGR10NzpEQsRFRUFJkzZzbNdYqMjCQgIIBRo0bRrl07fHx8AExhKjXNjxIRERF5vdQjJWIhMmfODPwx1ylr1qx4enoCMGrUKKysrJgzZw42NjZPBCeFKBEREZHXS0FKxII5Ojri6emJwWBg1KhR3L9/Hz8/PwUnERERETNTkBKxcI6OjrRt25aoqCjCwsLM3RwRERERQXOkRNKN2NhYMmXKBKQtmS4iIiIir5+ClEg6oxAlIiIiYn6aaCGSzihEiYiIiJifgpSIiIiIiMgLUpASERERERF5QQpSIiIiIiIiL0hBSkRERERE5AUpSImIiIiIiLwgBSkREREREZEXpCAlIiJmZTAY2LZtm7mbISIi8kIUpERE5JW5desWn376KYULFyZDhgwUKFAAd3d39u/fb+6mvVTvvvsuBoPhmf906dLF3E0UEZGXzMbcDRARkTfTL7/8Qo0aNciWLRszZsygTJkyJCQkEBQUhLe3N//73/9e2d8dHx+PnZ3dazv2yZMnSUpKAuDo0aN4eHhw6dIlHB0dAciUKdMraYuIiJiPeqREROSV6Nu3LwaDgRMnTuDh4cH7779PqVKlGDx4MMHBwWm2DQ8Pp0WLFtjb21OsWDECAwNN7yUlJdG9e3fee+89MmXKRPHixfHx8Umzf5cuXWjevDmTJk0ib968FC9eHHgcasqXL0/GjBmpVKkS27Ztw2AwEBISYtr3/PnzuLq6kjlzZpydnenYsSPh4eGm9+vUqUO/fv0YOHAgOXPmpFGjRk981ly5cpE7d25y585Njhw5AHjnnXdwdnbmP//5D76+vmm2DwkJwWAwEBYWBjwe3rho0SJcXV3JlCkThQsXZtOmTWn2uXbtGm3atCFbtmzkyJGDZs2a8csvvzzn2RARkZdNQUpERF66e/fusXfvXry9vXFwcHji/WzZsqX5+csvv6RNmzb8+OOPuLm50b59e+7duwdAcnIy+fPnZ+PGjYSGhjJmzBhGjhzJhg0b0hxj//79XLp0iW+++YadO3fy4MED3N3dKVOmDKdPn2bChAkMGzYszT4RERHUq1ePDz/8kFOnTrF3715u375NmzZt0mz39ddfY2dnx5EjR1i8ePFz/3cwGAx069aNlStXpnl95cqV1KpVi6JFi5pe++KLL/Dw8ODs2bO0b98eT09PLl68CEBCQgKNGjUiS5YsHD58mCNHjpA5c2YaN25MfHz8c7dHREReIqOIiMhLdvz4cSNg3LJly99uCxhHjx5t+jkqKsoIGPfs2fPMfby9vY0eHh6mnzt37mx0dnY2xsXFmV5btGiR0cnJyRgbG2t6zdfX1wgYz5w5YzQajcYJEyYYGzZsmObY165dMwLGS5cuGY1Go7F27drGDz/88G8/R4oDBw4YAeP9+/eNRqPReOPGDaO1tbXx+PHjRqPRaIyPjzfmzJnT6Ofnl+a/gZeXV5rjuLi4GPv06WM0Go3G1atXG4sXL25MTk42vR8XF2fMlCmTMSgo6LnbJiIiL4/mSImIyEtnNBpfaPuyZcua/uzg4ICjoyN37twxvbZw4UJWrFjBb7/9RmxsLPHx8ZQvXz7NMcqUKZNm7tKlS5coW7YsGTNmNL1WpUqVNPucPXuWAwcOkDlz5ifadOXKFd5//30AKlas+EKfJ7W8efPSpEkTVqxYQZUqVdixYwdxcXG0bt06zXbVqlV74ueUIYhnz54lLCyMLFmypNnm0aNHXLly5R+3TURE/jkFKREReemKFSuGwWB47oIStra2aX42GAwkJycD4O/vz5AhQ5g1axbVqlUjS5YszJgxg+PHj6fZ52lDCP9OVFQU7u7uTJs27Yn38uTJ86+OnVqPHj3o2LEjc+bMYeXKlbRt2xZ7e/sXamfFihVZu3btE+/lypXrX7VNRET+GQUpERF56XLkyEGjRo1YuHAh/fv3fyKIREREPDFP6lmOHDlC9erV6du3r+m15+mFKV68OGvWrCEuLo4MGTIAj6vrpVahQgU2b97Mu+++i43Nq/uV6ObmhoODA4sWLWLv3r0cOnToiW2Cg4Pp1KlTmp8//PBDUzsDAgJ45513TJUARUTEvFRsQkREXomFCxeSlJRElSpV2Lx5M5cvX+bixYvMmzfviWFsf6VYsWKcOnWKoKAgfvrpJ7744osnAtHTtGvXjuTkZHr16sXFixcJCgpi5syZwOMeLwBvb2/u3bvHJ598wsmTJ7ly5QpBQUF07drVVM78ZbC2tqZLly6MGDGCYsWKPfXzb9y4kRUrVvDTTz8xduxYTpw4Qb9+/QBo3749OXPmpFmzZhw+fJirV6/y/fff079/f65fv/7S2ikiIs9PQUpERF6JwoULc/r0aerWrctnn31G6dKl+eijj9i/fz+LFi167uP07t2bli1b0rZtW1xcXPi///u/NL1Tz+Lo6MiOHTsICQmhfPnyjBo1ijFjxgCY5k3lzZuXI0eOkJSURMOGDSlTpgwDBw4kW7ZsWFm93F+R3bt3Jz4+nq5duz71/S+//BJ/f3/Kli3LqlWrWL9+PSVLlgTA3t6eQ4cOUbBgQVq2bEmJEiXo3r07jx49Ug+ViIiZGIwvOiNYREQknVq7di1du3YlMjLytS+Se/jwYerXr8+1a9dwdnZO857BYGDr1q00b978tbZJRET+Oc2REhGRN9aqVasoXLgw+fLl4+zZswwbNow2bdq81hAVFxfH3bt3GTduHK1bt34iRImISPqkoX0iIvLGunXrFh06dKBEiRIMGjSI1q1bs3Tp0tfahvXr11OoUCEiIiKYPn36a/27RUTk1dHQPhERERERkRekHikREREREZEXpCAlIiIiIiLyghSkREREREREXpCClIiIiIiIyAtSkBIREREREXlBClIiIiIiIiIvSEFKRERERETkBSlIiYiIiIiIvCAFKRERERERkRf0/wD0/5YLA4tnEgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAK8CAYAAACA8nw+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADBl0lEQVR4nOzdd3gU1f/28XsDaZSEGjoY6VWa9KYioVcVFAUUAZUiIEhTEJSqoHREaV8BRZogVXoHqdIR6YIJgUAiLZDkPH/w7PyyJGiCCZOE9+u6cl3JzNnZz+zsTPbeM3PGYYwxAgAAAAA8dm52FwAAAAAATyoCGQAAAADYhEAGAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2IZABAAAAgE0IZAAAAABgEwIZgERXq1Yt1apVK0GXefbsWTkcDs2cOTNBl/tfff7553r66aeVKlUqlS5dOkGWuXHjRjkcDi1YsCBBlofH76mnnlLDhg3tLuOxcTgc+uSTT+wuAzaKiopSiRIlNHToUGvaJ598IofDoStXriTqcx89elSpU6fW4cOHE/V5gIRCIAOSuZkzZ8rhcFg/Xl5eKlSokLp06aKgoCC7y3usVqxYYeuHwF9++UUffvihqlatqhkzZmjYsGH/+piNGzeqefPmyp49uzw8POTn56dGjRpp0aJFj6HipKddu3Yu7+eH/bRr187uUpOUWrVqxel1i8v+MXfuXH311VeJXrPzSxXnT6pUqZQ3b141a9ZMBw4cSPTnf1y2bdumZs2aKVu2bPL09NRTTz2lTp066fz584+8zFu3bumTTz7Rxo0bE67Qf/Aox9bvv/9eFy5cUJcuXeL1uPfee09ubm4KCQlxmR4SEiI3Nzd5enrqzp07LvNOnz4th8Oh/v37S5KKFSumBg0aaODAgfF6bsAuqe0uAEDCGDJkiPz9/XXnzh1t3bpVkydP1ooVK3T48GGlSZPG7vISXL58+XT79m25u7tb01asWKGJEyfaFsrWr18vNzc3TZs2TR4eHv/aftCgQRoyZIgKFiyoTp06KV++fLp69apWrFihFi1aaM6cOXrttdceQ+VJR6dOnVS7dm3r7zNnzmjgwIHq2LGjqlevbk3Pnz+/HeUlWQMGDNDbb79t/b17926NGzdO/fv3V9GiRa3ppUqV+tdlzZ07V4cPH1b37t0To9QYXn31VdWvX1+RkZE6duyYJk+erJUrV2rnzp0J1stsl/Hjx+v999/X008/ra5duypHjhw6duyYvv32W82bN08rVqxQlSpV4r3cW7duafDgwZKU4GcfxOZRjq2ff/65WrVqJV9f33g9V7Vq1TR58mRt27ZNjRo1sqZv375dbm5uunfvnvbs2aNq1apZ87Zt22Y91umdd95R/fr1derUKY4XSPIIZEAKUa9ePZUvX16S9Pbbbytz5swaM2aMlixZoldffdXm6hJORESEoqKi5OHhIS8vL7vLcXH58mV5e3vHKYwtWLBAQ4YM0UsvvaS5c+e6BMvevXtr9erVunfvXmKWG8PNmzeVNm3ax/Jcd+7ckYeHh9zcXE/UqFy5sipXrmz9vWfPHg0cOFCVK1fW66+//lhqS45efPFFl7+9vLw0btw4vfjii4/lA/t/UbZsWZdtW7VqVTVu3FiTJ0/W119/bWNl/+7WrVsP/cJr27Zt6t69u6pVq6ZVq1a5tHv33XdVtWpVvfTSSzpy5IgyZsz4uEp+LPbv36/ffvtNo0ePjvdjnaFq69atLoFs27ZtKlWqlG7fvq2tW7e6hK+tW7fKzc3NJdzWrl1bGTNm1KxZszRkyJD/sDZA4uOURSCFev755yXd72GQ7geZTz/9VPnz57dOm+nfv7/Cw8NdHue81uWXX35R6dKl5eXlpWLFisU4hc55LcCDnKdQnj179qG13b17VwMHDlS5cuXk6+urtGnTqnr16tqwYYNLO+cpTV988YW++uorq/ajR4/GuIasXbt2mjhxoiS5nAZljNFTTz2lJk2axKjjzp078vX1VadOnf7xtYzLa+dwODRjxgzdvHnTeu5/ur7t448/VqZMmTR9+nSXMOYUEBAQ45qjqKgoDR06VLlz55aXl5deeOEF/fHHHy5ttmzZopdffll58+aVp6en8uTJox49euj27dsu7dq1a6d06dLp1KlTql+/vtKnT6/WrVtLkm7fvq1u3bopS5YsSp8+vRo3bqyLFy/GesrbxYsX9dZbb1mnYxUvXlzTp093aeO8Bu6HH37QRx99pFy5cilNmjQKCwt76OvzMBs2bJDD4dDixYtjzJs7d64cDod27Njhso6nT59WQECA0qZNq5w5c2rIkCEyxsR4bb/66isVL15cXl5eypYtmzp16qRr1665tNuzZ48CAgKUJUsWeXt7y9/fX2+99Vac6/+n/cp52tWXX34Z43Hbt2+Xw+HQ999/H+fnis2kSZNUvHhxeXp6KmfOnOrcubOuX79uza9Vq5aWL1+uc+fOWe/jp556SlLc99v/6sFjlyTNnz9f5cqVk7e3t7JkyaLXX39dFy9etOYvXbpUDodDBw8etKYtXLhQDodDzZs3d1l+0aJF1bJlS5dps2fPtpafKVMmtWrVShcuXHBpU6tWLZUoUUJ79+5VjRo1lCZNGusUudh8+umncjgcmjVrVozQlj9/fo0aNUp//fWXS+h82PW27dq1s7bD2bNnlTVrVknS4MGDY5yOGtf3vXO/fPC0x7geW//JTz/9JA8PD9WoUeMf20nSuXPnVKBAAZUoUUJBQUHKmzev8uTJY/V6OW3btk1Vq1ZVlSpVYp1XvHhxZciQwZrm7u6uWrVqacmSJf9aA2A3AhmQQp06dUqSlDlzZkn3e80GDhyosmXL6ssvv1TNmjU1fPhwtWrVKsZjT548qZYtW6pevXoaPny4UqdOrZdffllr1qxJkNrCwsL07bffqlatWho5cqQ++eQTBQcHKyAgINZrR2bMmKHx48erY8eOGj16tDJlyhSjTadOnaxegu+++876cTgcev3117Vy5coY1yT8/PPPCgsL+9eel7i8dt99952qV68uT09P67kf9mHk5MmTOn78uJo2bar06dP/28tlGTFihBYvXqxevXqpX79+2rlzpxWinObPn69bt27p3Xff1fjx4xUQEKDx48erTZs2MZYXERGhgIAA+fn56YsvvlCLFi0k3f8ANn78eNWvX18jR46Ut7e3GjRoEOPxQUFBqlSpktauXasuXbpo7NixKlCggNq3bx/rNUiffvqpli9frl69emnYsGFx6kl8UK1atZQnTx7NmTMnxrw5c+Yof/78Lj1skZGRqlu3rrJly6ZRo0apXLlyGjRokAYNGuTy2E6dOql3796qWrWqxo4dqzfffFNz5sxRQECA1VN5+fJl1alTR2fPnlXfvn01fvx4tW7dWjt37oxT7f+2Xz399NOqWrXqQ9ctffr0sX6xEFeffPKJOnfurJw5c2r06NFq0aKFvv76a9WpU8daxwEDBqh06dLKkiWL9T52bsv47reP6sFj18yZM/XKK68oVapUGj58uDp06KBFixapWrVqVpisVq2aHA6HNm/ebC1ny5YtcnNz09atW61pwcHBOn78uMu+OXToULVp00YFCxbUmDFj1L17d61bt041atRwCauSdPXqVdWrV0+lS5fWV199peeeey7Wdbh165bWrVun6tWry9/fP9Y2LVu2lKenp5YtWxav1ydr1qyaPHmyJKlZs2bWdooePOP6vo+Lhx1b/8n27dtVokSJWL9siu7UqVOqUaOG0qdPr40bNypbtmyS7m/PPXv2WF963b17V7t371aVKlVUpUoVbd++3QqX165d09GjR116zJzKlSunw4cPP9KXP8BjZQAkazNmzDCSzNq1a01wcLC5cOGC+eGHH0zmzJmNt7e3+fPPP82BAweMJPP222+7PLZXr15Gklm/fr01LV++fEaSWbhwoTUtNDTU5MiRw5QpU8aaNmjQIBPbIcRZz5kzZ6xpNWvWNDVr1rT+joiIMOHh4S6Pu3btmsmWLZt56623rGlnzpwxkoyPj4+5fPmyS3vnvBkzZljTOnfuHGtNJ06cMJLM5MmTXaY3btzYPPXUUyYqKirGY5zi89q1bdvWpE2b9qHLclqyZImRZL788st/bWuMMRs2bDCSTNGiRV1et7FjxxpJ5tChQ9a0W7duxXj88OHDjcPhMOfOnXOpVZLp27evS9u9e/caSaZ79+4u09u1a2ckmUGDBlnT2rdvb3LkyGGuXLni0rZVq1bG19fXqsVZ/9NPPx1rff9k9+7dMbZzv379jKenp7l+/bo17fLlyyZ16tQu9TnXsWvXrta0qKgo06BBA+Ph4WGCg4ONMcZs2bLFSDJz5sxxee5Vq1a5TF+8eLGRZHbv3h2vdTAm7vvV119/bSSZY8eOWdPu3r1rsmTJYtq2bRvn55s/f76RZDZs2GCMuf/6eHh4mDp16pjIyEir3YQJE4wkM336dGtagwYNTL58+WIsM677rTEmxnslNs59ePDgwSY4ONgEBgaajRs3mjJlyliv1d27d42fn58pUaKEuX37tvXYZcuWGUlm4MCB1rTixYubV155xfq7bNmy5uWXX3Z5PRctWmQkmd9++80YY8zZs2dNqlSpzNChQ11qO3TokEmdOrXL9Jo1axpJZsqUKf+4Xsb833Hj/fff/8d2pUqVMpkyZXJ5jujHSqe2bdu6bJPg4OCHvsZxfd8790vne8QpPsfWh8mdO7dp0aJFjOnO/xvBwcHm2LFjJmfOnObZZ581ISEhLu0mTpxoJJktW7YYY4zZsWOHkWTOnTtnjh49aiSZI0eOGGP+773w4P5rjDFz5841ksyuXbviXDtgB3rIgBSidu3aypo1q/LkyaNWrVopXbp0Wrx4sXLlyqUVK1ZIknr27OnymA8++ECStHz5cpfpOXPmVLNmzay/fXx81KZNG+3fv1+BgYH/udZUqVJZvSNRUVEKCQlRRESEypcvr3379sVo36JFC+sUnUdRqFAhVaxY0aXnISQkRCtXrlTr1q3/8fSb+L52ceH8tjY+vWOS9Oabb7r0KjkHuTh9+rQ1zdvb2/r95s2bunLliqpUqSJjjPbv3x9jme+++67L36tWrZJ0f6Sz6Lp27erytzFGCxcuVKNGjWSM0ZUrV6yfgIAAhYaGxtiWbdu2danvUbVp00bh4eEutwGYN2+eIiIiYu3tjD7Km8PhUJcuXXT37l2tXbtW0v1eRV9fX7344osu61GuXDmlS5fOOiXPeTrUsmXLHun6vrjsV6+88oq8vLxc3qurV6/WlStX/tM1dGvXrtXdu3fVvXt3l+v2OnToIB8fnzi9j+O738bVoEGDlDVrVmXPnl21atXSqVOnNHLkSDVv3lx79uzR5cuX9d5777lcM9qgQQMVKVLEpe7q1atry5YtkqS///5bv/32mzp27KgsWbJY07ds2aIMGTKoRIkSkqRFixYpKipKr7zyisu2z549uwoWLBjjdExPT0+9+eab/7pOf//9t6R/38fTp0+faL03//a+T0xXr179x+viDh8+rJo1a+qpp57S2rVrY7SNfh2ZdP+UxFy5cilv3rwqUqSIMmXKZJ22GNuAHk7O5Sb2MPvAf0UgA1KIiRMnas2aNdqwYYOOHj1qXT8g3T9H383NTQUKFHB5TPbs2ZUhQwadO3fOZXqBAgVihJRChQpJ0j9eGxYfs2bNUqlSpeTl5aXMmTMra9asWr58uUJDQ2O0fdgpP/HRpk0bbdu2zVrX+fPn6969e3rjjTf+8XHxfe3iwsfHR9L/fWiLq7x587r87fywEf06p/Pnz6tdu3bKlCmT0qVLp6xZs6pmzZqSFOO1TZ06tXLnzu0yzbm+D77mD65/cHCwrl+/rqlTpypr1qwuP84PrJcvX3Z5TEJsR0kqUqSInn32WZfQMmfOHFWqVClGnW5ubnr66addpj34Xj558qRCQ0Pl5+cXY11u3LhhrUfNmjXVokULDR48WFmyZFGTJk00Y8aMGNdhPkxc9qsMGTKoUaNGmjt3rsu65cqVy7q26lE436eFCxd2me7h4aGnn346zu/j+Oy3cdWxY0etWbNG69at0969e3X58mV9+OGH/1i3dP99EL3u6tWr66+//tIff/xhXXNXuXJll6C2ZcsWVa1a1QqlJ0+elDFGBQsWjLHtjx07FuM9nCtXrjidausMYv+2j//999/x/mImLuLyvk9s5oHrNKNr1KiR0qdPr9WrV1vHw+hKlCihDBkyuISuqlWrSpK1XaPPy5MnT4zjY/Qa/u2aN8BujLIIpBAVKlSwRll8mIT8p/SwZUVGRv7rY2fPnq127dqpadOm6t27t/z8/KzrQ5zXj0SXEL0qrVq1Uo8ePTRnzhz1799fs2fPVvny5WP9oBebhHztihQpIkk6dOhQvB6XKlWqWKc7P3RERkbqxRdfVEhIiPr06aMiRYoobdq0unjxotq1a6eoqCiXx3l6esYY5TCunMt6/fXX1bZt21jbPDjEekJsR6c2bdro/fff159//qnw8HDt3LlTEyZMeKRlRUVFyc/PL9ZrtyRZvbPOm3Pv3LlTP//8s1avXq233npLo0eP1s6dO5UuXbpHXp/o2rRpo/nz52v79u0qWbKkli5dat2byU7x3W/jqmDBgi63OnhUzh6SzZs36/Tp0ypbtqw18Mi4ceN048YN7d+/3+VGxVFRUXI4HFq5cmWs+9eD2zSu7+ECBQooderULoOMPCg8PFwnTpxwOW47ByJ6UFyOq/H1X47h/yZz5swxBsSJrkWLFpo1a5bmzJkT66BKbm5uqly5snWt2LZt21wGUKlSpYqmT59uXVvWtGnTWJ/HWUOWLFn+2woBiYxABjwB8uXLp6ioKJ08edLlnkRBQUG6fv268uXL59L+jz/+kDHG5R/277//LknWSF/O3pnr16+7jGwVl2/aFyxYoKefflqLFi1yeY5HueA8un8KTZkyZVKDBg00Z84ctW7dWtu2bYvTzW/j+9rFRaFChVS4cGEtWbJEY8eOTbAP8ocOHdLvv/+uWbNmuQziEZ/BWJzre+bMGRUsWNCa/uBojlmzZlX69OkVGRmZIB+m46tVq1bq2bOnvv/+e+t+dA+OnCfd/8B9+vRpq3dAivlezp8/v9auXauqVavG6QN3pUqVVKlSJQ0dOlRz585V69at9cMPP7jcByw2cdmvJKlu3brKmjWr5syZo4oVK+rWrVv/2pP7b5zv0xMnTrj0nNy9e1dnzpxx2YYP248Sa7/9J9HrfrCH8MSJEy77X968eZU3b15t2bJFp0+ftk7prVGjhnr27Kn58+crMjLSZUCP/Pnzyxgjf39/l/fIf5U2bVo999xzWr9+vc6dOxfrceLHH39UeHi4y2iqGTNmdDkF2enB4+q/fUEUl/d99GP4Pz1XXJ7vQUWKFHEZJfNBn3/+uVKnTq333ntP6dOnj/V+i9WqVdPKlSu1dOlSXb582eohk+4HsgEDBmjFihW6fft2rKcrSvdH6nRzc0vQbQskBk5ZBJ4A9evXl6QYAWTMmDGSFGMEvUuXLrkMKx4WFqb//e9/Kl26tLJnzy7p/27MG31Us5s3b2rWrFn/Wo/zm+jo3wTv2rXLGq78UTnvofXgBwynN954Q0ePHlXv3r2VKlWqWEeYfFB8X7u4Gjx4sK5evaq3335bERERMeb/8ssv8R59LbbX1RijsWPHxnkZztNcJ02a5DJ9/PjxMZ6rRYsWWrhwoQ4fPhxjOcHBwXF+zkeRJUsW1atXT7Nnz9acOXNUt27dh34LHr3nzBijCRMmyN3dXS+88IKk+9dtRUZG6tNPP43x2IiICOv9dO3atRi9F84bF8fltMW47FfS/VNJX331Vf3444+aOXOmSpYsGacbOv+T2rVry8PDQ+PGjXNZh2nTpik0NNTlfZw2bdpYT0FMrP32n5QvX15+fn6aMmWKy2u8cuVKHTt2LMb+V716da1fv16//vqrFchKly6t9OnTa8SIEfL29la5cuWs9s2bN1eqVKk0ePDgGNvWGKOrV68+cu0fffSRjDFq165djNtOnDlzRh9++KFy5Mjh0kOUP39+HT9+3GX/+e2332IM8+4cRv9hxzrp39/3+fLlU6pUqVyO4VLMfV/692PrgypXrqzDhw8/dL9wOByaOnWqXnrpJbVt21ZLly6N0cYZskaOHKk0adK43CS8QoUKSp06tUaNGuXS9kF79+5V8eLF431zauBxo4cMeAI888wzatu2raZOnarr16+rZs2a+vXXXzVr1iw1bdo0xtDNhQoVUvv27bV7925ly5ZN06dPV1BQkGbMmGG1qVOnjvLmzav27dtbAWf69OnKmjWrzp8//4/1NGzYUIsWLVKzZs3UoEEDnTlzRlOmTFGxYsV048aNR15P5wetbt26KSAgIEboatCggTJnzqz58+erXr168vPz+9dlxve1i6uWLVvq0KFDGjp0qPbv369XX31V+fLl09WrV7Vq1SqtW7fO5TqiuChSpIjy58+vXr166eLFi/Lx8dHChQv/8dShB5UrV04tWrTQV199patXr6pSpUratGmT9e169G/KR4wYoQ0bNqhixYrq0KGDihUrppCQEO3bt09r166NcZuBhNamTRu99NJLkhRrmJLu3yB51apVatu2rSpWrKiVK1dq+fLl6t+/v3UqYs2aNdWpUycNHz5cBw4cUJ06deTu7q6TJ09q/vz5Gjt2rF566SXNmjVLkyZNUrNmzZQ/f379/fff+uabb+Tj42MF938Sl/0q+rqNGzdOGzZs0MiRI//Dq3Rf1qxZ1a9fPw0ePFh169ZV48aNdeLECU2aNEnPPvusy4Ah5cqV07x589SzZ089++yzSpcunRo1apRo++0/cXd318iRI/Xmm2+qZs2aevXVVxUUFKSxY8fqqaeeUo8ePVzaV69eXXPmzJHD4bA+pKdKlUpVqlTR6tWrVatWLZdrwPLnz6/PPvtM/fr109mzZ61bUZw5c0aLFy9Wx44d1atXr0eqvUaNGvriiy/Us2dPlSpVSu3atVOOHDl0/PhxffPNN4qKitKKFStcBrR46623NGbMGAUEBKh9+/a6fPmypkyZouLFi7sM/uHt7a1ixYpp3rx5KlSokDJlyqQSJUpYg5XE5X3v6+url19+WePHj5fD4VD+/Pm1bNmyGNfNSf9+bH1QkyZN9Omnn2rTpk2qU6dOrG3c3Nw0e/ZsNW3aVK+88opWrFjh0gtaoUIFeXh4aMeOHapVq5ZSp/6/j6xp0qTRM888ox07drgM0hLdvXv3tGnTphgDFAFJ0mMc0RFAInAOM/9vQ3Hfu3fPDB482Pj7+xt3d3eTJ08e069fP3Pnzh2Xdvny5TMNGjQwq1evNqVKlTKenp6mSJEiZv78+TGWuXfvXlOxYkXj4eFh8ubNa8aMGROnYe+joqLMsGHDTL58+Yynp6cpU6aMWbZsWYyhnZ3DL3/++ecxnju2oZkjIiJM165dTdasWY3D4Yh1mOb33nvPSDJz5879x9frUV67uA57H926detMkyZNjJ+fn0mdOrXJmjWradSokVmyZInVxjk89YPbILbX4OjRo6Z27domXbp0JkuWLKZDhw7mt99+i9Hun2q9efOm6dy5s8mUKZNJly6dadq0qXXrgBEjRri0DQoKMp07dzZ58uQx7u7uJnv27OaFF14wU6dO/df64yK2Ye+dwsPDTcaMGY2vr6/LkOgPruOpU6dMnTp1TJo0aUy2bNnMoEGDXIZ+d5o6daopV66c8fb2NunTpzclS5Y0H374obl06ZIxxph9+/aZV1991eTNm9d4enoaPz8/07BhQ7Nnz55/XY/47FdOxYsXN25ububPP//81+U/6MFh750mTJhgihQpYtzd3U22bNnMu+++a65du+bS5saNG+a1114zGTJkMJKsfTKu+60x8Rv2Prb9+0Hz5s0zZcqUMZ6eniZTpkymdevWsb4uR44csW4REd1nn31mJJmPP/441uUvXLjQVKtWzaRNm9akTZvWFClSxHTu3NmcOHHCalOzZk1TvHjxf631QZs3bzZNmjQxWbJkMe7u7iZv3rymQ4cO5uzZs7G2nz17tnn66aeNh4eHKV26tFm9enWsr/H27dtNuXLljIeHh8vrHZ/3fXBwsGnRooVJkyaNyZgxo+nUqZM5fPjwIx1bH1SqVCnTvn17l2nRh713unXrlqlZs6ZJly6d2blzp0v7ypUrG0mmf//+MZbfrVs3I8nUq1cv1udfuXKlkWROnjz5r7UCdnMY8w/D4AB44jz11FMqUaJEvE+XSy569OihadOmKTAw0DrtB//uwIEDKlOmjGbPnh3jZtR2iYiIUM6cOdWoUSNNmzYtxvx27dppwYIFidZ7k9jKlCmjTJkyad26dXaXgmQkqbzvv/vuO3Xu3Fnnz593uc74cWnatKkcDofLacJAUsU1ZACeGHfu3NHs2bPVokULwtg/ePB6F+n+NXRubm4uAyLY7aefflJwcLDLACYpxZ49e3TgwIEUuW54MrRu3Vp58+bVxIkTH/tzHzt2TMuWLXvoqcxAUsM1ZABSvMuXL2vt2rVasGCBrl69qvfff9/ukpK0UaNGae/evXruueeUOnVqrVy5UitXrlTHjh2VJ08eu8vTrl27dPDgQX366acqU6aMdZ+1lODw4cPau3evRo8erRw5csQ6ciSQHLi5ucU64M/jULRo0VgHSwKSKgIZgBTv6NGjat26tfz8/DRu3DiX0boQU5UqVbRmzRp9+umnunHjhvLmzatPPvlEAwYMsLs0SdLkyZM1e/ZslS5dWjNnzrS7nAS1YMECDRkyRIULF9b3338vLy8vu0sCACQyriEDAAAAAJtwDRkAAAAA2IRABgAAAAA24RqyBBIVFaVLly4pffr0LjdOBQAAAPBkMcbo77//Vs6cOeXm9s99YASyBHLp0qUkMfoYAAAAgKThwoULyp079z+2IZAlkPTp00u6/6L7+PjYXA0AAAAAu4SFhSlPnjxWRvgnBLIE4jxN0cfHh0AGAAAAIE6XMjGoBwAAAADYhEAGAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2IZABAAAAgE0IZAAAAABgEwIZAAAAANiEQAYAAAAANiGQAQAAAIBNCGQAAAAAYBMCGQAAAADYhEAGAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2IZABAAAAgE1S210AEslch90VQJJeM3ZXAAAAgCSMHjIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxiayDbvHmzGjVqpJw5c8rhcOinn35ymW+M0cCBA5UjRw55e3urdu3aOnnypEubkJAQtW7dWj4+PsqQIYPat2+vGzduuLQ5ePCgqlevLi8vL+XJk0ejRo2KUcv8+fNVpEgReXl5qWTJklqxYkWCry8AAAAARGdrILt586aeeeYZTZw4Mdb5o0aN0rhx4zRlyhTt2rVLadOmVUBAgO7cuWO1ad26tY4cOaI1a9Zo2bJl2rx5szp27GjNDwsLU506dZQvXz7t3btXn3/+uT755BNNnTrVarN9+3a9+uqrat++vfbv36+mTZuqadOmOnz4cOKtPAAAAIAnnsMYY+wuQpIcDocWL16spk2bSrrfO5YzZ0598MEH6tWrlyQpNDRU2bJl08yZM9WqVSsdO3ZMxYoV0+7du1W+fHlJ0qpVq1S/fn39+eefypkzpyZPnqwBAwYoMDBQHh4ekqS+ffvqp59+0vHjxyVJLVu21M2bN7Vs2TKrnkqVKql06dKaMmVKnOoPCwuTr6+vQkND5ePjk1Avy6Ob67C7AkjSa0li9wIAAMBjFJ9skGSvITtz5owCAwNVu3Zta5qvr68qVqyoHTt2SJJ27NihDBkyWGFMkmrXri03Nzft2rXLalOjRg0rjElSQECATpw4oWvXrlltoj+Ps43zeWITHh6usLAwlx8AAAAAiI8kG8gCAwMlSdmyZXOZni1bNmteYGCg/Pz8XOanTp1amTJlcmkT2zKiP8fD2jjnx2b48OHy9fW1fvLkyRPfVQQAAADwhEuygSyp69evn0JDQ62fCxcu2F0SAAAAgGQmyQay7NmzS5KCgoJcpgcFBVnzsmfPrsuXL7vMj4iIUEhIiEub2JYR/Tke1sY5Pzaenp7y8fFx+QEAAACA+Eiygczf31/Zs2fXunXrrGlhYWHatWuXKleuLEmqXLmyrl+/rr1791pt1q9fr6ioKFWsWNFqs3nzZt27d89qs2bNGhUuXFgZM2a02kR/Hmcb5/MAAAAAQGKwNZDduHFDBw4c0IEDByTdH8jjwIEDOn/+vBwOh7p3767PPvtMS5cu1aFDh9SmTRvlzJnTGomxaNGiqlu3rjp06KBff/1V27ZtU5cuXdSqVSvlzJlTkvTaa6/Jw8ND7du315EjRzRv3jyNHTtWPXv2tOp4//33tWrVKo0ePVrHjx/XJ598oj179qhLly6P+yUBAAAA8ASxddj7jRs36rnnnosxvW3btpo5c6aMMRo0aJCmTp2q69evq1q1apo0aZIKFSpktQ0JCVGXLl30888/y83NTS1atNC4ceOULl06q83BgwfVuXNn7d69W1myZFHXrl3Vp08fl+ecP3++PvroI509e1YFCxbUqFGjVL9+/TivC8PeI1YMew8AAPDEiU82SDL3IUvuCGSIFYEMAADgiZMi7kMGAAAAACkdgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmyTpQBYZGamPP/5Y/v7+8vb2Vv78+fXpp5/KGGO1McZo4MCBypEjh7y9vVW7dm2dPHnSZTkhISFq3bq1fHx8lCFDBrVv3143btxwaXPw4EFVr15dXl5eypMnj0aNGvVY1hEAAADAkytJB7KRI0dq8uTJmjBhgo4dO6aRI0dq1KhRGj9+vNVm1KhRGjdunKZMmaJdu3Ypbdq0CggI0J07d6w2rVu31pEjR7RmzRotW7ZMmzdvVseOHa35YWFhqlOnjvLly6e9e/fq888/1yeffKKpU6c+1vUFAAAA8GRxmOjdTXFw5swZbdmyRefOndOtW7eUNWtWlSlTRpUrV5aXl1eCFtewYUNly5ZN06ZNs6a1aNFC3t7emj17towxypkzpz744AP16tVLkhQaGqps2bJp5syZatWqlY4dO6ZixYpp9+7dKl++vCRp1apVql+/vv7880/lzJlTkydP1oABAxQYGCgPDw9JUt++ffXTTz/p+PHjcao1LCxMvr6+Cg0NlY+PT4K+Do9krsPuCiBJr8Vr9wIAAEAKEJ9sEOcesjlz5qhChQrKnz+/+vTpo59++klbtmzRt99+q7p16ypbtmx67733dO7cuf+8Ak5VqlTRunXr9Pvvv0uSfvvtN23dulX16tWTdD8cBgYGqnbt2tZjfH19VbFiRe3YsUOStGPHDmXIkMEKY5JUu3Ztubm5adeuXVabGjVqWGFMkgICAnTixAldu3Yt1trCw8MVFhbm8gMAAAAA8ZE6Lo3KlCkjDw8PtWvXTgsXLlSePHlc5oeHh2vHjh364YcfVL58eU2aNEkvv/zyfy6ub9++CgsLU5EiRZQqVSpFRkZq6NChat26tSQpMDBQkpQtWzaXx2XLls2aFxgYKD8/P5f5qVOnVqZMmVza+Pv7x1iGc17GjBlj1DZ8+HANHjz4P68jAAAAgCdXnALZiBEjFBAQ8ND5np6eqlWrlmrVqqWhQ4fq7NmzCVLcjz/+qDlz5mju3LkqXry4Dhw4oO7duytnzpxq27ZtgjzHo+rXr5969uxp/R0WFhYjqAIAAADAP4lTIPunMPagzJkzK3PmzI9cUHS9e/dW37591apVK0lSyZIlde7cOQ0fPlxt27ZV9uzZJUlBQUHKkSOH9bigoCCVLl1akpQ9e3ZdvnzZZbkREREKCQmxHp89e3YFBQW5tHH+7WzzIE9PT3l6ev73lQQAAADwxIrzNWQ1a9bUkCFDtHnzZt27dy8xa7LcunVLbm6uJaZKlUpRUVGSJH9/f2XPnl3r1q2z5oeFhWnXrl2qXLmyJKly5cq6fv269u7da7VZv369oqKiVLFiRavNg+u1Zs0aFS5cONbTFQEAAAAgIcQ5kPn7+2vGjBmqVauWMmTIoNq1a2vo0KHasWOHIiMjE6W4Ro0aaejQoVq+fLnOnj2rxYsXa8yYMWrWrJkkyeFwqHv37vrss8+0dOlSHTp0SG3atFHOnDnVtGlTSVLRokVVt25ddejQQb/++qu2bdumLl26qFWrVsqZM6ck6bXXXpOHh4fat2+vI0eOaN68eRo7dqzLKYkAAAAAkNDiPez92bNntX79em3atEkbN27UhQsXlC5dOlWtWlXPP/+8evfunWDF/f333/r444+1ePFiXb58WTlz5tSrr76qgQMHWiMiGmM0aNAgTZ06VdevX1e1atU0adIkFSpUyFpOSEiIunTpop9//llubm5q0aKFxo0bp3Tp0lltDh48qM6dO2v37t3KkiWLunbtqj59+sS5Voa9R6wY9h4AAOCJE59sEO9A9qDTp09r+vTpGj9+vG7cuJFovWVJHYEMsSKQAQAAPHHikw3iNKjHg86dO6eNGzdaP5cvX1alSpVUs2bNRyoYAAAAAJ5EcQ5k//vf/6wAduXKFVWpUkU1a9ZUhw4d9Oyzz8rd3T0x6wQAAACAFCfOgaxdu3bKmzev+vbtq/bt2xPAAAAAAOA/ivMoi5MmTVKlSpU0ePBg+fn5qVGjRho9erT27Nmj/3gZGgAAAAA8kR5pUI+jR49aoyxu3LhR4eHhqlq1qp577jn16tUrMepM8hjUA7FiUA8AAIAnzmMdZfHSpUuaNGkSoywSyBAbAhkAAMATJ1FHWbx8+bI2bNhg9Y79/vvvcnd3V6VKlfTcc889ctEAAAAA8KSJcyB77733tHHjRp04cUKpU6dWhQoV9NJLL+m5555TlSpV5OXllZh1AgAAAECKE+dAtn//fjVt2lTPPfecqlatqjRp0iRmXQAAAACQ4sU5kO3YsUPS/fMhHxbG/vjjDxUoUCBhKgMAAACAFC7Ow947NWjQQHfu3Ikx/cSJE6pVq1ZC1AQAAAAAT4R4B7J06dKpefPmioiIsKYdO3ZMtWrVUosWLRK0OAAAAABIyeIdyBYtWqTQ0FC1bt1axhgdPnxYtWrV0quvvqqxY8cmRo0AAAAAkCLFO5B5e3tr+fLlOnHihF555RW98MILatOmjcaMGZMY9QEAAABAihWnQT3CwsJc/nZzc9O8efP04osvqkWLFvr444+tNknipsgAAAAAkAw4jDHm3xq5ubnJ4XDEmO58qMPhkDFGDodDkZGRCV9lMhCfu3E/FnNjbi/Y4LV/3b0AAACQwsQnG8Sph2zDhg0JUhgAAAAA4P/EKZDVrFkzsesAAAAAgCdOnAb1OH/+fLwWevHixUcqBgAAAACeJHEKZM8++6w6deqk3bt3P7RNaGiovvnmG5UoUUILFy5MsAIBAAAAIKWK0ymLR48e1dChQ/Xiiy/Ky8tL5cqVU86cOeXl5aVr167p6NGjOnLkiMqWLatRo0apfv36iV03AAAAACR7cRpl0en27dtavny5tm7dqnPnzun27dvKkiWLypQpo4CAAJUoUSIxa03SGGURsWKURQAAgCdOgo+y6OTt7a2XXnpJL7300n8qEAAAAAAQx2vIAAAAAAAJj0AGAAAAADYhkAEAAACATQhkAAAAAGCTeAeyzZs3KyIiIsb0iIgIbd68OUGKAgAAAIAnQbwD2XPPPaeQkJAY00NDQ/Xcc88lSFEAAAAA8CSIdyAzxsjhiHmPq6tXrypt2rQJUhQAAAAAPAnifB+y5s2bS5IcDofatWsnT09Pa15kZKQOHjyoKlWqJHyFAAAAAJBCxTmQ+fr6SrrfQ5Y+fXp5e3tb8zw8PFSpUiV16NAh4SsEAAAAgBQqzoFsxowZkqSnnnpKvXr14vREAAAAAPiP4hzInAYNGpQYdQAAAADAEyfegczf3z/WQT2cTp8+/Z8KAgAAAIAnRbwDWffu3V3+vnfvnvbv369Vq1apd+/eCVUXAAAAAKR48Q5k77//fqzTJ06cqD179vznggAAAADgSRHv+5A9TL169bRw4cKEWhwAAAAApHgJFsgWLFigTJkyJdTiAAAAACDFi/cpi2XKlHEZ1MMYo8DAQAUHB2vSpEkJWhwAAAAApGTxDmRNmzZ1+dvNzU1Zs2ZVrVq1VKRIkYSqCwAAAABSPO5DBgAAAAA2iXcgk6TIyEgtXrxYx44dkyQVK1ZMTZo0UerUj7Q4AAAAAHgixTtBHTlyRI0aNVJQUJAKFy4sSRo5cqSyZs2qn3/+WSVKlEjwIgEAAAAgJYr3KItvv/22SpQooT///FP79u3Tvn37dOHCBZUqVUodO3ZMjBoBAAAAIEWKdw/ZgQMHtGfPHmXMmNGaljFjRg0dOlTPPvtsghYHAAAAAClZvHvIChUqpKCgoBjTL1++rAIFCiRIUQAAAADwJIh3IBs+fLi6deumBQsW6M8//9Sff/6pBQsWqHv37ho5cqTCwsKsHwAAAADAwzmMMSY+D3Bz+78M57xBtHMR0f92OByKjIxMqDqTvLCwMPn6+io0NFQ+Pj52lyPNdfx7GyS+1+K1ewEAACAFiE82iPc1ZBs2bHjkwgAAAAAA/yfegczf31958uSxesOcjDG6cOGC8ubNm2DFAQAAAEBKFu9ryPz9/RUcHBxjekhIiPz9/ROkKAAAAAB4EsQ7kDmvD3vQjRs35OXllSBFAQAAAMCTIM6nLPbs2VPS/YE7Pv74Y6VJk8aaFxkZqV27dql06dIJXiAAAAAApFRxDmT79++XdL+H7NChQ/Lw8LDmeXh46JlnnlGvXr0SvkIAAAAASKHiHMicoyu++eabGjt2bNIY2h0AAAAAkrF4j7I4Y8aMxKgDAAAAAJ448Q5kzz///D/OX79+/SMXAwAAAABPkngHsmeeecbl73v37unAgQM6fPiw2rZtm2CFAQAAAEBKF+9A9uWXX8Y6/ZNPPtGNGzf+c0EAAAAA8KSI933IHub111/X9OnTE2pxAAAAAJDiJVgg27FjBzeGBgAAAIB4iPcpi82bN3f52xijv/76S3v27NHHH3+cYIUBAAAAQEoX70Dm6+vr8rebm5sKFy6sIUOGqE6dOglWGAAAAACkdNyHDAAAAABsEu9Advv2ba1Zs0a///67JKlw4cKqXbu2vL29E7w4AAAAAEjJ4jWox9KlS5UvXz41bdpUH374oT788EM1adJE+fLl088//5woBV68eFGvv/66MmfOLG9vb5UsWVJ79uyx5htjNHDgQOXIkUPe3t6qXbu2Tp486bKMkJAQtW7dWj4+PsqQIYPat28fY4j+gwcPqnr16vLy8lKePHk0atSoRFkfAAAAAHCKcyDbvn27XnrpJdWoUUPbtm1TSEiIQkJCtHXrVlWvXl0vvfSSdu7cmaDFXbt2TVWrVpW7u7tWrlypo0ePavTo0cqYMaPVZtSoURo3bpymTJmiXbt2KW3atAoICNCdO3esNq1bt9aRI0e0Zs0aLVu2TJs3b1bHjh2t+WFhYapTp47y5cunvXv36vPPP9cnn3yiqVOnJuj6AAAAAEB0DmOMiUvD+vXrK0+ePPr6669jnd+pUydduHBBK1asSLDi+vbtq23btmnLli2xzjfGKGfOnPrggw/Uq1cvSVJoaKiyZcummTNnqlWrVjp27JiKFSum3bt3q3z58pKkVatWqX79+vrzzz+VM2dOTZ48WQMGDFBgYKA8PDys5/7pp590/PjxONUaFhYmX19fhYaGysfHJwHW/j+a67C7AkjSa3HavQAAAJCCxCcbxLmHbOfOnerSpctD53fu3Fk7duyIe5VxsHTpUpUvX14vv/yy/Pz8VKZMGX3zzTfW/DNnzigwMFC1a9e2pvn6+qpixYpWLTt27FCGDBmsMCZJtWvXlpubm3bt2mW1qVGjhhXGJCkgIEAnTpzQtWvXEnSdAAAAAMApzoHs9u3b/5jufH19XU4TTAinT5/W5MmTVbBgQa1evVrvvvuuunXrplmzZkmSAgMDJUnZsmVzeVy2bNmseYGBgfLz83OZnzp1amXKlMmlTWzLiP4cDwoPD1dYWJjLDwAAAADER5wDWcGCBbV+/fqHzl+3bp0KFiyYIEU5RUVFqWzZsho2bJjKlCmjjh07qkOHDpoyZUqCPs+jGD58uHx9fa2fPHny2F0SAAAAgGQmzoHszTffVK9evWK9Rmz58uX68MMP1a5du4SsTTly5FCxYsVcphUtWlTnz5+XJGXPnl2SFBQU5NImKCjImpc9e3ZdvnzZZX5ERIRCQkJc2sS2jOjP8aB+/fopNDTU+rlw4cKjrCIAAACAJ1icA9n777+v559/Xg0bNlTRokXVvHlzNWvWTEWKFFHjxo1Vs2ZNde/ePUGLq1q1qk6cOOEy7ffff1e+fPkkSf7+/sqePbvWrVtnzQ8LC9OuXbtUuXJlSVLlypV1/fp17d2712qzfv16RUVFqWLFilabzZs36969e1abNWvWqHDhwi4jOkbn6ekpHx8flx8AAAAAiI84BzI3NzfNnz9f33//vQoXLqzjx4/rxIkTKlKkiObMmaOFCxfKzS1etzX7Vz169NDOnTs1bNgw/fHHH5o7d66mTp2qzp07S5IcDoe6d++uzz77TEuXLtWhQ4fUpk0b5cyZU02bNpV0v0etbt266tChg3799Vdt27ZNXbp0UatWrZQzZ05J0muvvSYPDw+1b99eR44c0bx58zR27Fj17NkzQdcHAAAAAKKL87D3dlm2bJn69eunkydPyt/fXz179lSHDh2s+cYYDRo0SFOnTtX169dVrVo1TZo0SYUKFbLahISEqEuXLvr555/l5uamFi1aaNy4cUqXLp3V5uDBg+rcubN2796tLFmyqGvXrurTp0+c62TYe8SKYe8BAACeOPHJBkk+kCUXBDLEikAGAADwxEmU+5ABAAAAABIWgQwAAAAAbEIgAwAAAACbxCuQ3bt3T6lTp9bhw4cTqx4AAAAAeGLEK5C5u7srb968ioyMTKx6AAAAAOCJEe9TFgcMGKD+/fsrJCQkMeoBAAAAgCdG6vg+YMKECfrjjz+UM2dO5cuXT2nTpnWZv2/fvgQrDgAAAABSsngHsqZNmyZCGQAAAADw5Il3IBs0aFBi1AEAAAAAT5xHGvb++vXr+vbbb9WvXz/rWrJ9+/bp4sWLCVocAAAAAKRk8e4hO3jwoGrXri1fX1+dPXtWHTp0UKZMmbRo0SKdP39e//vf/xKjTgAAAABIceLdQ9azZ0+1a9dOJ0+elJeXlzW9fv362rx5c4IWBwAAAAApWbwD2e7du9WpU6cY03PlyqXAwMAEKQoAAAAAngTxDmSenp4KCwuLMf33339X1qxZE6QoAAAAAHgSxDuQNW7cWEOGDNG9e/ckSQ6HQ+fPn1efPn3UokWLBC8QAAAAAFKqeAey0aNH68aNG/Lz89Pt27dVs2ZNFShQQOnTp9fQoUMTo0YAAAAASJHiPcqir6+v1qxZo61bt+rgwYO6ceOGypYtq9q1aydGfQAAAACQYsU7kN25c0deXl6qVq2aqlWrlhg1AQAAAMATId6BLEOGDKpQoYJq1qyp5557TpUrV5a3t3di1AYAAAAAKVq8ryFbu3at6tatq127dqlx48bKmDGjqlWrpgEDBmjNmjWJUSMAAAAApEgOY4x51AdHRERo9+7d+vrrrzVnzhxFRUUpMjIyIetLNsLCwuTr66vQ0FD5+PjYXY4012F3BZCk1x559wIAAEAyFZ9sEO9TFqX79xzbuHGj9RMeHq6GDRuqVq1aj7I4AAAAAHgixTuQ5cqVS7dv31atWrVUq1Yt9enTR6VKlZLDQY8MAAAAAMRHvK8hy5o1q27duqXAwEAFBgYqKChIt2/fTozaAAAAACBFi3cgO3DggAIDA9W3b1+Fh4erf//+ypIli6pUqaIBAwYkRo0AAAAAkCL9p0E9rl69qo0bN2rJkiX6/vvvGdSDQT3wIAb1AAAAeOIk6qAeixYtsgbzOHr0qDJlyqRq1app9OjRqlmz5iMXDQAAAABPmngHsnfeeUc1atRQx44dVbNmTZUsWTIx6gIAAACAFC/egezy5cuJUQcAAAAAPHEe6T5kkZGR+umnn3Ts2DFJUrFixdSkSROlSpUqQYsDAAAAgJQs3oHsjz/+UP369XXx4kUVLlxYkjR8+HDlyZNHy5cvV/78+RO8SAAAAABIieI97H23bt2UP39+XbhwQfv27dO+fft0/vx5+fv7q1u3bolRIwAAAACkSPHuIdu0aZN27typTJkyWdMyZ86sESNGqGrVqglaHAAAAACkZPHuIfP09NTff/8dY/qNGzfk4eGRIEUBAAAAwJMg3oGsYcOG6tixo3bt2iVjjIwx2rlzp9555x01btw4MWoEAAAAgBQp3oFs3Lhxyp8/vypXriwvLy95eXmpatWqKlCggMaOHZsYNQIAAABAihTva8gyZMigJUuW6I8//rCGvS9atKgKFCiQ4MUBAAAAQEoW50AWFRWlzz//XEuXLtXdu3f1wgsvaNCgQfL29k7M+gAAAAAgxYrzKYtDhw5V//79lS5dOuXKlUtjx45V586dE7M2AAAAAEjR4hzI/ve//2nSpElavXq1fvrpJ/3888+aM2eOoqKiErM+AAAAAEix4hzIzp8/r/r161t/165dWw6HQ5cuXUqUwgAAAAAgpYtzIIuIiJCXl5fLNHd3d927dy/BiwIAAACAJ0GcB/Uwxqhdu3by9PS0pt25c0fvvPOO0qZNa01btGhRwlYIAAAAAClUnANZ27ZtY0x7/fXXE7QYAAAAAHiSxDmQzZgxIzHrAAAAAIAnTpyvIQMAAAAAJCwCGQAAAADYhEAGAAAAADYhkAEAAACATQhkAAAAAGCTOI2yuHTp0jgvsHHjxo9cDAAAAAA8SeIUyJo2bRqnhTkcDkVGRv6XegAAAADgiRGnQBYVFZXYdQAAAADAE4dryAAAAADAJnHqIXvQzZs3tWnTJp0/f1537951mdetW7cEKQwAAAAAUrp4B7L9+/erfv36unXrlm7evKlMmTLpypUrSpMmjfz8/AhkAAAAABBH8T5lsUePHmrUqJGuXbsmb29v7dy5U+fOnVO5cuX0xRdfJEaNAAAAAJAixTuQHThwQB988IHc3NyUKlUqhYeHK0+ePBo1apT69++fGDUCAAAAQIoU70Dm7u4uN7f7D/Pz89P58+clSb6+vrpw4ULCVgcAAAAAKVi8ryErU6aMdu/erYIFC6pmzZoaOHCgrly5ou+++04lSpRIjBoBAAAAIEWKdw/ZsGHDlCNHDknS0KFDlTFjRr377rsKDg7W119/neAFAgAAAEBKFe8esvLly1u/+/n5adWqVQlaEAAAAAA8KeLdQ/b888/r+vXrMaaHhYXp+eefT4iaAAAAAOCJEO9AtnHjxhg3g5akO3fuaMuWLQlSFAAAAAA8CeJ8yuLBgwet348eParAwEDr78jISK1atUq5cuVK2OoAAAAAIAWLcyArXbq0HA6HHA5HrKcment7a/z48QlaHAAAAACkZHEOZGfOnJExRk8//bR+/fVXZc2a1Zrn4eEhPz8/pUqVKlGKBAAAAICUKM7XkOXLl09PPfWUoqKiVL58eeXLl8/6yZEjx2MJYyNGjJDD4VD37t2taXfu3FHnzp2VOXNmpUuXTi1atFBQUJDL486fP68GDRooTZo08vPzU+/evRUREeHSZuPGjSpbtqw8PT1VoEABzZw5M9HXBwAAAMCTLd6DekjSqVOn1LVrV9WuXVu1a9dWt27ddOrUqYSuzcXu3bv19ddfq1SpUi7Te/TooZ9//lnz58/Xpk2bdOnSJTVv3tyaHxkZqQYNGuju3bvavn27Zs2apZkzZ2rgwIFWmzNnzqhBgwZ67rnndODAAXXv3l1vv/22Vq9enajrBAAAAODJFu9Atnr1ahUrVky//vqrSpUqpVKlSmnXrl0qXry41qxZkxg16saNG2rdurW++eYbZcyY0ZoeGhqqadOmacyYMXr++edVrlw5zZgxQ9u3b9fOnTslSb/88ouOHj2q2bNnq3Tp0qpXr54+/fRTTZw40RotcsqUKfL399fo0aNVtGhRdenSRS+99JK+/PLLRFkfAAAAAJAeIZD17dtXPXr00K5duzRmzBiNGTNGu3btUvfu3dWnT5/EqFGdO3dWgwYNVLt2bZfpe/fu1b1791ymFylSRHnz5tWOHTskSTt27FDJkiWVLVs2q01AQIDCwsJ05MgRq82Dyw4ICLCWEZvw8HCFhYW5/AAAAABAfMQ7kB07dkzt27ePMf2tt97S0aNHE6So6H744Qft27dPw4cPjzEvMDBQHh4eypAhg8v0bNmyWcPyBwYGuoQx53znvH9qExYWptu3b8da1/Dhw+Xr62v95MmT55HWDwAAAMCTK96BLGvWrDpw4ECM6QcOHJCfn19C1GS5cOGC3n//fc2ZM0deXl4Juuz/ql+/fgoNDbV+Lly4YHdJAAAAAJKZOA97P2TIEPXq1UsdOnRQx44ddfr0aVWpUkWStG3bNo0cOVI9e/ZM0OL27t2ry5cvq2zZsta0yMhIbd68WRMmTNDq1at19+5dXb9+3aWXLCgoSNmzZ5ckZc+eXb/++qvLcp2jMEZv8+DIjEFBQfLx8ZG3t3estXl6esrT0/M/ryMAAACAJ1ecA9ngwYP1zjvv6OOPP1b69Ok1evRo9evXT5KUM2dOffLJJ+rWrVuCFvfCCy/o0KFDLtPefPNNFSlSRH369FGePHnk7u6udevWqUWLFpKkEydO6Pz586pcubIkqXLlyho6dKguX75s9eCtWbNGPj4+KlasmNVmxYoVLs+zZs0aaxkAAAAAkBgcxhgTl4Zubm4KDAx0OS3x77//liSlT58+caqLRa1atVS6dGl99dVXkqR3331XK1as0MyZM+Xj46OuXbtKkrZv3y7pfo9a6dKllTNnTo0aNUqBgYF644039Pbbb2vYsGGS7g97X6JECXXu3FlvvfWW1q9fr27dumn58uUKCAiIU11hYWHy9fVVaGiofHx8En7F42uuw+4KIEmvxWn3AgAAQAoSn2wQ5x4ySXI4XD/kP84g9jBffvml3Nzc1KJFC4WHhysgIECTJk2y5qdKlUrLli3Tu+++q8qVKytt2rRq27athgwZYrXx9/fX8uXL1aNHD40dO1a5c+fWt99+G+cwBgAAAACPIl49ZL6+vjFC2YNCQkISpLDkhh4yxIoeMgAAgCdOovWQDR48WL6+vv+pOAAAAADAffEKZK1atUrwoe0BAAAA4EkV5/uQ/dupigAAAACA+IlzIIvjpWYAAAAAgDiK8ymLUVFRiVkHAAAAADxx4txDBgAAAABIWAQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsktruAgD8B3MddleA14zdFQAAgGSMHjIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABskqQD2fDhw/Xss88qffr08vPzU9OmTXXixAmXNnfu3FHnzp2VOXNmpUuXTi1atFBQUJBLm/Pnz6tBgwZKkyaN/Pz81Lt3b0VERLi02bhxo8qWLStPT08VKFBAM2fOTOzVAwAAAPCES9KBbNOmTercubN27typNWvW6N69e6pTp45u3rxptenRo4d+/vlnzZ8/X5s2bdKlS5fUvHlza35kZKQaNGigu3fvavv27Zo1a5ZmzpypgQMHWm3OnDmjBg0a6LnnntOBAwfUvXt3vf3221q9evVjXV8AAAAATxaHMcbYXURcBQcHy8/PT5s2bVKNGjUUGhqqrFmzau7cuXrppZckScePH1fRokW1Y8cOVapUSStXrlTDhg116dIlZcuWTZI0ZcoU9enTR8HBwfLw8FCfPn20fPlyHT582HquVq1a6fr161q1alWcagsLC5Ovr69CQ0Pl4+OT8CsfX3MddlcASXotkXcvtrP9EnsbAwCAZCc+2SBJ95A9KDQ0VJKUKVMmSdLevXt179491a5d22pTpEgR5c2bVzt27JAk7dixQyVLlrTCmCQFBAQoLCxMR44csdpEX4azjXMZsQkPD1dYWJjLDwAAAADER7IJZFFRUerevbuqVq2qEiVKSJICAwPl4eGhDBkyuLTNli2bAgMDrTbRw5hzvnPeP7UJCwvT7du3Y61n+PDh8vX1tX7y5Mnzn9cRAAAAwJMl2QSyzp076/Dhw/rhhx/sLkWS1K9fP4WGhlo/Fy5csLskAAAAAMlMarsLiIsuXbpo2bJl2rx5s3Lnzm1Nz549u+7evavr16+79JIFBQUpe/bsVptff/3VZXnOURijt3lwZMagoCD5+PjI29s71po8PT3l6en5n9cNAAAAwJMrSfeQGWPUpUsXLV68WOvXr5e/v7/L/HLlysnd3V3r1q2zpp04cULnz59X5cqVJUmVK1fWoUOHdPnyZavNmjVr5OPjo2LFilltoi/D2ca5DAAAAABIDEm6h6xz586aO3eulixZovTp01vXfPn6+srb21u+vr5q3769evbsqUyZMsnHx0ddu3ZV5cqVValSJUlSnTp1VKxYMb3xxhsaNWqUAgMD9dFHH6lz585WD9c777yjCRMm6MMPP9Rbb72l9evX68cff9Ty5cttW3cAAAAAKV+S7iGbPHmyQkNDVatWLeXIkcP6mTdvntXmyy+/VMOGDdWiRQvVqFFD2bNn16JFi6z5qVKl0rJly5QqVSpVrlxZr7/+utq0aaMhQ4ZYbfz9/bV8+XKtWbNGzzzzjEaPHq1vv/1WAQEBj3V9AQAAADxZktV9yJIy7kOGWHEfspSP+5ABAIAHpNj7kAEAAABASkIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbpLa7AAAAnnhzHXZXgNeM3RUAeELRQwYAAAAANiGQAQAAAIBNCGQAAAAAYBMCGQAAAADYhEAGAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2IZABAAAAgE0IZAAAAABgEwIZAAAAANiEQAYAAAAANiGQAQAAAIBNCGQAAAAAYJPUdhcAAACQ4s112F0BXjN2VwDEih6yB0ycOFFPPfWUvLy8VLFiRf366692lwQAAAAghaKHLJp58+apZ8+emjJliipWrKivvvpKAQEBOnHihPz8/OwuDwAAAEkZPaH2S4Y9ofSQRTNmzBh16NBBb775pooVK6YpU6YoTZo0mj59ut2lAQAAAEiB6CH7/+7evau9e/eqX79+1jQ3NzfVrl1bO3bsiNE+PDxc4eHh1t+hoaGSpLCwsMQvNi5u2V0AJEmJ/X5gO9svsbfxj76Ju3zEzSuhibt89mX7cbxO+R7HZzS2s/2SyGdxZyYw5t977Ahk/9+VK1cUGRmpbNmyuUzPli2bjh8/HqP98OHDNXjw4BjT8+TJk2g1IhnqwIfpFI9t/GRgO6d8bOOUj238ZEhi2/nvv/+Wr+8/10Qge0T9+vVTz549rb+joqIUEhKizJkzy+Hg/OH/KiwsTHny5NGFCxfk4+NjdzlIBGzjJwPbOeVjGz8Z2M4pH9s4YRlj9Pfffytnzpz/2pZA9v9lyZJFqVKlUlBQkMv0oKAgZc+ePUZ7T09PeXp6ukzLkCFDYpb4RPLx8eGgkMKxjZ8MbOeUj238ZGA7p3xs44Tzbz1jTgzq8f95eHioXLlyWrdunTUtKipK69atU+XKlW2sDAAAAEBKRQ9ZND179lTbtm1Vvnx5VahQQV999ZVu3rypN9980+7SAAAAAKRABLJoWrZsqeDgYA0cOFCBgYEqXbq0Vq1aFWOgDyQ+T09PDRo0KMZpoUg52MZPBrZzysc2fjKwnVM+trF9HCYuYzECAAAAABIc15ABAAAAgE0IZAAAAABgEwIZAAAAANiEQAYAAAAANiGQ4bFh/BgASF44bgNA4iOQ4bEICQmRw+Gw/uaffMrk3K5RUVE2V4LE8uC+y76c8kybNk2nTp1SeHi4y3EbAJA4CGRIdBMmTFC1atU0ZswYrV69WpL4J5/COANYZGSkJOnmzZsu8/nQnjLcvXtXrVu31tSpU7Vz505J7MspzYULFzR27Fj17NlTzz77rNauXauLFy/aXRYApGjchwyJ7tSpU9q3b58WLlyo/fv3q0KFCho2bJhy587Nh7kUICoqSm5ubvr99981fvx47du3T1evXlXVqlVVr149vfTSS5LuhzK2d/IWFBSkH3/8UcuWLVNYWJhy5cqlzz//XLly5ZKHh4fd5SGB3L17V5cvX9Znn32mjRs36tlnn1XHjh1VvXp1u0tDAnEet5Hyxfa/l+2f9BDIkGge3OGvXr2qo0ePqk2bNvLz89Onn36qF154QalSpbKxSvwXzm188OBBPffcc2rUqJEyZcqkdOnSafr06YqMjFTbtm01YsQISYSylCI4OFhnz55V+/bt5XA41KVLF7Vq1Urp06e3uzT8B7F9SJs/f77mzp2rixcv6tNPP1VAQIBN1SEhfP/996pTp458fHzk7u5udzlIZM7/uZs2bdKvv/6qO3fuqEePHkqXLp3dpeEBBDI8Ns4Dw40bN1S3bl3dvXtXX3zxhWrUqGF3afgP/vzzTz333HNq2bKlPvvsM2v6yZMn9fHHH2vt2rX64IMP1K9fPxurxKN4WICO/sG9bdu2OnLkiFq1aqV3331XadOmfdxlIoEdPHhQpUqVsv7etm2bJk2apAsXLujLL79UuXLlbKwOj2rDhg0aPny4Lly4YH2BVq9ePbvLQiL7+eef9fLLL+vZZ5/V77//Ll9fX82ePVsVKlSwuzREQ38lEsW2bds0ceJEjR07Vhs3bpR0/1qTe/fuKV26dPrll19kjNHHH39sXV/EdwPJ0759+5QzZ0517dpVERERkqSIiAgVLFhQQ4cO1TPPPKMffvhBp0+ftrlSxEf0MLZu3TotWrRIs2fPliS5ubkpPDxckjRr1ixVqlRJc+fO1datW63HInnasmWLSpcurf3791vTqlatqg4dOsjLy0uLFi1SeHg42zgZqlmzpn755Rd9+umn8vT0VIMGDfTBBx/ozJkzdpeGBObcP2/evKmlS5dqypQp2rBhg06ePKmnn35azZs317Zt22yuEi4MkMCmTZtmsmXLZl544QVTsGBBU6ZMGbNw4UJrfkREhDHGmKCgIOPn52f69u1rV6lIAB999JHJkydPjOlRUVHGGGM2bdpk3NzczNKlSx93aXhEzm1njDF9+/Y1+fPnN6VKlTKenp6mY8eO1rx79+5Zv9epU8dUqFDhsdaJhHfq1ClTvXp1M23aNGOMMXfv3rXmjR8/3vj5+Zk//vjDGOP6PkHSFn1fdVq2bJnJkCGDadWqldm3b58NVSExbdmyxRQrVsw8//zzZufOnS7zAgICTK5cucy2bdtsqg4PoocMCWrZsmXq06ePxo4dq7Vr1+rnn39WoUKFtGnTJkn3v7VJlSqVIiMj5efnp1GjRmnPnj26cOEC37gmA7ENZ58pUybdu3dPZ8+ejXV+yZIl5efnp0uXLj2OEpEAnD1jgwcP1rRp0zR37lwtX75ckyZN0rZt26zesdSpU1vbfN68eQoODtbnn39uW92In9j216efflqlS5fWZ599psjISLm7u1ujp3bp0kU1a9bUiBEjuB40mUmdOrUk6euvv9aRI0cUGRmpBg0aaNWqVdq5c6e++OILhYaG2lwl/qvon6OKFCkiLy8vbdiwwdq2zn1+1apVKl26tF544QXt2rXLllrhikCGBBMaGqqFCxeqTZs2atmypSSpcOHCqlq1qpYvX65bt25Z/8CdA3lUrlxZly5d0vHjx/nnnsQ5rxs6d+6cli1bplu3bkmSatSooeDgYH333XfWdUXGGOsfQ0hIiLJly6ZChQrZVjvib9WqVZo9e7Z+/PFHVahQQblz55a/v7+yZ8+u7777TmPHjtXly5fl5uYmY4x8fX317rvv6uzZs3aXjjhy7q8XLlxwuVXFxx9/rPTp02vKlCmS7h+vnR/kGjRoEOO+kki6oofucePGqXPnzlaYjoqKUsWKFfXDDz9o/vz5mjZtmo2VIiE4HA6tX79eX3zxhbJkyaJVq1apfPny6tGjh06dOmUdr6X7X6A3aNBAmTJlsrlqSAQyJKBUqVKpePHiqlOnjqT/+6amcOHCcjgcsf4DL1SokFq1aqVff/3V+hYWSZObm5suXLigggUL6oMPPtDKlSt148YNlStXTl26dNGgQYM0ZswYSff/KTg/7H377beKiIhQ0aJF7Swf8VStWjV17drV2m6RkZF69913df78eS1cuFCjRo1SvXr1FBgYaO3flStX1uLFi3Xq1Cmbq8fDtG7dWi1atLD+njt3rkqWLKm3335ba9eulTFGWbNmVfny5bVmzRqrnfP43bx5c+XIkUPnzp177LUj/pzH4R07dsjDw0Pff/+9SpQoITc3N7m5uVmhbMKECfr888+1b98+myvGfxEREaF9+/bpu+++0549e5Q1a1YtW7ZMnp6eatasmU6fPi2Hw2F9PluwYIEKFixoc9WQxDVkSFiXL1+2fndeX3Do0CFTokQJc/36dWveypUrrd9///13c+jQocdXJB7ZqVOnTLp06Yy7u7spXbq0WbBggYmKijKnT582b7zxhnE4HKZFixZm4sSJZvr06aZTp04mffr0XJ+QTEVGRlq/9+zZ09SrV88EBQUZY+5fW5QxY0YzZMgQY8z/7e8LFy40YWFhj79Y/KuoqCjzww8/GB8fH/P2229b0ydNmmQ6depkPDw8TKtWrczs2bPN4cOHTZo0aczixYutds7rf69cufK4S8d/sHfvXuNwOIybm5v53//+F2ubS5cumZdeesnMmjXLGMP1gcnJg9tqz549pmbNmtax2Zj71+yXKVPGlC1b1vz++++Pu0TEAYEMiW779u0mb9685s6dO8YYY+rWrWtKlizp8mEPSZ9ze40ePdr07NnT1K1b1+TOndssWrTIGGNMYGCgmTx5ssmXL5/JmjWrKV68uGnevDlhO4mL/s/88uXL5s8//4x13qFDh8ytW7esv2/evGkqVapkxowZ47K827dvJ2K1+K8iIyPNkiVLTPr06U3btm1d5m3atMn07NnT5M6d25QvX95kzpzZtG/f3kRERMR6vOZDe/Jw8+ZN8+233xpfX1/z3nvvPbTdxx9/bMqWLct2TYbWrFljevbsaX1pMmvWLOPh4WH27Nljtbl8+bLx9/c3VatWdRmsB0kDgQyJbt26dSZfvnwmLCzMNG7c2BQuXNg6GBDKkq4Ht43zn/QPP/xgypUrZ4KDg027du2sUBYeHm6MMeb69evm4sWL5vr163w4T+Kif/AaPny4qVy5ssmdO7cpW7asOXPmjDEm9tHZjLnfW1q2bFkrkCP5iIiIMEuWLDHp0qUzb775Zox5YWFhZsCAAeb55583adOm5Rv1ZORh/1Pv3btnJk2aZFKlSuXScxL9MSEhIWbYsGEmJCQk0etEwoiKijLh4eGmYMGCxuFwmNq1a5vFixeba9eumV69epkKFSqYwMBAq31wcLA5ffq0jRXjYbgxNBLdoUOH9Oqrr8rT01OhoaE6duyY3N3dFRERYY38hKQl+gAehw8fVqlSpZQnTx5rfoMGDVSwYEF99dVXatasmQ4cOKAvvvhC9erVU5o0aWysHI/io48+0rRp0/T555/L09NTU6ZMUVBQkH777TdrAB6n8PBwBQYGqlGjRipatKjmzZtnU9WIq+g38na6d++eVqxYoddff12vvPKKNaDDvXv35O7uLkm6evWq2rRpo3z58mncuHFKlSoVg3kkYdG38/Tp0/XHH3/or7/+Ups2bfTMM88oU6ZMmjhxorp166bBgwfro48+cnl8ZGSk/vjjDxUuXNiO8hEP5oFRTjdt2qRBgwbJGCN/f3/dvn1bRYoU0alTp1S1alV16tQpxjEASQufhhFvsf1zj22a061bt3T06FGVKVOGMJZMuLm56fz58/L391f69OmVO3du9erVS+XLl1fJkiXVuXNnTZw4Uffu3dPixYvVuHFj9evXT3fv3lXz5s3l6elp9yogjpYtW6YlS5bo+++/V61atSTdHy65cePG2r9/v8qXL2+1vXHjhr7//nuNGzdOhQoVssLYP+3/sFf0bbNt2zZdv35dFSpUUNasWdWkSRPNnj1br7/+uiRp2rRpLsfnzJkzq0yZMtq/fz/H62TAuZ179+6tGTNmKCAgQEeOHNGWLVtUt25d9e/fX507d5abm5u6d++usLAwjRo1ynp8qlSpCGPJhMPh0NatW5UxY0Y99dRTqlSpkqpUqSJfX189++yz2rt3rwYOHCiHw6HffvtNr776qjJkyGB32fgH/AdFvET/537o0CHt27dPp0+f/scPYzlz5tSQIUO0a9cuwlgy4u7urkKFCilnzpwqV66cJk2apL59+6pLly7Kmzev9u/fr6+++kqStHTpUuXJk0cjR47U3bt37S0c8fLXX3/Jz89PpUuXtqYVKlRIERERCgoKcmnr/Pa1U6dOWrhwoSTCWFLn3DYffvihGjZsqLffflsFCxbU7NmzdfPmTSuUzZ8/Xx07dpR0/55VzpNnwsPDdf78ed24cYN7RSYD69at07x587R69WrNmTNHBw4cUOfOnXXw4EGNHTtWd+7c0VtvvaVhw4Zp586dbNNkyhij/v37q2HDhvrss88UHBysZs2aae7cucqYMaN69+6t1atXq1KlSrp06ZJu3Lhhd8n4N7adLIlkJ/r1JgMGDDAFCxY0RYoUMRkyZDD9+vUzf/zxx78u42HXoyBpcV5TcO7cOVOqVCnz+uuvm5kzZ5oNGzaY6tWrm2bNmpn06dObcuXKuYyseeHCBbtKxiOKiIgwu3fvtv4ODw83d+/eNcWLFzfr1q2zpse273INaNIV/Xi9adMmU7p0abNx40bz119/mS5duphMmTKZyZMnm7///tsYY8ySJUuMw+Eww4YNsx53+vRp07x5c7N3797HXj/ixjmIg9OCBQtM3rx5YxyLBw8ebJ566ilz9epVY8z9/dn5HmEQj+RrzJgxpkGDBiZv3rxm69at5p133jFlypQx165dM8YYc/HiRRMcHGxvkYgTvtZEnDnPV/7iiy/0zTffaNq0aTp27JheffVVTZgwwboT/D+hZyx5cG7rvHnzatGiRfrtt9/0ww8/KF26dNq8ebO6d++uTp06qVu3bsqaNasiIiIkSblz57azbPwDE8s34VFRUUqVKpXLaYnu7u7WNUTOffrq1avWtYLR0TOWdDn34YkTJ2rt2rWqV6+eatasqezZs2v8+PFq27atPvroI82ZM0c3btxQ48aNtWnTJvXu3dtahr+/v2bNmqWyZcvatRr4F85rPDdt2iRJ8vDwUGRkpG7fvi3p/jWB0v3TGK9cuaL169dLuv+/2Hk/Kq4LTPqcx++TJ0/q4MGD2rJliySpR48emjBhgl5//XXVrVtXoaGhCgoK0vTp03Xv3j3lzJlTWbJksbN0xJXNgRDJTGRkpGnRooUZN26cMeb+PYcyZMhgJk2aZIwxDKWazDm/Kb1x44aJioqy7if1+++/m1KlSplatWqZLVu22FkiHkH0b8DXrl1rTp069a+PKVy4sPn5559NSEiIKV68uKlUqVJilogEEL3H0vl7QECAcTgcpmHDhtatR5x69Ohh/Pz8zBdffOFyS4PovSdImhYvXmxatGhhjDGme/fupnz58tbxulixYua5555zGeX29OnTpmjRombTpk221ItH59wXnb2f/v7+Jl26dKZu3bpmz5491vxVq1aZV155xTgcDlOtWjWXfRpJH4EMcRYZGWn+/vtvU6xYMbNjxw6zfft2ky5dOjNlyhRjjDF37twxQ4cOdbnvBZIP50F9xYoV5qWXXjLVq1c3r7zyitm8ebMx5v4w56VLlza1a9c269evt7NUPKJBgwYZh8Nh2rdvby5evBhrm3v37pm7d++aihUrmjlz5pjy5cubgIAAaz6nKSZdYWFhJiwszAQFBbmEr3bt2hkvLy+zcOFC6/YUTm+99ZapV68eASwZiYqKMqtWrTLe3t6mVKlSxsfHxxw5csSaf/jwYePv72+effZZM3v2bLN06VJTv359U758+RinOCJ52LZtm0mXLp2ZNm2aOXDggDlw4IApWrSoqVq1qssp54GBgWbx4sXcqiIZIpDhoR72weudd94xxYoVM15eXmbmzJnW9MuXL5uaNWtavWVIfpYsWWK8vLzMZ599ZqZPn26aN29uHA6HdXA/c+aMKV++vKlQoYIV1JA8LF261BQvXtx8+OGHxtvb27Rr187lJtDR3bt3zxQpUsTqWXEijCVd8+fPN40bNzZ58uQx6dKlM3Xq1DHjx4+35jdv3txkzJjRLFmyJMaZDM7tSihLXpo0aWIcDoepV6+eNc25DS9cuGBq165tChcubIoWLWrq1atnbXdCWfLz5ZdfmurVq7v0Xl+7ds0UKlTING3a1ObqkBAIZIhV9A9e58+fN3/88Yd1ENi8ebMpW7asqVixotUlfvXqVVOvXj1TtWpVDvbJjHNbh4WFmRdffNF88cUXxhhj/vzzT5MvXz7ToUMHl3a///67qV69ujl37pw9BSPe7t69a+bNm2fef/99Y4wxW7duNe7u7v8YyurVq2caNWpk/U0YS7q+/fZbkzZtWjN8+HAzffp0M2XKFFOxYkXj6elpunbtarVr3ry5yZQpk1m6dGmMnjK2b9IXfRvduXPH/PDDD2bixIkmc+bMpmXLlta86IH7ypUr5vz589b/bwbWSl6c2+3DDz80pUuXtqY7P3tt3brV+Pr6moMHD/KFSjJHIMM/6tOnjylSpIjx8vIydevWNWPHjjXGGDNjxgxTtmxZkyNHDlOrVi1Tvnx5U7ZsWb6BSyY+//xzM3z4cJdpwcHBJl++fOa3334zQUFBJleuXKZjx47W/NmzZ5szZ84YY/innhxdunTJnD171vp748aNsYay69evG2PuX0foxIf1pGvr1q0mV65cZuHChS7TT5w4Yd59913jcDjMkCFDrOktW7Y0DoeDa0GTmej74MSJE82IESPM+fPnjTHGrFy50mTMmNEllBljzLJlyx66DCQv27ZtM56enubrr792mb5lyxZToEABc/r0aZsqQ0JhyDu4iH5PoenTp2v27Nn68ssv5e3trUWLFmnmzJkKDg7Wp59+qsqVK+vnn3/WrVu3lCdPHrVp00apUqXiPmNJ3K1btxQcHKzx48crbdq06tq1qyTJx8dHFSpU0Lp16/TVV1+pYcOGmjBhgiQpMDBQq1evloeHh/Lly2eN7IWkx0QbNS36/pwjRw6rTUREhGrWrKm1a9eqdu3akqQRI0bo+vXrGjx4sD744AOVK1fOWh6jKSZdR44cUdGiRRUQEGAde40xKlSokHr16qWLFy/qxx9/VMuWLVWoUCH98MMPKliwoCpVqmR36YiH6PeTmzFjhkaPHm2NvBcQEKDvv/9erVu3VvPmzTV48GBrtMz69etbxwP246TPefw+dOiQ/vjjDxUtWlS5cuVSlSpV1L17d40YMUJRUVF65513dOvWLf3yyy/y8PBQunTp7C4d/5WtcRBJ1rp168zAgQPNxIkTrWlXr141I0aMMM8884xZtGhRrI+jZyx5+Ouvv8zgwYONr6+v+fLLL63p77zzjnE4HKZJkyYuvWB9+vQxxYoVs76RRdIU/ZSVr7/+2rz55pumZcuWMb5VNeb/9tXNmzcbLy8v06xZM+Pn52caNGjw2OrFf9e2bVtTpkyZh85fsWKFcTgcZtu2bTHm0dOdvCxcuNDkzp3b7Nq1K8a8yMhIs3nzZpMrVy5TuHBhU7FiReuMFU5lS14WLFhgMmXKZHLnzm1y5Mhh+vTpYwIDA82VK1dMv379jKenpylUqJApW7asyZIlC/cJTCHoxoCk//smPSoqShcvXrS+NR8wYIDVJlOmTOrcubN++uknrV27Vs2aNYuxHHpOkraoqCg5HA5lz55dTZo00Z07d9SzZ0+lS5dOb7/9tiZPnqwzZ87owIED+vjjj+Xn56cjR45owYIF2rRpk/LkyWP3KuAfOL8J//DDDzV79my9/vrrOnDggKZNm6ayZcta9xszxihVqlSKiopS9erVNXXqVLVt21YtW7bU999/b7Xh/kRJX758+bR27VqdPHlSBQsWtKY7t1/p0qWVPn16Xb16NcZjOZMheTlx4oQKFCigZ555xprm3M4Oh0PVq1fX8ePHdfToUZUvX15ubm6csZJMOLfjuXPn9PXXX2vEiBFq3ry5pkyZoqVLlyokJERDhgzRsGHD9PLLL2vt2rXy8/NT9erV9fTTT9tdPhIA/deQ9H+nMpw4cUJ58uTR9u3blT59eq1fv16///671S5dunSqXLmyzpw5Y91wEsmHm5ubHA6HFi9erHfeeUfHjx+Xl5eX3nvvPY0ZM0aStGrVKjVq1Ej79u3T//73P929e1dbt251+RCApGvUqFH6/vvvtWzZMuv34OBg6+bd0v3gFhkZKTc3Nx0/flx9+vRR06ZNrTDmDO5I+l544QUFBgbq+++/d7n5d1RUlCTpzz//lL+/v5566imbKsR/FRkZKen+qeORkZHy9PSUMcbaTyMjI7Vy5UqdOnVK6dKlU4UKFawvWAljyYPD4dCePXs0duxYZc6cWS1btlTmzJk1YMAAvf766/rtt980cOBAnT59WmXKlFHv3r3Vtm1bwlhKYmPvHJKYX375xTgcDnPy5EljzP2LSD08PEyrVq3Mb7/9Zoy5PxJfhQoVzNtvv21nqfgP9u/fb7y8vMzkyZPN5cuXzd69e023bt1M+vTpzZgxY6x2t2/fNrdv3+a0pmTkr7/+Mu3btzfTp0+3poWHh5tixYqZevXqmfr165t3333XmhcREWGWLVtmXnvtNWsaF/4nH9FHYHNzczPDhw83wcHB1vy7d++aevXqmYCAALZrMvKwbfXzzz8bh8Nh5s6d6zL9ypUr5qWXXooxsAuSlz59+pgMGTKYp556yly+fNll3rhx40y1atVMq1atGOE4heKrkyfYg6cylClTRtWrV9eyZcvUpUsXValSRevXr9cLL7ygLVu2qEyZMkqdOrWioqI0ceJESZzWlBydPHlSBQoUUJs2bZQmTRplzZpVWbNmVUREhD788ENlyJBBb775pry8vOwuFfGUOXNmdenSRbly5ZJ0v5ekXLly8vb2VoMGDRQSEqLZs2frnXfe0ZQpU5QqVSrVqVNHDRo0sNpz4X/SFNux1vn3e++9p9u3b6t///5atmyZKlSoIC8vL+3cuVOXL1/W/v37rR4Ttm/SFn0bLV68WOfPn9etW7f06quvqmHDhurWrZvatWun0NBQvfDCCwoPD9eHH36owMBANWnSxObqEVfR9+edO3eqQIECGjFihHx8fDR16lSNGjVKvXv3lp+fnySpa9euun37ttauXSt3d3c7S0disTkQwiazZs0yn3zySYxv4t5++23z7LPPukzbtWuXSZs2rSlSpIhZsmSJ9a3sg/exQdIR/SLuBwdaWbNmjUmfPr3Zs2ePy/Tt27cbDw8P43A4uLl3MhZ922/evNk0btzYXL161ZrWvXt38+yzz5q///7bjvKQSG7cuGHmzZtnatSoYQoUKGAaNWpkevXqZfVw09OdvPTq1cv4+/ubF1980TRs2NA4HA6zfv16c+nSJTNs2DCTNm1akyNHDlO4cGFTvXp1bjmTTETv3YqMjDSXLl0ymTJlMjt37rSm9+/f35QtW9Z89NFHLj3exhgTEhLy2GrF40UgewJNmTLFOBwOs3v3bvPXX3+ZO3fuWPOCg4NNzpw5zfjx440x/3fqxI4dO4y7u7tp06aNCQoKYtSmJMy5zS5fvhxjO0VFRZnTp0+bKlWqmO7du5tTp05Z886ePWuaNWtmRo0aZU6cOPFYa0bicX5Ac74vhg4dapo3b84Ht2Ri69atZtOmTcYYYzp37mwmTJjwj+3v3r1r3TTWiW2dvMydO9dkz57d+tLsp59+Mg6HwyxYsMBqc+zYMbNlyxazY8cOa98mdCdt33zzjalYsaJZv369Ne38+fMmT5485uLFiy7br1+/fqZs2bJm0KBBJigoyI5y8ZhxyuITZtasWeratasWLVqkixcv6uWXX1bJkiX1ySefyN/fX1myZFHjxo21e/du66LwiIgIVapUSevXr1fdunX1999/a+LEiS73NULS4ebmplOnTqlo0aKqUKGCunbtqiJFiuiZZ56Rw+GQv7+/Xn31VY0fP14RERFq2bKlihQpoq+//lohISF6++23lTFjRrtXAw9hop3q4vzd/MOpw86RT93c3PTXX39p4cKFatKkCSOiJnHGGAUGBqpbt27Knz+/pkyZokWLFunXX3/9x8e5u7vHOKWJbZ28nD9/Xq+88orKlSunBQsW6M0339SUKVPUokULhYaGKiIiQkWKFHF5DAN4JH01a9bUl19+qc8//1zGGD3//PNyOBxKmzatMmfOrNSpU+vu3bvy8PDQsGHD5ObmplmzZsnDw0N9+/bldOOUztY4iMdq5syZxuFwmDZt2hhj7p/i8s0335iWLVuazJkzm1deecUsXrzYrF271qROndps2bLFGHO/V8X5Dev69euNn5+fuXjxom3rgX936NAhU758edO8eXPz9ttvm9y5c5thw4ZZ29QYY6ZOnWpq1KhhPD09TZEiRUzGjBnN/v377Ssa/yp6j+eAAQPMwIED4/S40NBQ8+uvv5qSJUuaJk2axLo8JE3bt283uXPnNqlTpzYzZsywprPtUq4PP/zQvPbaa2bJkiUmffr0LqeQT5kyxfTs2dPlzBYkfc7PUKdOnTKlSpUyderUMVu3bjX79+83BQsWNGFhYbE+buTIkS5nsiDlchgTbZxcpFhff/21OnfurJYtW2rBggX67LPP1Lt3b2v+0qVLtWPHDo0fP17169fX4sWL9eqrr+rrr7+Wl5eXNbRuqlSpdPv2bXl7e9u4NvgnxhhdvXpVPXv2VN26dfXaa6/pxx9/1PTp0xUZGamsWbPqo48+UuHChZUqVSpt375dN27cULFixZQ7d267y8dDmGi9YAMGDNDw4cNVsGBBHTx4UKlTp35oL0hERIRmzZqlhQsXKnPmzPruu+8kMYBHUufc3vv371fHjh119+5dFStWTJ06dVKtWrUksQ2Tu4dtv59//lmffPKJjh49qpEjR6pbt26SpL///luvvvqqihQpoi+++OJxl4v/yPkZ6vTp02rWrJmefvppq9esV69ecnd3V8aMGRUVFaU///xT1apVU+XKle0uG48JgewJMGHCBPXo0UMLFy5U48aN9cUXX+jDDz/U6NGj1aNHD5e2Z8+e1fTp07V+/XodPXpUx44dU7Zs2WI9TQpJQ/R/6s4DviRNmjRJw4cP17Zt25Q3b15FRUWpUqVK2rNnj5599lmlT59e7du3V5MmTZQmTRo7VwH/Ivo+16NHD82dO1dvv/22fvzxRx0+fFienp7/+PgrV67o+PHjqlatmiQ+yCdlD9s2GzduVN++fZU7d2517dpVNWvWtKE6JJTo23nJkiUKCwtT9uzZ9eKLL+ru3bt65513tH79evXu3VuNGzdWcHCwBgwYoKCgIP36669KnTo1/4uTidi208mTJ9WiRQtdvnxZqVKlUp48eXTv3j15eXnp9u3bunnzppYuXarChQvbVDUeO3s65vA4OO8p1aFDB5f7k9y+fdt88cUXxuFwmK+++sqa7rygNDIy0oSHh5sKFSqYTp06Pd6i8Uj+/PNPc+3aNWOMsUbbCg8PN02bNjVTp041xhjz5ptvmrx585qDBw+an376ybzxxhsmc+bMJjAw0K6yEQfRT03r3r278fHxMb/99pv59ddfTZYsWf51tMTYBnZB0hR91Nv58+ebL7/80nz88cfWKeIbNmwwlSpVMi1btjRr1641xhjz4osvmmnTptlSLx5N9H2wT58+Jl26dKZEiRLG4XCYDz74wBhz///0a6+9Zp555hmTOnVqU6FCBfPcc88xmmIy49zWe/bsMbNmzTKbNm0yf/31lzHm/umLZcqUMbVr1za//PKLtU2joqKs7YwnB4EshTp+/LipUaOGy4E/+u8PC2WRkZHWh4JPPvnEvPTSS4+vaDySsLAwU69ePVO1alVrSFzngb1v377mxRdfNK1atTI5c+Y0u3btcnmsM8Qh6evRo4fJkCGDdZP2EydOGB8fH677S4F69+5t8uXLZ+rXr29eeOEF4+3tbZYsWWKMMWbt2rWmZs2apmTJkqZEiRLm6aef5sNbMvX777+bihUrmr1795rg4GCzePFi4+7ubjp27GiMuX8cv3Dhglm1apU5ceIEoykmUwsXLjS+vr7G39/f5MuXz7z22mvm6NGjxpj774GSJUua+vXrm1WrVtlcKexEIEuhwsLCzNNPP22+/PLLh7ZxhrJUqVKZsWPHxpjfsWNH88wzz5ibN28mYqX4ryIjI8306dNNjRo1TP369V3uOXXr1i2TN29ekylTJnPo0KEYj6W3JHmYPHmy8fb2tsKYMcacPn3apE2b1qxbt86a5tyebNfka86cOSZ79uzmwIEDxpj7AczhcJhFixZZbXbt2mWmTp1qPvvsM+4zlkwNGzbMvP766+bNN9906e1avny5cXd3N++8844JDQ2N8bgH7x2KpCP6tnF+SXLp0iXTsmVLM336dGsgtdq1a5uAgABz5MgRY8z9UJYnTx7TvHlzPm89wQhkKZDzoPDtt9+a559/3hw+fPihbW/fvm3GjBljHA6HmTdvnjX93LlzplmzZjFuHoykxfmPPDw83MydO9fUqlXLNG7c2Fy/ft0Yc/+fQv/+/U3Dhg25EXAyFhoaav744w9jzP+Frdu3b5vixYub+fPnG2P+7wP51atXzaeffhrjhqJImh4MzyNHjjSdO3c2xhjzww8/mPTp05vJkycbY+73aIeHh8dYBqevJT9jx441DofDPPPMM9aZCs73wooVK4y3t7dp3bo1x+1k5vz589bvO3bsMK+88opp0KCBy8jU8+bNMy+88IIJCAiwesr++OMPRlN8wnFVdwrkvFC4dOnSCgsL0/LlyxUeHh5rWy8vL73zzjuaO3eumjdvbk3PmzevvvvuO5UrV+6x1Iy4iX5vOOn+/YWc9y159dVXlS1bNq1evVpvvPGGQkJC5O7urnr16mnDhg1atmyZnaXjEQwbNkwzZsyQj4+P8ufPr6ioKOvicC8vL7m7u+vIkSOSpNSpU+vatWuqVKmS1qxZoyxZsthZOuLIuT2DgoIkSRcuXFBwcLDWrVunDh06aOTIkXrnnXckSd9++6369+8v88BYXNxnLGlzHrej69atm2bMmKFDhw5pwoQJ1r5tjFG9evU0Z84cXbhwgQGXkpFbt26pVatWKl26tCTpxIkT2r17t/bs2eMyqMcrr7yijh07SpLeeustnThxQvnz59fTTz9tR9lIIghkKVi5cuXUunVrffzxx/rpp58e2s7b21utWrVS6tSprQ/6kpQ2bdrHUCXiw3nT54EDB+r48eOSJA8PD0nS6NGj9csvv6h79+66du2aXn/9dV25ckXVqlVTQECAJk2apLt378b4MIek6fbt27pw4YLat2+v+fPnS5L1gc35AS9jxoy6cuWKJOnatWuqVq2aChQooE2bNkkS2zqJc26f4cOHWyPevvzyyzp16pTq1q2rESNG6N1335Uk3bhxQ5s3b1ZERAQj6yUj0UdT3LNnjzZs2KBbt24pKipKbdu21YQJEzRo0CCNGjXK5UbvzZo106ZNm+Tm5hZroEPS4+HhoT59+sgYo/r166tt27b6/PPPlSZNGvXo0UOXLl2y2r7yyitq3bq1smfPzm2EIEnitu4plPPA3r17d124cEHt2rXT3bt31bBhQ2XMmFFS7MMrp07NWyIpMtGGzf3tt980evRo3bp1S126dFGBAgU0cuRIjRw5UosXL1bNmjU1d+5cTZw4UW+99Za+++479erVS9myZbPCG5I+b29vDRkyRD4+PmrZsqWMMXrllVdk7p9qLknKnz+/QkNDdfPmTVWuXFn58uXTihUrJDG0fVI1YMAAlStXTs2aNbP26b/++sv6Vr148eIqX7687ty5oxs3bujq1as6c+aMBg0apL/++kuLFi2SxO1HkgvnPti7d2/NnTtX169fV9GiRdWrVy81bdpU7777rowx6tatm9zc3NSrV68Y+y37cdIXFRWl1KlTq379+vLw8FD37t1Vr149rVy5Unfu3NH48ePVv39/jRgxQtmzZ5ckvfHGG2ratKnSp09vc/VIEh7/WZJILA9e7Bv92oS+ffsaX19f88EHH5gNGzY8tB2SHud2vXz5stm9e7cJDAw0q1evNrly5TIDBgwwvXr1MpkzZza//PKLy2O+//57U6RIEdO6dWu7SkccRd8HHxwxLzAw0HzwwQcu13k62w8aNMgUL17cFCtWzNSuXdt6DBf+J01hYWGmYMGCpnr16mbFihXWtn755ZfNiBEjrHaXLl0yHTp0MIULFzbe3t6mbNmy5oUXXmDI82Qk+j64cuVKU6pUKbN27Vpz5MgR06hRI1OuXDkzdepUc/v2bWPM/YF7HA6H+e677+wqGfHg3L7Rj9fRR8FcsWKFKVy4sKlXr54xxphZs2aZihUrmvbt27tcTwY4EciSua1bt5o5c+bEqe3//vc/8/LLL5t8+fKZLl26mMWLFyducfjPnAf4I0eOmKpVq5oXX3zRNGvWzBhjzMyZM42fn59xd3c3M2bMsB7j/LAWERFh5s+fb86cOfO4y8YjmjRpknn//ffNpk2bXC4Ov3nzpnn//feNw+Ewc+fOtaaPHz/eOBwO88Ybb1jTCGNJk3O7XLlyxVSrVs1Uq1bNLF++3BhjTKNGjczQoUONMf8Xtm/dumWCg4PNunXrzLFjxxjyPJlasGCB6dWrlxk8eLA1LTw83LRq1cqUK1fOfPPNN1YoW7RoEds3GTl79qzp3r27y+i30ffTlStXmqJFi1rH56lTp5pixYqZ9957jy9VEAOBLBmbNWuWKVy4sGnRooXZvXv3Q9tF/4B29epVs2PHDvPWW2+ZTz/9NMZ9qZB0OD+YHT582GTIkMH079/fnDt3zuUf9oIFC0z27NlNz549ze+//25N52CfPETvGdu4caNxOBzG4XCY9OnTm8qVK5uGDRua2bNnm/Pnz5ugoCDz2WefGYfDYd3oPSQkxPTo0cNaBmEs6YqKinLp7a5cubKpVKmS+eWXX0yLFi3MlClTTHBwsLl48aI5f/68CQ4ONocOHXLZ39m+ycudO3dMyZIljcPhMK1atXKZ5wxlFSpUMF999ZXL6JmEsuTh4MGDxt/f37zzzjsuo1k799Pbt2+bWbNmmWLFipkdO3YYY4yZMmUKX5IiVg5juOo7Ofrf//6nzp07a9KkSQoICJCfn5/LfPPA9QUP/h0ZGcnIXMlASEiImjRporJly2rs2LHW9IiICOt6v9mzZ6tv375q0aKFunbtqgIFCthVLh7Rli1bVL16dfXq9f/au+/4nO7+j+OvKwshMSJFzNqbWjFqzyA1YqT2XlGzao8asUeM24hGShDEihmqiiJGiVpVUWrUSkmMROb1+8MvV5OqVlt1Jbyfj8f9uJtznXPu73WfnnOd9znf7+f7KadPn+a9997j448/ZuXKlYSGhhIaGkrDhg3Jnj07oaGh7N27F39/f9q0aWPah8aMpVxJj82dO3fInj079+/fx9XVFYArV67w66+/Urp0ae7cuUNUVBT29vZUrFiRjRs3aqxYKvH731mAiIgI3N3duXr1KtOmTcPV1dX02xsTE4Orqyu5cuVi+fLlOs6pUEhICN27d6dcuXIMGjSIEiVKAL/dY0VERFC4cGFGjhzJoEGDzNtYSdH0650KhYaGMn36dBYuXEjHjh2ThbGbN28CL1ZX+/2FXmEsdbhz5w63b9/Gzc0tWaUtKysrU3GHDh06MH36dLZs2YKnpyc//fSTGVssf9eNGzdo1aoVQUFBjB07lpIlS3Ljxg1++uknAgICCAkJYenSpZQtW5adO3dy7do1ALZu3Qr8dq4rjKVMScOYp6cnnTt35ty5czg6OrJjxw5sbW1xcHBg4sSJbNmyhaNHj7Jv3z7279/Phg0bdJOeSiSdkiIsLIynT58SERFBxowZWb16NY6OjsycOZNdu3aZruU2Njbs2LEDb29vU3VFSV3Kli3L8uXLOXXqFPPmzePChQvA83usuLg4LC0t+eCDD8iXLx+gyrfycvoFT4Xu3r1LTEwMdevWNS3z9/enU6dOFC1alNKlS+Pj48OzZ8/M2Ep5HUJCQvj555+pXr36C+WPDQYDBoOByMhIatWqhZeXF8HBwZquIJXJmjUrHTp0YP/+/WTMmJERI0ZQoUIF/Pz8mDx5MoBp+oozZ86wZcsW1q5dy+rVq4EXH7ZIypIYxkaMGMGCBQto3749adKkAcDBwYENGzaQJUsW9u7dy+XLl8mXLx8VKlSgYMGCWFpaEh8fb87myyswGo2m4zx58mTc3NwoU6YMXbp0ITAwkCxZsrBlyxYMBgNTp05l165dpuNqZWVlurbrXE6dPvjgA1MomzVrFqdPnwae/3sxa9YsfvzxR8qVKwfoei1/wiwdJeVfOX36tDFPnjzGhQsXGmNiYozdunUzVqxY0diiRQvjmjVrjC1btjTmyZPHGBoaau6myr90+PBhY9q0aY0BAQEvXcfLy8tYv359o9FoNIaHh7+ppslr9NVXXxmzZs1qPHjwoNFofF5ZceDAgUZnZ2fjxIkTX7qdxhSlDseOHTPmz5/f+NVXXyVbnjhW6P79+8YPP/zQWLhwYeORI0fM0UR5DcaNG2d0cHAw+vr6Gj09PY2dOnUyWltbmwpv/frrr8aaNWsaCxYsaDx8+LCZWyuvW0hIiLF69erG4sWLG1u0aGFs1aqVMVeuXMbTp0+bu2mSCmjSqVTihx9+4MGDBwBUqFCBpk2bMmXKFMaPH0/mzJnx9PSkevXqZM+enebNm+Pg4MDRo0cpUKCAmVsu/0bevHmxt7dn5cqVVKhQgbx58wLJxypcv36dsmXLYjQasbe3N2dz5U8kPWaRkZHY2tqaurPVrVuX3r17M3HiRL788kucnJwYPXo0np6e7Nq1CwsLC0aPHv3CPtVNMXW4desWCQkJpqfk8PzfBysrK6Kjo8maNSsbNmxg/PjxVKpUyYwtlX8iISGB+/fvs3v3bhYuXIi7uzsA9+/fx8nJiT59+pA7d26qV6/Opk2bGDt2LM7OzmZutbxuZcqUwc/Pj82bN3Po0CHKli3LlClTKFy4sLmbJqmAfs1TgTVr1tCtWzfmzJnDsWPHsLGxYezYsWzfvh1vb28uXLhA69atyZ49O0ajkZ9++olixYqZbt4l9cqZMyeLFy82jS9K7J+e2FVx1KhRBAQE0KNHD1MXRkl5koaxJUuW0LdvX65evZosULVo0YL06dNz7tw5ABwdHRk1ahTOzs74+PgQGBholrbLP5fYxThDhgzEx8dz5coV02fG/x8DumbNGk6ePEn27NlZunSpuimmEg8fPiQsLIzo6GgsLCyIiYnh3LlzybqVOzo64uHhQfny5Tly5AgJCQlkyZKFRYsW6Ti/pfLkycPAgQMJCAhg9OjRCmPyyvSGLIXz9fXFw8ODZcuW8eGHH5pCVvbs2cmePXuyJ66A6SbdwcGBatWqmaPJ8po1b94cLy8v+vfvz4kTJ6hSpQpp06bl1q1bBAcHs3v3bl30U7jEMDZ8+HACAgJo3bo1v/76K++//75pnfLly+Po6Mj48eNp0KAB8PyGLnFM2UcffWSWtsur+32ly8R/zp07NwA+Pj5ky5aN3LlzY2FhQVxcHH5+flSsWJEKFSqYgruKLqVsW7Zswd/fn7i4ODp16sRHH31Erly5qFevHvv376devXqmYlu5cuXCxsaG0NDQF95o6ziLSCKVvU/BTp06RevWrRkzZgxdu3Y1LTe+pLTunj17WLFiBTdv3uS7777D2tpapbDfIsePH2fmzJmEhoZiZ2dH1apV6d69O4UKFTJ30+QVTJ06lQULFrBp0yYqVar0h+dlTEwM1apVw93dnaFDh/7l9BWSciS91q5Zs4br16/z8OFDOnbsSMmSJdm2bRsff/wxLVq0oHr16mTLlo358+fz66+/cvLkSdM0FpKy+fj4MGzYMCZMmECpUqWoVauW6bPZs2ezYsUKunbtSpcuXXBwcCAyMpKGDRtSv359xo0bZ76Gi0iKpkCWgq1fv57p06ezdetWnJyc/jRYzZo1i8OHD2Nvb88XX3yBlZVVsrmq5O2g+eNSp/v379OqVSt69+5Nu3btgOfh6ubNm3z77bc4OjqSO3duihQpwty5cwkJCWHBggUaE5gKDR06FD8/P0qUKMGDBw+4fPkynp6eDBw4kD179uDl5cWJEyfImzcvOXLkYOPGjVhbW+vcTgWCgoJo3759snFikPy6PHz4cHbu3Im9vT3FihXj4sWLREREEBISot9jEXkpXR1SsGPHjhEREUGuXLleuk5oaCiPHj2iV69eNGnShKJFi2IwGIiPj9fF/y2UNJTrbUnqkXhDliNHDtOysWPHcuDAAY4fP461tTW1a9dmwYIFNGvWjDlz5rBq1So8PDzM2Gr5u7Zv387q1avZs2cPxYsXx9ramjFjxjBp0iTs7e3p2rUrVapUITo6moSEBBwdHTEYDHp4lsIlXmv37t2Li4sLrq6uya6/iePBLC0tmT59OpUrV+bIkSNcvXqVatWq4enpiZWVlUK3iLyU+rKlUEajkUyZMvH48WOuX79uWpZUQkICy5cvZ/fu3aancQaDgYSEBF3031JJA5jCWOqRN29eqlSpwogRI1i7di2lS5dm79691K9fnzt37hAYGMh3331HUFAQ+fPnZ9KkSfj4+JgmgZaUKS4uLtnfDx48IEeOHOTPn990fk6ePJmOHTsyfPhwwsPDsbOzI2vWrLz33num67XCWMpmMBiIjo5mz549ZMiQgfTp079w/U18WHbv3j2aNGnCzJkzWb9+PTNmzDD1WNHvsoi8jAJZCnLmzBm2bt3Kt99+i8FgoHXr1jx58oTZs2cDz38UEitzwfOn7j/88ANOTk7J9qMxYyLmkXhuJv53YsU1a2tr+vfvT5YsWfj8888pWrQovr6+DBs2jMyZM1OnTh2cnJy4d+8eAHXr1qV///44ODiY54vIXzpw4AB+fn5cunTJtCwqKopr165hY2ODlZUVUVFRAAwaNAiDwcCZM2de2I+u16lDbGwstra2plAVGxub7POklW8PHToEJD+2Ct0i8mf0S5BCrF69mi5duuDj48POnTuB50/Vhw4dyoIFCxg6dCjR0dGm0ub37t2jY8eOpkHjImJ+iU/Nf/zxRyD5DVnTpk3ZtWsXBw4cYP369RQrVox06dIBz7sex8XFUaRIEeB5Vb6PP/4YOzu7N/wN5FX4+vrSqVMnjh07RmRkpGl5mzZtyJMnD61btyY+Pt50fKOiorCzs8PW1tZcTZZ/KUOGDFSuXBlfX19CQ0NN4/7gtwcw165d4969e3qQIiJ/m4p6pAArV66kT58++Pj40KhRIzJlymT67Pr168yfP58FCxZQsmRJypcvT1RUFJcvXyY2Npbg4GANCBdJQcaOHcuUKVMYMGAANWrUoHHjxqRNm9b0edJzNTo6mhs3btCyZUuKFSvGunXrzNVseUV+fn706tULHx8f6tSpYypvDs/fiG7evJlJkyaROXNmZs6caerl8Ouvv/Ltt9/qjVgq8LLqxEePHqVz584YDAZ2796dbNqKp0+f0r59eywsLAgICNBxFpG/RYHMzM6fP0/btm0ZNGgQPXr0MC1P+oPw4MEDTp48yezZswkPDydPnjyUK1eOYcOGqZqiSAozefJkDhw4gJOTE48fP+b8+fNMmzaNIkWKULx4cdN6oaGhLFu2jK+//pp8+fIREBAAvPxmUMzv559/pnXr1vTt2zfZVCRxcXGEhoZia2tLnjx5+Oabbxg1ahTnz5/HycmJHDlyEBQUpIdnqcjLjtMXX3zBlClTiIqK4vPPPydXrlz88ssv+Pn58eDBA005IyL/iO7izezWrVtERkZSo0aNZFWbEi/kRqORLFmy0KBBA2rXrk18fPwLT9sVxkTMK+m5W758ec6ePcuECRPInTs3n332GevXr+fs2bP07duXWrVqUaJECe7cuUPatGlp3749gwcPBhTGUrq4uDgePXpEwYIFTct8fX3Zt28f69atI0eOHLRo0YJ58+Zx5MgRzp49i729fbKJoHW9Trn69u3LhQsXOHDgQLLKifDbOd69e3ccHR1ZsWIFQ4YMISYmhgoVKlCoUCG++uorPSQVkX9Eb8jMbOrUqcyZM4f79+8Df1zK/OLFi9y/f58aNWqYo4ki8hKxsbFYW1u/sLxmzZq8//77+Pr6As/nL3JxcSFbtmwUKlSI/Pnz07dvX4oUKWLqoqwwljKtXLmSDh06YGFhwdmzZ6lWrRoTJ06kfv36TJ8+nXPnzlGqVCkaNGjA3bt3mTp1KjNnzqRLly7JjqmOb8oWGxvLunXrGD9+PB988IHpjXXSUPb7Y3jp0iViYmLImTMnmTNn1hQGIvKP6dfBzAoWLMjTp0/Zs2cP8MelzFeuXImfn9+bbpqI/ImEhAR69+7Ntm3bTMsSB/lPmjSJn3/+mbCwMK5fv07Hjh3p378/Bw4coEePHqYKfUnHi+pmPeU5fPgwq1evNh2bUqVKMWHCBIYMGUKDBg04fvw4kyZNYubMmbRv3x43NzcyZMhgqq6Y9Jjq+KZs1tbWtGnThpkzZ3L+/Hnc3NyA3+YYgxePYZEiRShVqhRZsmQxVUFWGBORf0K/EGZWvnx5bGxsWLZsmWm+MfitatOjR4+4fPkypUqVMlcTReQPREVFER4enuztduKT9AIFCvDkyROmTJmCs7MzjRo1YurUqRQuXJhOnTpx9epVFixYYM7myysoVqwYZ8+eZfny5aZlQ4YM4dy5c2zbto0ffviBJk2amAp7pEmThmzZspE1a1ZzNVn+gcTAZWNjQ7p06WjZsiWbN2+mS5cuQPJQ9mc0N6SI/FMKZGaWP39+lixZwvbt2xk5ciSnT58Gnl/Yf/nlF9zd3blz5w59+/Y1c0tFJKn06dPj6urK1KlTuXLliulmzGg0kjNnTgYPHoyXlxc1atRg5cqVpE+fHvhtbrLEdSVlSkhIIEuWLAwaNIgDBw7wyy+/mD4rXrw45cqVS7b+w4cP6dGjB9bW1rRs2fJNN1f+hcQHKZ9++inDhg0jIiICZ2dnNm7cSKtWrUzrvEooExH5J/RuPQVInAC6X79+HDx4kJIlS5KQkEBERAQJCQkcPnwYKysrVecSSWHq1q3Lpk2bCAwMpF+/fqRJk8bUdalatWrUrl2bqlWrAr+NRUna7UlP1FOuxONUoUIFFi5cSFBQEF27dn1hnG9YWBiBgYFs2rSJ27dvExwc/EJBCEn5Dh48iK+vL5s3b6Z69epERkaaxpS1adOG9evXY2lpqTFiIvKf0BuyFMDS0pIePXpw/PhxWrRoQUJCArlz56Zjx44cPXoUa2tr4uLi9OMuksLkyZOHMmXKMG/ePE6cOGFabjAYyJs3L+XLl2f27NlERkbq/E2l6tSpQ8+ePenTpw8HDhx4IUQHBwezYsUKcubMybFjx3S9TqXu3buHtbU1pUuXBsDW1pZWrVoxePBgAgIC6NmzJ4DCmIj8J1RlMRXQk1aRlCfpm5ImTZpw4cIFNm/eTNmyZU3r3L9/n6JFizJz5ky6detmppbKP5X0GHfv3p1169axadMmGjRokGy9GzdukCtXLgwGg67XqcDLqhm7uLgwe/ZsU0EPgMuXL1OzZk3u3LnDsGHDmD59+pturoi8A/SGLIX5o3ysH3eRlCfx5htg8+bNvP/++zRu3JgNGzZw7949ANKlS8eSJUsUxlKppDfts2fPpmPHjri6ujJt2jTTeF+A3LlzYzAYSEhI0PU6hUtISDAd1/j4eFNFzJw5c1K0aFH8/Pz49ttvTevb2Njw4YcfsmvXLjw9Pc3SZhF5++kNmYjIv5D0aXuXLl04f/48hQsXpmfPntSqVcu0nuahSj3+7FgtXbqU1atX8+zZM2rVqkWbNm0oV66cjm0qkPS4zpgxg9OnT3PixAl69epFs2bNMBgMtG3blmzZslG1alUqVarErFmzsLGxYfv27VhYWOgNqIj8JxTIRET+xB/dnP++y1PSdTZu3EhwcDC+vr60aNECV1dXXF1d32ib5dUdOHCAkJAQHj16RNWqValbt+5fbhMaGkpoaCjz5s2jZs2auLi4JOuqKinbqFGjWL58OZMmTSI2NhYvLy/y5MnDvn37OH36NMuXL2fHjh3Y2dmRNWtW9uzZg7W1tR6qiMh/RoFMROQlkj4Nv3//PgkJCWTLlg3481AGcO7cOZ4+fcr7779vmqdKUhYfHx8+++wzqlWrRkhICLly5aJfv360b9/+D9f//TGPj48nLi6ONGnSvKkmy7906tQpOnTowBdffEGVKlU4fPgwtWvXxtvbm86dO5vWe/LkCeHh4eTMmRODwaDqiiLyn9KjHhGRl0gMY506daJ27dpUr16diRMnAi+WrP/9k/OSJUvi7OysMJZC7dixg5EjR7JkyRK2bt3KyZMncXBwYO/evS/dJukxT5wIXGEsZUs67x88P27W1tZUqVKFDRs20KhRI+bPn0/nzp15+vQp27ZtIywsjAwZMpgKtSQkJCiMich/SoFMROR34uLiTP/86aefEhISwrBhw2jXrh2enp707t3bjK2Tf+vx48fs2LGD9u3b07JlS+Lj43F0dKRTp04cOnSIiIiIv9yH5pBLHRIflIwcOZKvvvqKqKgonj59iq+vL7169WLatGn06dMHgGPHjrF69Wru37//h/sQEfmv6JGPiAjJu6MlPg3fuXMnTk5OLFmyxDTBc8WKFXF3dweeF3iQ1MfS0pLcuXNTvnz5ZDfbmTNn5vHjx6bqmUlp/FDqkvR47dixg9mzZ9OsWTMqV65M2bJl6datG7NmzcLDwwOAZ8+eMXfuXKytrSlSpIg5my4i7yAFMhF55z19+hRXV1dWr15Njhw5ANi/fz9NmzbF2tqaoKAg07pNmjTB39+fdu3aAQplqZGtrS39+vUjY8aMwG8377ly5cLBwSFZFT1/f3/c3d0VxlKZxOO1cuVKwsPDmTdvHpUrVwZg3LhxhIWFMXv2bOzs7IiIiGDPnj388ssvnD59GgsLCwVwEXmjdLURkXdeTEwM5cqVM4UxgKpVq+Lj44ONjQ27du1Ktn6TJk1Yu3Yt3t7erFix4k03V16DxDAGv928x8XFERUVZQpkLi4ueHl5vTAOSVKHq1evMmXKFAYNGkR4eDjw/E14qVKl+OKLL2jcuDELFixg165d5M+fn5CQEKytrYmLi1MYE5E3SlUWReSd9vvKeSNGjKBz584UK1aM6OhofH198fDwYNy4cYwbNy7ZtmfOnKFMmTJvusnyHzl8+DAtWrTg+++/p0+fPly4cIHz589jbW39wr8nkvL8/hjFxsayb98+xo8fz6NHjwgJCSFNmjTJ1nv48CGZM2c2baNqiiJiDgpkIvLOSXpDFh4eTlRUFDly5ODp06eUKVMGa2trtm3bRsGCBYmNjeWLL76gf//+TJgwgTFjxrywP3VvejucP3+eli1bkiFDBh4/fmwKY7pJT/mSnoORkZE8ffoUR0dHAA4ePEjPnj3JkiUL33zzDWnSpCEmJgYbG5tk2yl0i4i56A5CRN4pSW+6Zs6cSePGjSlZsiQff/wxt27dIjg4mIwZM/LRRx9x+fJlrK2t6d69O4sWLeLzzz9n2LBhL+xTYSxl+rtdDY1GI5cvX8bS0lJhLBUxGo2mc3Dy5Mm4ublRtGhRBg4cyJYtW6hRowaLFy/m2bNn1KlT5w/DGKhypoiYj96Qicg7I2kYGzx4MP7+/nzyySdERkayfPlySpYsyVdffcWDBw9o2LAhT58+ZevWrRQqVIjY2Fjmz5/P2bNn8fX1Ne8Xkb+U9Gb7+PHjGI1GEhISqFKlyku3uXv3LosXL2bs2LFYWloqjKUyY8eOZenSpXh5eeHg4MCwYcOwsrIiMDCQbNmyceDAAYYNG8aTJ0+4cOGCjq2IpBgKZCLyzvn0009ZsWIF+/fvp3Tp0gAEBQXh4uJCQEAALVu25Ndff8XFxYXIyEg2b95MoUKFiI+PNxV8UPemlCvpsRk1ahQBAQGkSZOGW7du0apVK0aPHk3evHn/dB8KY6nL5cuXadOmDbNnz6ZOnTp8++231KtXjyVLltClSxfTejt37mTdunX4+Pgkq6YpImJO6mcjIu+UmzdvMm/ePJydnSldurRpEujixYuTPXt20024g4MDu3btIn369FSpUoW7d+8qjKUSicdmzpw5eHt7s2rVKs6ePcvgwYNZvnw59+7d+8t9KIylLtbW1sTHx1OzZk02btyIi4sL8+bNo0uXLkRGRrJu3Tru3btHo0aN+PLLL7G0tPzD+eZERMxBgUxE3im5cuUiKCiIw4cP06VLF2JjY4Hn8xU9e/YMZ2dn07oODg5s376d/v37ky1bNtNyhbHUISQkhPHjx+Ps7ExAQABz5sxh0aJFVKxYkZiYGHM3T/6hxI49STv4REdH8/DhQ6ZMmULPnj2ZNm0affr0AeDcuXOsXr2aK1euJBszpjdkIpJSqMuiiLyTvv76az766CO6d+/Oe++9x5w5c9i2bRtVq1ZN1jUxKVVTTB2MRiPPnj2jTJkyTJkyhZw5c9KwYUNmzpxJnz59iI2NZdSoUTRu3JjatWubu7nyNyQW5IDfStYnvrEeMWIEM2bM4NNPP2XGjBkAREVF0aZNG4xGI4GBgTp/RSRFUp8MEXkn1alTh61bt9K6dWvCw8PZunUrVatWBV7+5Fw3cynTH1XLS5cuHR06dGDWrFmcOXOGxYsX07VrVwAeP35MSEgITk5OCmSpxLp162jTpo0pjHl6erJ9+3bs7e1p3Lgxffr0YcSIEVy/fp05c+ZgbW3Ns2fPOHPmDHfu3OH06dNYWFjooYqIpEi6KonIW+33nQCSlkKvW7cumzZtws7Oju3btxMZGfmmmyf/UtIb7KtXr3Lx4kXTZ4klzitVqkT16tWB55UUO3bsSGRkJAMGDDBLm+Xv+fLLLxk5ciQTJ04EYMWKFcyePZtWrVphZWXFmjVrGDRoEOnTp8fX15fJkydz6NAhrl69Srly5QgJCTFNYaAwJiIpkbosishb5c8KbiS9eff29qZy5cqUKlWKffv20bJlS1q1asX8+fNJnz79m2yyvAYjRozA39+fBw8eUKBAATp16oSHhwfbtm1jxowZ3Lx5kxw5cpjmrDpy5IipEITGEqVsYWFhzJgxg4MHD9KgQQNiY2OpXLkyzZo1IyYmhvnz57Nu3TrKly+Pl5cXadKk4fHjx9jZ2Zn2oeMsIimZuiyKyFsjaRibOHEi2bJlo3fv3qbPE8PYtGnT8PT0ZPfu3cDzN2WbN2+mXr16VKlShR49erz5xsvfkjRc+/n5sWrVKubPn0+ePHnw9vZm7dq13L59m2nTplG8eHFOnTrFjRs3yJ8/P25ubppnLJWIjY0la9asDB8+HICvvvqKmzdv0qRJEwBsbGzo168fBoOB9evXM2DAALy8vJKFMaPRqDAmIima3pCJyFshaRgbNGgQK1asIDg4mGLFiiVbb+nSpYwePZo1a9bQoEGDZJ9duHCB4sWLv7E2y7+3ZcsWrl69iqWlZbIuiJ6enqxdu5ZJkybRvHnzF7bTG5OULzY2FmtrawAuXrxIwYIFGTt2LN7e3rRu3ZolS5aY1o2KimLJkiUsWLCAPn368Nlnn5mr2SIif5sCmYi8VQYPHsyqVasICgqifPnyL7wFCQwMJHPmzKYxRX9EA/9TrsRjYzQaCQsLI2/evDx79oyBAwcyd+7cZOvWrl2bjBkzsmXLFvM0Vv6xgIAADh06hJeXF4MHD2bPnj2cOXOGJ0+eMHXqVPbt20fTpk2ZMGGCaZvIyEgCAwNp3bq1wraIpCrqqyEib40lS5bg5eXF3r17KV++PPv27WPNmjVcunSJLFmyMHLkSBo3bvyX3dQUxlKuxGNz8uRJKlasyIkTJ2jbti3ffPMN165dI1++fKZ1a9asSXBwcLI3LZI6GAwGFixYwPHjx7lw4QKHDh3CysqKTJkyMXz4cOLj49m1axeAKZTZ2tri7u4O6A2oiKQuuusQkbdGREQE5cqVY9++fXz55ZemMufVqlUjLCyMDh06EBgYCCSvtiipS3BwMM7Ozhw5coQSJUqwfv16wsLC6NGjB+fPn+fp06dERkYSFBSEg4ODwlgq5ObmRq1atTh27BjNmzendOnSGI1GjEYjWbJkYdSoUdSoUYM9e/YwZMiQF7ZXGBOR1ERdFkXkreLl5YWvry9Xr15l0qRJeHh4mN6quLq6cv36dc6cOWPmVsrfERkZia2trenv69ev06lTJ9q0aUO/fv0AOH/+PC4uLkRHR1OkSBGyZcvGlStXCA4OxsbG5k+rb0rKkHiMEv/b09MTCwsLxo0bR//+/Zk+fbqpfL2VlRUPHjxg9OjRxMTEsHz5ch1fEUm1FMhE5K2QdNzX/PnzuXv3LoMGDcLR0dHUfWn//v00adKEM2fOUKhQITO3WF6Fr68vP//8MyNGjCBNmjSm5SNGjGDlypWEhoaawtqFCxdwd3cnLCyMjRs3UrlyZQwGg7ospgJJuxgmlqxPPKf9/f3p1KkT/fv3Z8aMGaYuxydOnKB8+fIYDIZkQU5EJLVRIBORt0bSUJZ0PFHijZqfnx//+9//2LFjB5kzZzZjS+VVLFu2jD59+nDixAly5syJra0t9vb2AISHh1OvXj3atWvH4MGDTfOLXbhwgXr16lGmTBnWrl1LxowZdZOewsXExGBjYwPArFmzOHr0KLdu3aJSpUp4eHhQpEgRAgIC6NChA927d6dHjx6MGzeOR48e8c033yiMiUiqp0AmIm+Vl92Y3blzh8aNG1OjRg3mzZv35hsmf8uqVavo1q0bW7ZswcrKipYtW9K4cWM6duxIkyZNsLS0xMPDgytXrpjmk0sM5OfPn6dJkyY4OTmxfft2smTJYuZvIy+zfv16wsPD6dWrFyNGjOCLL75g+vTpREdH87///Y+EhASCg4Oxs7Njx44dtGrVigIFCpAmTRqCg4P15lNE3goq6iEib5Xfh7F79+4xZ84cXFxccHJyMoUxPYtKuXx9fencuTO1a9emSZMmNGzYEC8vL3LmzEnr1q1p27Yty5cvZ8CAARw+fBh/f3/gtwqMJUqUIDAwkPDwcJ48eWLOryJ/YunSpbi7u1OwYEFCQ0PZvXs3mzdvplu3buTNm5eff/6ZgQMHYmdnR3x8PE2aNOHSpUv4+Phw4sQJ03gyEZHUTm/IRCRV+bNy1n/02dOnTxk6dChWVlYsXLgQ0DxjKZm3tzd9+vShW7du7Ny5k+bNm7No0SLT5ydOnGDTpk2sX7+eDBkycOvWLVxcXFixYgUWFhbJjmvSrnCSsvj6+tK7d2/8/f1p0aIFR48epU2bNly/fp3AwEA6dOjAzJkz6dOnD5GRkWzYsAFXV9dkbzt1HovI20KBTERSjaSBa9asWYSGhpI+fXqqVq2Km5vbS7dLOjm0buJSrnnz5jFkyBB27NiBi4sLS5cuZcyYMbi7u7NgwQLTegkJCcTGxjJjxgyCg4P5+uuvOXbsGKVLlzZj6+VVrVq1is6dO9OrVy+WLFmC0WjkwoULDB48mI8++ohRo0Yxc+ZMevfuDTyf5mDhwoUMGzaMMmXKmLn1IiKvnwKZiKQ6LVq04NKlS7i6unLz5k2+/vprhgwZwrBhw/50Ow38T9kOHDjA7du3TZP7RkREsG7dOkaPHk27du3w8vICkr/5Cg8Pp1u3bmTJkoXFixdjZWWlY5yCLVu2jL59+9K4cWOOHj3K9OnT6d69O0ajkerVq3PkyBEmT57MqFGjAIiKisLNzQ0bGxs2bdqkhyki8layMncDRET+jmXLlnHlyhX27dtHjhw5mDhxInv27KFSpUp/ua1u1FO2mjVrAr8F54wZM5rC2ejRo4Hn88zZ2NiYStlnypSJDz74gIMHD6rAQwo3a9YsRo0aRWBgIDVr1mTy5MkMHjyY+Ph4evXqxY4dO6hSpQobNmwAwNbWlm3btnH37l1Onz6NhYWF3nCLyFtJgUxEUpUbN25QqlQpcuTIgaenJ/PmzcPf35+aNWty584dfvrpJ6pWrWruZsq/kDQ429vbm0LZmDFjsLCwYO7cuVhbW5uCW1RUFDdv3uTx48dkyJBBwTuF+fLLL+ncuTNHjx7F19eXJk2aAPDJJ59gMBj49NNPMRqN9O7dm8OHD9OnTx927NhBunTpKFKkCEFBQVhZWSXreiwi8jbRlU1EUqzfF+kwGo2kTZsWJycnFi1axMyZM/H396dBgwYkJCSwbds27ty5Q6lSpbCzszNjy+V1SgxlBoOB3r17ky9fPgYOHIjBYODnn3/mp59+Ys2aNTrmKdDhw4fx8/Ojc+fObNy4EfhtHGfOnDn55JNPAEzdjXv37s26det48uQJNjY2pq6pCmMi8jbT1U1EUqSkYczPz4+mTZuSKVMmqlWrRp06dYDnY46qV68OwO3bt1m8eDHNmzfXjflbyN7entatW/Pee+/RtGlT0/K8efPyxRdfkD59ejO2Tl6mWLFinD9/Hm9vb3r27AmQrMuhk5OTKZR99tlnWFpa0qNHDzJkyGBax2g0KoyJyFtNVzgRSXESEhJMYczd3Z0LFy4QGxtLhw4dqFWrFosWLeKTTz7h22+/5dGjR6ZuT4UKFWLcuHGACni8jTJlykSzZs2A529MLC0tMRgMCmMpVEJCAlmyZGHQoEEcPHjQNFn37yWGMgsLC3r16kX27NmThW6dxyLytlMgE5EUJ/EJevv27fn+++/ZtWsX7733nqloQ9++fbGwsGDKlCnExcXx/vvvU61aNby9vQGVtn8X6I1Jypd4DlaoUIGFCxcSFBRE165d//BhiZOTE3369CFPnjw0atTIHM0VETEblb0XkRTpwoULdO7cGV9fX0qUKMFPP/3EuXPn2LBhA82bN8fNzY3bt28TGxuLlZWV6cm7wphIyjNp0iQmT57Mnj17TNU0/4zGjInIu0SBTERSpCtXrlCiRAkWL15MhgwZWL9+PZcuXcLBwYEDBw6wc+fOF56kq5uiSMqS9Jzs3r0769atY9OmTTRo0MC0jh6iiMi7TldAETG7hISEF5blzZuXoUOHMmzYMPr160fFihVZtmwZ+/fvp1q1apw+ffqFbRTGRFKWpOfk7Nmz6dixI66urkybNo2QkBDgt66Nej4sIu8qvSETEbNKWk3xxIkThIWFUbVqVezt7TEYDPz444/Y29uTPXt2AO7cuUO9evUYPnw4HTt2NGfTReQl/uyt19KlS1m9ejXPnj2jVq1atGnThnLlyuktmYi8sxTIRMRskt60ubu7c+bMGW7fvk2BAgXo1KkTHTp0wMHBAYB79+7x/fff8+mnn5I3b162bt1qzqaLyP87cOAAISEhPHr0iKpVq1K3bt2/3CY0NJTQ0FDmzZtHzZo1cXFxoWzZsv99Y0VEUiAFMhExu65du/Ldd9+xZs0aSpYsSbVq1bhz5w4dO3Zk4MCBZM6cmTVr1uDj40OuXLnw9fUFNPZExNx8fHz47LPPqFatGiEhIeTKlYt+/frRvn37P1z/9+M84+PjiYuLI02aNG+qySIiKY7uZETErI4ePcpPP/3EypUrKVmyJAsXLuTChQuULl2a5cuXs2jRIp48ecJHH33E1KlTFcZEUogdO3YwcuRIlixZwtatWzl58iQODg7s3bv3pdskDWNGoxFLS0uFMRF55+luRkTMqmDBggwdOpQyZcrg5+eHp6cnAQEBbN68mdy5c+Pj48O4ceMwGAxUrFgReH4jpzAmYj6PHz9mx44dtG/fnpYtWxIfH4+joyOdOnXi0KFDRERE/OU+VIRHROQ5TfIhIm9M0gIeiRwdHalbty4JCQkEBATQp08f6tati9FoJHfu3MTFxeHg4ED69OlN2+hGTsS8LC0tyZ07N+XLl0/2cCRz5sw8fvyY+Pj4F7bRW20RkT+mQCYi/6nECV6TTvS6YsUKAHLkyEGjRo1Inz490dHRPHz4kEePHhEfH09kZCRPnz5lwYIFVK5cGdA8YyIpha2tLf369SNjxozAb2ErV65cODg4JHvw4u/vj7u7u8KYiMhL6OooIv+Z2NhYKlWqxKxZs0xhrHnz5owcOZJZs2bRtGlTJk2aBECaNGkoXrw4u3btonHjxpQtWxaj0agwJpJCJYYx+G0usbi4OKKiokyBzMXFBS8vrz+ca1BERJ7TGzIR+c8YjUYaN27MqFGjSJ8+PfXr1yc8PJyzZ88SHR3Nvn376NmzJ0+ePGH69OksWrSIiRMnEhERgbOzMxMnTjTtR2FMJOULDw8nMjKSJ0+e0KFDB65cucL58+exsLDQeSwi8hIKZCLyn7GxsWHMmDHY2tri4eGBu7s7ZcqUwdHREYDOnTtjZWVF165dAZg+fToTJkxItg+NOxFJPTJlykTmzJlp0qQJjx8/5vz581hbWyfrsiwiIsnp6igir03SJ+C3b9/GxsaGtGnTMmrUKCwsLBg/fjwNGjRItk379u0xGAx07dqVx48f87///S/Z5wpjIubzdx+IGI1GLl++TIUKFRTGREReke50ROS1SBrGZsyYQcuWLSlbtizNmjXj2rVrjBgxgkmTJrFjxw4WLlyYbNt27dqxcOFCoqKizNF0EfkDScPY8ePHOXbsGEePHv3TbRwdHRk3bhxHjx5VGBMReUUGo9FoNHcjRCR1SxrGBg8ejJ+fHxMnTuSHH37g66+/JjY2loMHD5I1a1ZmzJjBqFGjWLhwIf369fvL/YnIm5f0HBw1ahQBAQGkSZOGW7du0apVK0aPHk3evHn/dB8KYyIir0ZXShH51xJv3MaMGYO3tzcXL14kd+7cAKxatYpevXpx6NAh3NzcGDhwIAADBw7EYDDQt2/fl+5PRMwj8RycM2cO3t7ebN++HWdnZyZNmsT48ePp2bPnXwYyhTERkVejLosi8lpcuHCBTZs2UbJkSbJnz25a3rx5czJnzkxsbCwA6dKlY+DAgUyaNAkPDw/27dtnriaLyF8ICQlh/PjxODs7ExAQwJw5c1i0aBEVK1YkJibG3M0TEXkrKJCJyGtRtGhRxowZQ9q0aXF1deXBgwcAzJ49m2fPnlGrVi3TuunSpWPAgAEEBgZSt25dM7VYRF7GaDQSFRVFcHAw2bJl48iRI3Tt2pWpU6fSt29fYmNjGT16NPv37zd3U0VEUj31JxCRf81oNGJhYYG7uzsWFhYsXLiQHj16ULx4cZYtW8bmzZvJnj078fHxpgljbW1tadq0KaDS9iLm9vtz0GAwkC5dOjp06MCsWbM4c+YMixcvNk1R8fjxY0JCQnBycqJ27drmaraIyFtBd0Ai8q8ZDAZTKGvTpg0eHh7cvXsXT09PFi1aRM2aNYmNjTWFsd9TGBMxn6Rh7OrVq1y8eNH0WZ06dYiJiaFSpUpUr14dgLt379KxY0ciIyMZMGCAWdosIvI2UZVFEXltEiuzJSQksH79ehYuXEjmzJnx9fXFwcEh2RsyEUlZRowYgb+/Pw8ePKBAgQJ06tQJDw8Ptm3bxowZM7h58yY5cuQwPXw5cuQI1tbWOq9FRP4lBTIRea2ShrJ169axePFi7Ozs8PX1xdHR0dzNE5H/l/TNmJ+fH8OHD2f+/PnkyZMHb29vQkJCqFWrFtOmTePSpUucOnWKGzdukD9/ftzc3LC0tFRpexGR10CBTET+lpeN90r6lPz3b8omTJhAz549GTp06Jturoj8hS1btnD16lUsLS2TdUH09PRk7dq1TJo0iebNm7+wnd6MiYi8HgpkIvLKkt6A7du3j+joaNKmTUudOnWA5GEtaSg7fvw4lStXNlu7ReQ3ieep0WgkLCyMvHnz8uzZMwYOHMjcuXOTrVu7dm0yZszIli1bzNNYEZF3gPoZiMgrMRqNpjDWunVrQkNDefLkCXZ2duTKlYvAwMAXqrQljjVJDGOJIU1EzCfxPD158iQVK1bkxIkTtG3blm+++YZr166RL18+07o1a9YkODiY2NhYrK2tzdRiEZG3m0qbicgrSQxSHh4efP/992zfvp0ff/yRcuXKsX379mSV2RJfvP8+fCmMiaQMwcHBODs7c+TIEUqUKMH69esJCwujR48enD9/nqdPnxIZGUlQUBAODg4KYyIi/yEFMhF5ZZGRkVy7do2FCxeSM2dOZs2axZYtWwgKCqJYsWKEhYUBCl4iKU1kZGSyv52cnKhRowYhISEAFC9enN27d/Pjjz9Sp04dXFxc6Ny5M9HR0axYsQL47UGLiIi8XgpkIvLKjEYjV65cISEhgfnz5zN16lRWr15N/fr1iYyMxMvLi127dpm7mSKShK+vLzNnziQ6Otq0LE+ePFSuXJnJkyebwlqJEiXYvXs32bJlIzQ0lCFDhvDdd99hY2NDbGysHrSIiPxHFMhE5A/Fx8e/sMzGxoYqVaowYcIEJk6cyLp162jYsCHwfELZAwcOvPAkXkTMZ9myZXTr1o2mTZvy8OFDHj16ZPpsxIgRODk5sWTJEoxGIwkJCRQvXhx/f38AJk6cSEREBEajUV0WRUT+QwpkIvKCpNUUv/32W7Zu3cqVK1ewtramb9++nD9/HmdnZ/Lnz09MTAwXL17k448/JleuXLi5uZm59SICsGrVKtPEzmFhYRQoUIDu3bsTGBhIfHw8mTJlwtnZmT179mAwGLCwsDCFsr1793Lx4kUaN27Mw4cPzf1VRETeaip7LyLJJK2E2LZtW86ePUt8fDwxMTE0bNiQ2bNns3//fnr06EHWrFmJjo7G1taWggULsnHjxhf2ISJvnq+vL926daNevXrs2bMHgOXLl3Pu3DkWL16Mq6srjRo1onr16lSoUAFvb2/c3d2T7eP777/H3d2d3bt3kydPHnN8DRGRd4ICmYj8oQEDBrB//362bNlCgQIFaNy4MZcuXWL79u0UK1aM8+fPExoayt27d8mfPz/16tUDXj5xtIi8Gd7e3vTp04du3bqxc+dOmjdvzqJFi0yfnzhxgk2bNrF+/XoyZMjArVu3cHFxYcWKFVhYWCQ7f2NiYrCxsTHH1xAReWcokIkIkHyy2KdPn9K8eXN69+5N69atmTVrFp6enqxdu5aGDRsSERGBra3tC+NKFMZEzGvevHkMGTKEHTt24OLiwtKlSxkzZgzu7u4sWLDAtF5CQgKxsbHMmDGD4OBgvv76a44dO0bp0qXN2HoRkXeTApmIJAtSt2/fJkeOHJQuXZpdu3axc+dOhg8fjr+/Pw0aNCAiIoKFCxfSsGFDKlSoYOaWi0hSBw4c4Pbt26buhxEREaxbt47Ro0fTrl07vLy8gORvvsLDw+nWrRtZsmRh8eLFWFlZqcuxiMgbZGXuBoiIeSUNYzVq1CA2NpajR49SqFAhypcvz7Nnz9i5cydVq1YF4O7du2zZsoXChQsrkImkMDVr1gR+G8eZMWNGUzgbPXo0AF5eXqZS9tbW1mTKlIkPPviAgwcPqpqiiIgZKJCJvMOMRqMpjJ0+fZps2bLh6ekJwKeffsqdO3eIi4ujatWqPHnyhHv37tGyZUtKly5N69atzdl0EfkTSd9w2dvbm0LZmDFjsLCwYO7cuVhbW5uCW1RUFDdv3uTx48dkyJBBb8hERN4gBTKRd1jiTdfkyZPx8/OjUKFC5M+fH4By5crRu3dvZs2ahaOjIzlz5iQ+Pp7ChQuzZs0aQGPGRFKLxFBmMBjo3bs3+fLlY+DAgRgMBn7++Wd++ukn1qxZg52dnbmbKiLyztEYMpF33LNnz5g7dy6rV68mISGBCxcumD6Lj48nLCyMjRs3Ymtri4ODA66uroDCmEhqFB4ezoEDB2jatKlprkGAp0+fkj59ejO2TETk3aVAJvKOSTrpc6KIiAhWr17NpEmTqF+/PitXrgReHroUxkRSv7i4OCwtLdU9UUTEzBTIRN4BieNEklZW27ZtGxYWFhQoUICiRYvy6NEjVq5cibe3NxUrVmT58uUApoH/IiIiIvL66RG3yFsuOjqaatWqsX//flMYa9myJd26dcPDw4OKFSsSGBiIvb09nTp1okePHpw6dYqePXsCKIyJiIiI/IcUyETeUokvv2NiYsiRIwfNmjXjyJEjHDlyhF9++YWTJ08SGBhI7969cXNzY82aNdjb29OlSxe6du3K9u3b+eKLL8z8LURERETebqqyKPIWSuyiCHD48GEmTJiAnZ0dDRs2pG/fvjRr1oy8efMCMHXqVKytrencuTMGg4GPP/6YTp06UbRoUerXr2/OryEiIiLy1lMgE3nLJA1j/fr1Y//+/Rw4cIDZs2djbW3NrFmz6N+/P/C8OIe1tTUTJ07EYDDQqVMnnj59So8ePUxhTAU8RERERP47Kuoh8hZJGsYGDRrEqlWr2L17NxUrVgTgzp07jB8/nlWrVhEUFET16tVN28TFxTFgwAAiIyPx9fU147cQEREReXcokIm8JZKGsSlTpjB27Fh+/vlncufOnay64v379xk6dCibNm1iz549VK1a1bSt3oaJiIiIvFm68xJ5CyQNY0OGDGHs2LGkT5+eRYsWAWBjY0NcXBwAjo6OzJkzhxYtWtCoUSOOHDli2jYxjOk5jYiIiMiboTFkIm+BxEA1cOBA1qxZw6FDh7h69SqDBw8mKioKLy8vrKysiIuLw8rKiqxZszJ37lwMBgMffvghP/74IwULFnxhfyIiIiLy31IgE3lLhIaGsmDBAk6dOkXZsmUpUaIEkZGRjB49GuAPQ9nMmTOpVq1asjAmIiIiIm+OxpCJvEWePHlChgwZTGPBIiIiWLduHaNHj6Zdu3Z4eXkBmEJZUho/JiIiIvLm6Q2ZyFskQ4YMwG9jwTJmzIi7uzsAo0ePxsLCgrlz52JlZfVCAFMYExEREXnzFMhE3nL29va4u7tjMBgYPXo0Dx8+xNfXVwFMREREJAVQIBN5B9jb29O2bVuePHlCaGiouZsjIiIiIv9PY8hE3iFRUVGkS5cOSF4qX0RERETMQ4FM5B2kMCYiIiKSMmgQicg7SGFMREREJGVQIBMRERERETETBTIREREREREzUSATERERERExEwUyERERERERM1EgExERERERMRMFMhERERERETNRIBMRkbeCwWBgy5Yt5m6GiIjI36JAJiIiKd6dO3f45JNPyJ8/P2nSpCF37ty4urqyb98+czfttcqXLx8Gg+Gl/+nSpYu5mygiIq+ZlbkbICIi8meuXbtGtWrVyJQpEzNnzqRUqVLExsYSFBSEh4cHP/zww3/2vx0TE4ONjc0b2/eJEyeIj48H4MiRI7i5uXHp0iXs7e0BSJcu3X/SFhERMR+9IRMRkRStX79+GAwGjh8/jpubG4ULF6ZEiRIMGTKE4ODgZOuGhYXRokULbG1tKVSoEIGBgabP4uPj6d69O++//z7p0qWjSJEieHl5Jdu+S5cuNG/enClTpuDk5ESRIkWA5+GobNmypE2blgoVKrBlyxYMBgMhISGmbc+dO4eLiwsZMmQgW7ZsdOzYkbCwMNPntWrVon///gwaNIisWbPSsGHDF76ro6Mj2bNnJ3v27GTJkgWA9957j2zZsvHhhx/i7e2dbP2QkBAMBgOhoaHA826bixcvxsXFhXTp0pE/f34CAgKSbXPjxg3atGlDpkyZyJIlC82aNePatWuveDREROR1UyATEZEU68GDB+zevRsPDw/Sp0//wueZMmVK9vfnn39OmzZt+P7772ncuDHt27fnwYMHACQkJJArVy42bNjAhQsXGDduHKNGjWL9+vXJ9rFv3z4uXbrE3r172b59O48ePcLV1ZVSpUpx6tQpJk2axPDhw5NtEx4eTp06dfjggw84efIku3fv5u7du7Rp0ybZel9++SU2NjYcPnyYJUuWvPL/DwaDgW7durFixYpky1esWEGNGjUoWLCgadnYsWNxc3PjzJkztG/fHnd3dy5evAhAbGwsDRs2xM7OjkOHDnH48GEyZMhAo0aNiImJeeX2iIjIa2QUERFJoY4dO2YEjJs2bfrLdQHjmDFjTH8/efLECBh37dr10m08PDyMbm5upr87d+5szJYtmzE6Otq0bPHixUYHBwdjVFSUaZm3t7cRMJ4+fdpoNBqNkyZNMjZo0CDZvm/cuGEEjJcuXTIajUZjzZo1jR988MFffo9E+/fvNwLGhw8fGo1Go/HWrVtGS0tL47Fjx4xGo9EYExNjzJo1q9HX1zfZ/wd9+vRJth9nZ2dj3759jUaj0bhq1SpjkSJFjAkJCabPo6OjjenSpTMGBQW9cttEROT10RgyERFJsYxG499av3Tp0qZ/Tp8+Pfb29ty7d8+0bNGiRfj4+HD9+nWioqKIiYmhbNmyyfZRqlSpZGO7Ll26ROnSpUmbNq1pWaVKlZJtc+bMGfbv30+GDBleaNOVK1coXLgwAOXLl/9b3ycpJycnmjRpgo+PD5UqVWLbtm1ER0fTunXrZOtVqVLlhb8Tu1aeOXOG0NBQ7Ozskq3z7Nkzrly58o/bJiIi/5wCmYiIpFiFChXCYDC8cuEOa2vrZH8bDAYSEhIA8Pf359NPP2X27NlUqVIFOzs7Zs6cybFjx5Jt80ddI//KkydPcHV1Zfr06S98liNHjn+176R69OhBx44dmTt3LitWrKBt27bY2tr+rXaWL1+e1atXv/CZo6Pjv2qbiIj8MwpkIiKSYmXJkoWGDRuyaNEiBgwY8EKgCQ8Pf2Ec2cscPnyYqlWr0q9fP9OyV3krVKRIEfz8/IiOjiZNmjTA82qISZUrV46NGzeSL18+rKz+u5/Wxo0bkz59ehYvXszu3bs5ePDgC+sEBwfTqVOnZH9/8MEHpnauW7eO9957z1S5UUREzEtFPUREJEVbtGgR8fHxVKpUiY0bN3L58mUuXrzI/PnzX+ie92cKFSrEyZMnCQoK4scff2Ts2LEvBKs/0q5dOxISEujVqxcXL14kKCiIWbNmAc/fwAF4eHjw4MEDPv74Y06cOMGVK1cICgqia9eupjL2r4OlpSVdunRh5MiRFCpU6A+//4YNG/Dx8eHHH39k/PjxHD9+nP79+wPQvn17smbNSrNmzTh06BBXr17lm2++YcCAAdy8efO1tVNERF6dApmIiKRo+fPn59SpU9SuXZuhQ4dSsmRJ6tevz759+1i8ePEr76d37960bNmStm3b4uzszK+//prsbdnL2Nvbs23bNkJCQihbtiyjR49m3LhxAKZxZU5OThw+fJj4+HgaNGhAqVKlGDRoEJkyZcLC4vX+1Hbv3p2YmBi6du36h59//vnn+Pv7U7p0aVauXMnatWspXrw4ALa2thw8eJA8efLQsmVLihUrRvfu3Xn27JnemImImInB+HdHTIuIiLzjVq9eTdeuXYmIiHjjkzUfOnSIunXrcuPGDbJly5bsM4PBwObNm2nevPkbbZOIiPxzGkMmIiLyF1auXEn+/PnJmTMnZ86cYfjw4bRp0+aNhrHo6Gju37/PhAkTaN269QthTEREUid1WRQREfkLd+7coUOHDhQrVozBgwfTunVrli1b9kbbsHbtWvLmzUt4eDgzZsx4o//bIiLy31GXRRERERERETPRGzIREREREREzUSATERERERExEwUyERERERERM1EgExERERERMRMFMhERERERETNRIBMRERERETETBTIREREREREzUSATERERERExEwUyERERERERM/k/MtkgAPCrk0UAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Visualize the popularity based on number of points\n", + "plt.figure(figsize=(10, 6))\n", + "plt.bar(popularity_df['ChargerType'], popularity_df['NumberOfPoints'], color='skyblue')\n", + "plt.title('Popularity of Charger Types by Number of Points')\n", + "plt.xlabel('Charger Type')\n", + "plt.ylabel('Total Number of Points')\n", + "plt.xticks(rotation=45, ha=\"right\")\n", + "plt.show()\n", + "\n", + "# Visualize the popularity based on total power output\n", + "plt.figure(figsize=(10, 6))\n", + "plt.bar(popularity_df['ChargerType'], popularity_df['Power_kW'], color='orange')\n", + "plt.title('Popularity of Charger Types by Total Power Output (kW)')\n", + "plt.xlabel('Charger Type')\n", + "plt.ylabel('Total Power Output (kW)')\n", + "plt.xticks(rotation=45, ha=\"right\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "28a5a9c4-c908-49c0-822a-71a38864142d", + "metadata": {}, + "source": [ + "The above plots indicate that CCS (Type 2) EV charger was used most by the consumers during the years 2023-24 as indicated by its high availability and high power and hence large efficiency. Hence, it was the most suitable type of EV charger.\n", + "\n", + "In this cell, we:\n", + "1. Define a function to fetch data from the API.\n", + "2. Fetch data and convert it into a DataFrame.\n", + "3. Convert **DateCreated** to a naive datetime format and extract year-month periods.\n", + "4. Filter the data for the years 2023 and 2024.\n", + "5. Count the number of charging stations per month and plot the results." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "879bdff7-18b0-45e6-a528-a9ce17491e70", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKYAAAJOCAYAAACN2Q8zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD2uElEQVR4nOzdd3hT5dsH8O9Jmjbdu7SlpYtdoMyWInsP2UtQUURc4ABUXhwMf6igyFARNzhwIAgCIoIMASkte88OSifdeybn/aNNpLaFpqQ5Sfr9XFevi5xzcs6dJ2lJ7jz3/QiiKIogIiIiIiIiIiIyMJnUARARERERERERUePExBQREREREREREUmCiSkiIiIiIiIiIpIEE1NERERERERERCQJJqaIiIiIiIiIiEgSTEwREREREREREZEkmJgiIiIiIiIiIiJJMDFFRERERERERESSYGKKiIiIiIiIiIgkwcQUERGZpYMHD0IQBGzevFnqUOokNTUVEyZMgKurKwRBwOrVq/Vy3scffxx2dnZ6OZc+9e3bF3379pU6DMloXp8HDx6UOpRq4uLiIAgCVqxYIXUoRkEQBMyePfu+zhEVFQVLS0vcvHlTT1GRoXXv3h2vvvqq1GEQEZklJqaIiKjeNmzYAEEQoFQqkZiYWG1/37590a5dOwkiMz1z5szBn3/+iQULFuC7777D0KFD73p8cXExVq1ahbCwMDg6OkKpVKJly5aYPXs2rl27ZqCoTVNpaSnWrFmDTp06wcHBAU5OTggODsZTTz2FK1euaI87evQoFi9ejOzs7Hpf65NPPsGGDRvuP2gzpPn7IQgCjhw5Um2/KIrw9fWFIAh48MEHGzQWfTzXd/P6669jypQp8PPzAwCo1Wps2LABo0aNgq+vL2xtbdGuXTssXboUxcXFNZ7jq6++Qps2baBUKtGiRQt89NFH1Y759ddfMXnyZAQGBsLGxgatWrXCvHnzanxcc+bMQefOneHi4gIbGxu0adMGixcvRn5+fp0f1+XLlzFixAi4uLjAxcUFffr0wY4dO+p8/4yMDLz//vvo3bs33N3d4eTkhO7du+Pnn3+u8fiSkhLMnz8f3t7esLa2RlhYGPbu3VvlmMLCQqxduxaDBw+Gl5cX7O3t0alTJ6xbtw4qlequ8WzcuBGCINSYzJ8/fz7Wrl2LlJSUOj8+IiKqGyamiIjovpWUlGDZsmVSh2HS9u/fj9GjR+Pll1/GI488gtatW9d6bHp6Onr27Im5c+fCw8MDb731FtauXYsxY8Zg+/btJpEM3LNnD/bs2SPJtcePH4958+ahXbt2WLZsGZYsWYLevXvjjz/+wLFjx7THHT16FEuWLGmQxFTv3r1RVFSE3r171/vc5kKpVOKHH36otv3vv/9GQkICrKysGjwGfTzXtTlz5gz++usvPPPMM9pthYWFmD59OtLS0vDMM89g9erVCA0NxaJFizBs2DCIoljlHJ999hmefPJJBAcH46OPPkJ4eDheeOEFLF++vMpxTz31FC5fvoxHHnkEH374IYYOHYqPP/4Y4eHhKCoqqnLs8ePH0atXLyxZsgRr1qxBv379sGzZMgwdOhRqtfqejysvLw+DBw9GVFQUXnnlFSxevBgeHh7Yvn17nccmIiICr7/+OlxcXPDGG2/g7bffho2NDR566CEsWrSo2vGPP/44Vq5ciYcffhhr1qyBXC7H8OHDqyQ2Y2Ji8Pzzz0MURcydOxcrVqxAQEAAnnvuOTzxxBO1xpKfn49XX30Vtra2Ne4fPXo0HBwc8Mknn9T58RERUR2JRERE9bR+/XoRgNixY0fRyspKTExMrLK/T58+YnBwsCSxHThwQAQg/vLLLw16nfz8fL2cRxAEcdasWXU6dsSIEaJMJhM3b95cbV9xcbE4b9487e3HHntMtLW11UuMtVGpVGJRUVGDXkNfoqKiRADi22+/XW1feXm5mJ6err39/vvviwDE2NjYel8vODhY7NOnT73vL4XY2FgRgPj+++836HU0fz/GjRsnurm5iWVlZVX2z5w5U+zSpYvo5+cnjhgxokFjudtzDaDOv5s1eeGFF8RmzZqJarVau62kpET8559/qh27ZMkSEYC4d+9e7bbCwkLR1dW12hg8/PDDoq2trZiZmandduDAgWrn/Oabb0QA4hdffHHPWFesWCECECMiIu557K5du0QA4qZNm6psLy4uvud9NWJiYsS4uLgq29Rqtdi/f3/Rysqqyt/XyMjIaq/LoqIiMSgoSAwPD9duS0tLEy9cuFDtWtOnTxcBiNevX68xlvnz54utWrXSjmtNZs+eLfr5+VV5LomI6P5xxhQREd231157DSqV6p6zpjS9a2qaQSIIAhYvXqy9vXjxYgiCgGvXruGRRx6Bo6Mj3N3d8eabb0IURdy6dUv7Dbanpyc++OCDGq+pUqnw2muvwdPTE7a2thg1ahRu3bpV7bjIyEgMHToUjo6OsLGxQZ8+ffDPP/9UOUYT06VLlzB16lQ4OzujZ8+ed33MMTExmDhxorZcpnv37vj999+1+zXlTKIoYu3atdrSptpERkbi999/x4wZMzB+/Phq+62srGrsDZSYmIgxY8bAzs4O7u7uePnll6uVtaxYsQI9evSAq6srrK2t0aVLlxp7dGl67mzcuBHBwcGwsrLC7t27AQDnzp1Dnz59YG1tDR8fHyxduhTr16+HIAiIi4vTnuO/PaY0PZc2bdqEt99+Gz4+PlAqlRgwYABu3LhRLYa1a9ciMDAQ1tbWCA0NxeHDh+vUtyo6OhoA8MADD1TbJ5fL4erqCqDiuX7llVcAAAEBAdrnRfMY1q9fj/79+8PDwwNWVlZo27Yt1q1bV+V8/v7+uHjxIv7++2/t/TXx1dZj6pdffkGXLl1gbW0NNzc3PPLII9XKZDV9w+rynP7000/o0qUL7O3t4eDggPbt22PNmjV3HaM7rVq1Cn5+frC2tkafPn1w4cIF7T7N83r69Olq93vnnXcgl8trLPH9rylTpiAjI6NKSVZpaSk2b96MqVOn1nifgoICzJs3D76+vrCyskKrVq2wYsWKajONNK/Vbdu2oV27drCyskJwcLD29Qrc+7nWuNs57mbbtm3o379/ld9rS0tL9OjRo9qxY8eOBVBRIqdx4MABZGRk4Lnnnqty7KxZs1BQUFDl70lNr/+azlkbf39/AKjTzDGZrOJjxH/HXJcZbgEBAdryRg1BEDBmzBiUlJQgJiZGu33z5s2Qy+V46qmntNuUSiVmzJiBiIgI7d91Nzc3BAcHV7vW3cbh+vXrWLVqFVauXAkLC4ta4x00aBBu3ryJM2fO1PkxEhHRvTExRURE9y0gIADTpk3DF198gaSkJL2ee/LkyVCr1Vi2bBnCwsKwdOlSrF69GoMGDULTpk2xfPlyNG/eHC+//DIOHTpU7f5vv/02fv/9d8yfPx8vvPAC9u7di4EDB1Ypa9m/fz969+6N3NxcLFq0CO+88w6ys7PRv39/REVFVTvnxIkTUVhYiHfeeQczZ86sNfbU1FT06NEDf/75J5577jm8/fbbKC4uxqhRo7B161YAFSVd3333HYCKDz3fffed9nZNNGUyjz76aN0GEBXJuSFDhsDV1RUrVqxAnz598MEHH+Dzzz+vcpym79Jbb72Fd955BxYWFpg4cWKVD74a+/fvx5w5czB58mSsWbMG/v7+SExMRL9+/XDx4kUsWLAAc+bMwcaNG3VKhCxbtgxbt27Fyy+/jAULFuDYsWN4+OGHqxyzbt06zJ49Gz4+PnjvvffQq1cvjBkzBgkJCfc8v+ZD8MaNG1FeXl7rcePGjcOUKVMAVCRnNM+Lu7u7NgY/Pz+89tpr+OCDD+Dr64vnnnsOa9eu1Z5j9erV8PHxQevWrbX3f/3112u95oYNGzBp0iTI5XK8++67mDlzJn799Vf07NmzWqKgLs/p3r17MWXKFDg7O2P58uVYtmwZ+vbtWy3hWptvv/0WH374IWbNmoUFCxbgwoUL6N+/P1JTUwEAEyZMgLW1NTZu3Fjtvhs3bkTfvn3RtGnTe17H398f4eHh+PHHH7Xb/vjjD+Tk5OChhx6qdrwoihg1ahRWrVqFoUOHYuXKlWjVqhVeeeUVzJ07t9rxR44cwXPPPYeHHnoI7733HoqLizF+/HhkZGQAuPdzXZdz1CYxMRHx8fHo3LnzPccBgLZ/kZubm3abJvHXtWvXKsd26dIFMpmsxsTgvc6pUV5ejvT0dCQlJWHPnj144403YG9vj9DQ0HvG2rdvXwQEBGDRokV6L4GsbRxatmwJBweHKsdqYr1Xsuhu4/DSSy+hX79+GD58+F3P0aVLFwCo8+8QERHVkaTztYiIyKRpSnGOHz8uRkdHixYWFuILL7yg3f/fUj5NidD69eurnQuAuGjRIu3tRYsWiQDEp556SrutvLxc9PHxEQVBEJctW6bdnpWVJVpbW4uPPfaYdpumlK9p06Zibm6udvumTZtEAOKaNWtEUawoG2nRooU4ZMiQKuUZhYWFYkBAgDho0KBqMU2ZMqVO4/PSSy+JAMTDhw9rt+Xl5YkBAQGiv7+/qFKpqjz+upQLjR07VgQgZmVl1SmGxx57TAQgvvXWW1W2d+rUSezSpUuVbYWFhVVul5aWiu3atRP79+9fZTsAUSaTiRcvXqyy/fnnnxcFQRBPnz6t3ZaRkSG6uLhUK5Pq06dPlRI3zfPVpk0bsaSkRLt9zZo1IgDx/PnzoihWlEC5urqK3bp1q1L6tWHDBhHAPcvm1Gq12KdPHxGA2KRJE3HKlCni2rVrxZs3b1Y79m7lXf8dK1EUxSFDhoiBgYFVttVWyqd5vJrSq9LSUtHDw0Ns165dlbLInTt3igDEhQsXarfV9Tl98cUXRQcHB7G8vLzGsaiN5vfU2tpaTEhI0G7XlFLNmTNHu23KlCmit7d3ldfyqVOnav09v9Odfz8+/vhj0d7eXjuuEydOFPv16yeKolitlG/btm0iAHHp0qVVzjdhwgRREATxxo0b2m0AREtLyyrbzp49KwIQP/roI+22e5Xy1eUcNfnrr79EAOKOHTvuepzGwIEDRQcHhyq/37NmzRLlcnmNx7u7u4sPPfTQXc85Y8YMUS6Xi9euXau2LyIiQgSg/WnVqlWN5YA1uXr1qtisWTPR0tJS7Nmzp1hQUFCn+91LRkaG6OHhIfbq1avK9uDg4Gp/i0RRFC9evCgCED/99NNaz1lSUiK2bdtWDAgIqFYyunPnTtHCwkL79+xe5c+Wlpbis88+q8tDIiKie+CMKSIi0ovAwEA8+uij+Pzzz5GcnKy38z755JPaf8vlcnTt2hWiKGLGjBna7U5OTmjVqlWVsg+NadOmwd7eXnt7woQJ8PLywq5duwBUfMt+/fp1TJ06FRkZGUhPT0d6ejoKCgowYMAAHDp0qFoj4DubGN/Nrl27EBoaWqXcz87ODk899RTi4uJw6dKlug3CHXJzcwGgymOqi//G3KtXr2rjZW1trf13VlYWcnJy0KtXL5w6dara+fr06YO2bdtW2bZ7926Eh4ejY8eO2m0uLi7VZjzdzfTp02FpaVklTgDaWE+cOIGMjAzMnDmzSsnNww8/DGdn53ueXxAE/Pnnn1i6dCmcnZ3x448/YtasWfDz88PkyZPrPPPjzrHKyclBeno6+vTpg5iYGOTk5NTpHHc6ceIEbt++jeeeew5KpVK7fcSIEWjdunWNs9bu9Zw6OTmhoKCg2qpldTVmzJgqM55CQ0MRFham/d0BKn6/kpKScODAAe22jRs3wtrausZS09pMmjQJRUVF2LlzJ/Ly8rBz585ay/h27doFuVyOF154ocr2efPmQRRF/PHHH1W2Dxw4EEFBQdrbHTp0gIODQ41/L2pT33NoZlTV5bX5zjvv4K+//sKyZcvg5OSk3V5UVFTld+JOSqWyWlPzO/3www/46quvMG/ePLRo0aLa/rZt22Lv3r3Ytm2btvF3XVbly8nJwdChQxEWFoajR4/i7NmzGDt2LEpLS7XHvPvuu7CwsEBJSck9z6ehVqvx8MMPIzs7u9qqg0VFRTWWCWp+X+42DrNnz8alS5fw8ccfV/m7UVpaijlz5uCZZ56p9vesNs7OzkhPT6/TsUREVDdMTBERkd688cYbKC8v1+sKfc2aNaty29HREUqlslo5hqOjI7Kysqrd/78fxgRBQPPmzbX9Y65fvw4AeOyxx+Du7l7l58svv0RJSUm1RENAQECdYr958yZatWpVbXubNm20+3WlKWPJy8ur832USmWVsiSg4sPVf8dr586d6N69O5RKJVxcXODu7o5169bVmGipaQxu3ryJ5s2bV9te07ba/Pf51nyg18SqGbP/ntPCwkLbH+derKys8Prrr+Py5ctISkrCjz/+iO7du2PTpk2YPXt2nc7xzz//YODAgbC1tYWTkxPc3d3x2muvAUC9ElOax1XT66V169bVXit1eU6fe+45tGzZEsOGDYOPjw+eeOKJOvdFAqr/7gBAy5Ytq/ReGjRoELy8vLTlfGq1Gj/++CNGjx6tU/LU3d0dAwcOxA8//IBff/0VKpUKEyZMqPHYmzdvwtvbu9r5a/u9+u9rCqj59X8393sO8T99mP7r559/xhtvvIEZM2bg2WefrbLP2tq6SsLnTsXFxVWSpHc6fPgwZsyYgSFDhuDtt9+u8RgHBwcMHDgQo0ePxvLlyzFv3jyMHj0aZ8+evWu869atQ3x8PNasWYMuXbpg69atOHjwIKZMmaLtc3bhwgV07NhRp55Tzz//PHbv3o0vv/wSISEhVfZZW1vXmOQqLi7W7q/J+++/jy+++AL/+9//qpXqrVq1Cunp6ViyZEmdYxRF8a59AImISHdMTBERkd4EBgbikUceqXXWVG1v5v/bsPlOcrm8TtuAe3/4q4lmNtT777+PvXv31vhjZ2dX5T61fQAyhNatWwMAzp8/X+f71DZedzp8+DBGjRoFpVKJTz75BLt27cLevXsxderUGse1ocZAn89tXXh5eeGhhx7CoUOH0KJFC2zatOmuvaeAigbqAwYMQHp6OlauXInff/8de/fuxZw5cwCg2gy7hlCX59TDwwNnzpzB9u3bMWrUKBw4cADDhg3DY489ptc4pk6dii1btqC4uBgHDhxAUlISHnnkEZ3PNXXqVPzxxx/49NNPMWzYsCqzhu43xpro8pqq7zk0zfTvlsDau3cvpk2bhhEjRuDTTz+ttt/LywsqlQq3b9+usr20tBQZGRnw9vaudp+zZ89i1KhRaNeuHTZv3nzXht53GjduHICKpvl3c/ToUfj5+cHLywsAMGDAAHz33XfYtm0bnnjiCaSmpmLbtm06zZZcsmQJPvnkEyxbtqzGHnpeXl41/r+i2VbTOGzYsAHz58/HM888gzfeeKPKvpycHCxduhQzZ85Ebm4u4uLiEBcXh/z8fIiiiLi4uGpjDlQ0hq+pTxUREdUfE1NERKRXmllTy5cvr7ZPM/vlv+VS9Zk5VFeaGVEaoijixo0b2tk1mvIczcyBmn4UCkW9ru3n54erV69W237lyhXtfl2NHDkSAPD999/XK6babNmyBUqlEn/++SeeeOIJDBs2DAMHDtTpHH5+fjWuoFfTtvrSjNl/z1leXl5tFTVdKBQKdOjQAWVlZdoyndoSqTt27EBJSQm2b9+Op59+GsOHD8fAgQNrTNbVdWaF5nHV9Hq5evVqvV4rQMXqbyNHjsQnn3yC6OhoPP300/j222/r9Jz893cHAK5du1ZtZtq0adOQm5uLHTt2YOPGjXB3d8eQIUN0jnXs2LGQyWQ4duxYrWV8QMVYJSUlVZs1eD+/Vw01A0aTSI6Nja1xf2RkJMaOHYuuXbti06ZNNSaQNKWxJ06cqLL9xIkTUKvVVUpngYrE6dChQ+Hh4YFdu3ZVS6zfTUlJCdRq9T1n/QmCgOTk5CpJ3EmTJmHNmjX49ttv0b17dzg7O1dZQe9u1q5di8WLF+Oll17C/PnzazymY8eOuHbtmracWSMyMlK7/06//fYbnnzySYwbN67KogQaWVlZyM/Px3vvvYeAgADtz5YtW1BYWIiAgIBq8ScmJqK0tFQ7O4+IiPSDiSkiItKroKAgPPLII/jss8+0qyBpODg4wM3NrdrqeZ988kmDxfPtt99W+QC7efNmJCcnY9iwYQAqVlkKCgrCihUrauytkpaWVu9rDx8+HFFRUYiIiNBuKygowOeffw5/f/869zS5U3h4OIYOHYovv/wS27Ztq7a/tLQUL7/8ss7nlcvlEAShyuy1uLi4Gq9RmyFDhiAiIqLK6liZmZk1rtpWX127doWrqyu++OKLKh+KN27cWKeyquvXryM+Pr7a9uzsbERERMDZ2VlbImdra6vddyfN7Jk7Z8vk5ORg/fr11c5ra2tbp75VXbt2hYeHBz799NMq5Up//PEHLl++jBEjRtzzHP/13xXjZDIZOnToAAB16vuzbds2JCYmam9HRUUhMjJS+7uj0aFDB3To0AFffvkltmzZgoceeqjOM3TuZGdnh3Xr1mHx4sXaBGxNhg8fDpVKhY8//rjK9lWrVkEQhGrx1UVtz/X9atq0KXx9fasllQBon1d/f3/s3Lmz1lmI/fv3h4uLC9atW1dl+7p162BjY1PltZGSkoLBgwdDJpPhzz//rFbuqZGdnY2ysrJq27/88ksA1VcA/C/Nyqbvvvtule2zZ8/GkCFDEBcXh0GDBmnH9W5+/vlnvPDCC3j44YexcuXKWo+bMGECVCpVlZUnS0pKsH79eoSFhcHX11e7/dChQ3jooYfQu3dvbNy4ETJZ9Y88Hh4e2Lp1a7Wffv36QalUYuvWrViwYEGV+5w8eRIA0KNHj3s+LiIiqjvd3zUQERHdw+uvv47vvvsOV69eRXBwcJV9Tz75JJYtW4Ynn3wSXbt2xaFDh3Dt2rUGi8XFxQU9e/bE9OnTkZqaitWrV6N58+aYOXMmgIoP619++SWGDRuG4OBgTJ8+HU2bNkViYiIOHDgABwcH7Nixo17X/r//+z/8+OOPGDZsGF544QW4uLjgm2++QWxsLLZs2VLjh6W6+PbbbzF48GCMGzcOI0eOxIABA2Bra4vr16/jp59+QnJyMlasWKHTOUeMGIGVK1di6NChmDp1Km7fvo21a9eiefPmOHfuXJ3O8eqrr+L777/HoEGD8Pzzz8PW1hZffvklmjVrhszMTL3MSrG0tMTixYvx/PPPo3///pg0aRLi4uKwYcMGBAUF3fMaZ8+exdSpUzFs2DD06tULLi4uSExMxDfffIOkpCSsXr1am3jSLA3/+uuv46GHHoJCocDIkSMxePBg7Uykp59+Gvn5+fjiiy/g4eFRrdSoS5cuWLduHZYuXYrmzZvDw8MD/fv3rxaXQqHA8uXLMX36dPTp0wdTpkxBamoq1qxZA39/f22ZoC6efPJJZGZmon///vDx8cHNmzfx0UcfoWPHjnWa8dG8eXP07NkTzz77LEpKSrB69Wq4urri1VdfrXbstGnTtAnR+pTxadSlzHDkyJHo168fXn/9dcTFxSEkJAR79uzBb7/9hpdeeqlKk/K6qu25rkti5V5Gjx6NrVu3VulNlJeXhyFDhiArKwuvvPJKteb2QUFBCA8PB1BRNvu///0Ps2bNwsSJEzFkyBAcPnwY33//Pd5++224uLho7zd06FDExMTg1VdfxZEjR3DkyBHtviZNmmDQoEEAgIMHD+KFF17AhAkT0KJFC5SWluLw4cP49ddf0bVr13s+hzNnzsT333+PhQsX4sSJExg8eDDKy8uxbds2HD58GA888AA2bNiAXr164Yknnqj1PFFRUZg2bRpcXV0xYMCAaknsHj16IDAwEAAQFhaGiRMnYsGCBbh9+zaaN2+Ob775BnFxcfjqq6+097l58yZGjRoFQRAwYcIE/PLLL1XOqUmk2tjYYMyYMdVi2rZtG6Kiomrct3fvXjRr1gydOnW66/gQEZGOJFkLkIiIzMKdy73/l2ZJ++Dg4CrbCwsLxRkzZoiOjo6ivb29OGnSJPH27dsiAHHRokXa4xYtWiQCENPS0qqdt6alvPv06VPlWgcOHBABiD/++KO4YMEC0cPDQ7S2thZHjBgh3rx5s9r9T58+LY4bN050dXUVraysRD8/P3HSpEnivn377hnT3URHR4sTJkwQnZycRKVSKYaGhoo7d+6sdhwAcdasWXU+b2FhobhixQqxW7duop2dnWhpaSm2aNFCfP7556ssa1/beGkey52++uorsUWLFqKVlZXYunVrcf369TUed7dYT58+Lfbq1Uu0srISfXx8xHfffVf88MMPRQBiSkqK9rg+ffqIffr00d7WPF+//PJLlfPFxsaKAMT169dX2f7hhx+Kfn5+opWVlRgaGir+888/YpcuXcShQ4feddxSU1PFZcuWiX369BG9vLxECwsL0dnZWezfv7+4efPmasf/73//E5s2bSrKZDIRgBgbGyuKoihu375d7NChg6hUKkV/f39x+fLl4tdff13lGFEUxZSUFHHEiBGivb29CED7mDWP98CBA1Wu9/PPP4udOnUSraysRBcXF/Hhhx8WExISqhxT1+d08+bN4uDBg0UPDw/R0tJSbNasmfj000+LycnJdx0jzZi///774gcffCD6+vqKVlZWYq9evcSzZ8/WeJ/k5GRRLpeLLVu2vOu573S3vx938vPzE0eMGFFlW15enjhnzhzR29tbVCgUYosWLcT3339fVKvVVY6r7bXq5+cnPvbYY1W21fZc63KOmpw6dUoEIB4+fFi7TTPGtf3UdN7PP/9cbNWqlWhpaSkGBQWJq1atqvHx1vZz5+/bjRs3xGnTpomBgYGitbW1qFQqxeDgYHHRokVifn7+PR+TKIpiQUGB+Prrr4tBQUGiQqEQXV1dxXHjxolRUVFiWVmZ2Lt3b1GhUIh//fVXrefQvAZq+/nv731RUZH48ssvi56enqKVlZXYrVs3cffu3VWO0fxu1fZz5/8zNant90ulUoleXl7iG2+8UafxISKiuhNEsYG6iRIREREBeOmll/DZZ58hPz+/Tk2760OtVsPd3R3jxo3DF1980SDXoNqlp6fDy8sLCxcuxJtvvil1OEZnwIAB8Pb2xnfffSd1KFRP27Ztw9SpUxEdHa1t+k5ERPrBHlNERESkN0VFRVVuZ2Rk4LvvvkPPnj31lpQqLi6uthrat99+i8zMTPTt21cv1yDdbNiwASqVqsbV1Ah455138PPPPzfoQg/UsJYvX47Zs2czKUVE1AA4Y4qIiIj0pmPHjujbty/atGmD1NRUfPXVV0hKSsK+ffvQu3dvvVzj4MGDmDNnDiZOnAhXV1ecOnUKX331Fdq0aYOTJ0/C0tJSL9ehe9u/fz8uXbqEN998E/369cOvv/4qdUhERERkYpiYIiIiIr157bXXsHnzZiQkJEAQBHTu3BmLFi3CwIED9XaNuLg4vPDCC4iKikJmZiZcXFwwfPhwLFu2DB4eHnq7Dt1b3759cfToUTzwwAP4/vvv0bRpU6lDIiIiIhPDxBQREREREREREUmCPaaIiIiIiIiIiEgSTEwREREREREREZEkLKQOwBip1WokJSXB3t4egiBIHQ4RERERERERkckQRRF5eXnw9vaGTHb3OVFMTNUgKSkJvr6+UodBRERERERERGSybt26BR8fn7sew8RUDezt7QFUDKCDg4PE0dRfWVkZ9uzZg8GDB0OhUEgdjtnjeBsWx9uwON6Gw7E2LI63YXG8DYvjbTgca8PieBsWx9uwzGW8c3Nz4evrq82v3A0TUzXQlO85ODiYfGLKxsYGDg4OJv2CNhUcb8PieBsWx9twONaGxfE2LI63YXG8DYdjbVgcb8PieBuWuY13Xdojsfk5ERERERERERFJgokpIiIiIiIiIiKSBBNTREREREREREQkCSamiIiIiIiIiIhIEkxMERERERERERGRJJiYIiIiIiIiIiIiSTAxRUREREREREREkmBiioiIiIiIiIiIJMHEFBERERERERERSYKJKSIiIiIiIiIikgQTU0REREREREREJAkmpoiIiIiIiIiISBJMTBERERERERERkSSYmCIiIiIiIiIiIkkwMUVEREREDU6lFhEZm4mT6QIiYzOhUotSh0RERERGwELqAIiIiIjIvO2+kIwlOy4hOacYgBzfXj8BL0clFo1si6HtvKQOj4iIiCTEGVNERERE1GB2X0jGs9+fqkxK/SslpxjPfn8Kuy8kSxQZERERGQMmpoiIiIioQajUIpbsuISaivY025bsuMSyPiIiokaMiSkiIiIiahBRsZnVZkrdSQSQnFOMqNhMwwVFRERERoWJKSIiIiJqELfzak9K1ec4IiIiMj9MTBERERFRg/CwV+r1OCIiIjI/TEwRERERUYMIDXCBl6MSQi37BQBejkqEBrgYMiwiIiIyIkxMEREREVGDkMsELBrZtsbm55pk1aKRbSGX1Za6IiIiInPHxBQRERERNZih7bwwLdyv2nZXO0use6QzhrbzkiAqIiIiMhZMTBERERFRgyoqVQEARrb3hK+tGgDw+AP+TEoRERERE1NERERE1LCi4jIBAKM7eqGbe0VhX2RMppQhERERkZFgYoqIiIiIGkxqbjFuZhRCJgCdmzmhhWNFYup4XCZKy9USR0dERERSY2KKiIiIiBpMVGzFzKi23g6wVyrgZQ242CpQXKbGmVvZ0gZHREREkmNiioiIiIgajCYx1c3fBQAgCED3gIp/R0RnSBYXERERGQcmpoiIiIiowWgSU2GVyag7/300Ol2SmIiIiMh4MDFFRERERA0iu7AUV1PzAPw7YwoAwgMr/n06PhvFZSpJYiMiIiLjwMQUERERETWI43FZAIDmHnZwtbPSbvd3tYGngxKlKjVO3sySKjwiIiIyAkxMEREREVGDiIqt6CF152wpABAEAeFBrgBYzkdERNTYMTFFRERERA2ipv5SGprEFBugExERNW5MTBERERGR3hWUlONCUi4AILSmxFRgRWLqbEIO8kvKDRobERERGQ8mpoiIiIhI707FZ0GlFtHUyRreTtbV9vu62MDXxRoqtYjjcZkSREhERETGQNLE1Lvvvotu3brB3t4eHh4eGDNmDK5evVrlmOLiYsyaNQuurq6ws7PD+PHjkZqaetfziqKIhQsXwsvLC9bW1hg4cCCuX7/ekA+FiIiIiO5wtzI+jR6BbgBYzkdERNSYSZqY+vvvvzFr1iwcO3YMe/fuRVlZGQYPHoyCggLtMXPmzMGOHTvwyy+/4O+//0ZSUhLGjRt31/O+9957+PDDD/Hpp58iMjIStra2GDJkCIqLixv6IRERERERgMjKxFRNZXwabIBOREREFlJefPfu3VVub9iwAR4eHjh58iR69+6NnJwcfPXVV/jhhx/Qv39/AMD69evRpk0bHDt2DN27d692TlEUsXr1arzxxhsYPXo0AODbb79FkyZNsG3bNjz00EMN/8CIiIiIGrGSchXO3MoGULfE1MWkXOQUlsHRRmGI8IiIiMiIGFWPqZycHACAi0vFG5iTJ0+irKwMAwcO1B7TunVrNGvWDBERETWeIzY2FikpKVXu4+joiLCwsFrvQ0RERET6cy4hB6XlarjZWSLAzbbW45o4KBHobgtRBI7FspyPiIioMZJ0xtSd1Go1XnrpJTzwwANo164dACAlJQWWlpZwcnKqcmyTJk2QkpJS43k025s0aVLn+5SUlKCkpER7Oze3YgWZsrIylJWV1evxGANN7Kb8GEwJx9uwON6GxfE2HI61YXG8G0bEjTQAQFc/Z5SX/7viXk3j3T3AGTFpBfjnehr6t3Q1bKBmjq9vw+FYGxbH27A43oZlLuOtS/xGk5iaNWsWLly4gCNHjhj82u+++y6WLFlSbfuePXtgY2Nj8Hj0be/evVKH0KhwvA2L421YHG/D4VgbFsdbv/64LAMgg21BEnbtSqy2/87xtswWAMix9+xNdBFiDBdkI8LXt+FwrA2L421YHG/DMvXxLiwsrPOxRpGYmj17Nnbu3IlDhw7Bx8dHu93T0xOlpaXIzs6uMmsqNTUVnp6eNZ5Lsz01NRVeXl5V7tOxY8ca77NgwQLMnTtXezs3Nxe+vr4YPHgwHBwc7uORSausrAx79+7FoEGDoFCwZ0ND43gbFsfbsDjehsOxNiyOt/6Vq9R47dQBACo8Nrwn2njZa/fVNN5hBaXYsOwgkosEhPUeAFc7K4kiNz98fRsOx9qwON6GxfE2LHMZb00lWl1ImpgSRRHPP/88tm7dioMHDyIgIKDK/i5dukChUGDfvn0YP348AODq1auIj49HeHh4jecMCAiAp6cn9u3bp01E5ebmIjIyEs8++2yN97GysoKVVfU3QQqFwqRfCBrm8jhMBcfbsDjehsXxNhyOtWFxvPXnSmoOCkpUsFdaINjHGXKZUO2YO8fb00mB1p72uJKShxO3cvFgB29Dh2z2+Po2HI61YXG8DYvjbVimPt66xC5p8/NZs2bh+++/xw8//AB7e3ukpKQgJSUFRUVFACqals+YMQNz587FgQMHcPLkSUyfPh3h4eFVVuRr3bo1tm7dCgAQBAEvvfQSli5diu3bt+P8+fOYNm0avL29MWbMGCkeJhEREVGjEVnZxLybv0uNSamaaFbnOxrNBuhERESNjaQzptatWwcA6Nu3b5Xt69evx+OPPw4AWLVqFWQyGcaPH4+SkhIMGTIEn3zySZXjr169ql3RDwBeffVVFBQU4KmnnkJ2djZ69uyJ3bt3Q6lUNujjISIiImrsjsdlAgBCA1zqfJ8eQW5Y/08cjjExRURE1OhIXsp3L0qlEmvXrsXatWvrfB5BEPDWW2/hrbfeuu8YiYiIiKhuRFFEVGxFYqqbf90TU6EBLpAJQEx6AVJyiuHpyC8TiYiIGgtJS/mIiIiIyHzcuJ2PrMIyKBUytG/qWOf7OVor0K7y+IiY9IYKj4iIiIwQE1NEREREpBeRlbOlOjdzhqWFbm8ztX2mbrCcj4iIqDFhYoqIiIiI9KI+/aU0wgPZAJ2IiKgxYmKKiIiIiO6bKIqIjKlMTOnQX0qjm78LLGQCErOLcCuzUN/hERERkZFiYoqIiIiI7ltCVhFScothIRPQqZmzzve3tbJAiK8TAOBoNPtMERERNRZMTBERERHRfdOsxtfBxxHWlvJ6naNHZZ+pCJbzERERNRpMTBERERHRfdMkprrVo7+Uxp19pkRR1EtcREREZNyYmCIiIiKi+xZV2fg87D4SU539Klbzu51Xgpj0An2FRkREREaMiSkiIiIiui+384oRm14AQQC6+NU/MaVUyNGlsj8VV+cjIiJqHJiYIiIiIqL7cjw2CwDQxtMBjtaK+zpXuLbPFBugExERNQZMTBERERHRfYmKrZjdFHofZXwamgbox2IyoVazzxQREZG5Y2KKiIiIiO5LZGXjc30kpjr4OMFaIUdmQSmupubd9/mIiIjIuDExRURERET1llNYpk0gdfO//8SUpYVMu7JfBPtMERERmT0mpoiIiIio3k7czIQoAoHutnC3t9LLOTXlfGyATkREZP6YmCIiIiKieovSlPHpYbaURnhgRWIqMjYDKvaZIiIiMmtMTBERERFRvemzv5RGsLcD7JUWyCsux8WkHL2dl4iIiIwPE1NEREREVC+FpeW4kFiRONJnYspCLkNY5flYzkdERGTemJgiIiIiono5HZ+NcrUIb0clfJxt9Hru8CA3AGyATkREZO6YmCIiIiKiemmIMj4NTZ+p43GZKFOp9X5+IiIiMg5MTBERERFRvUTFVsxmCg1w1fu5W3vaw9lGgcJSFc4lZOv9/ERERGQcmJgiIiIiIp2VlqtxOj4bQMPMmJLJBIQHVSS8jt5gOR8REZG5YmKKiIiIiHR2PjEbJeVquNpaIsjdtkGuoSnnYwN0IiIi88XEFBERERHpTNNfqpu/CwRBaJBraBqgn4zPQnGZqkGuQURERNJiYoqIiIiIdHa8ARufawS528Ld3gql5Wqcis9qsOsQERGRdJiYIiIiIiKdqNQiTsRVJIoaMjElCAJ6VPaZOsZyPiIiIrPExBQRERER6eRyci7ySsphb2WBNl4ODXotTWKKfaaIiIjMExNTRERERKSTqMoyvi7+zpDLGqa/lEZ4YEWfqTO3slFYWt6g1yIiIiLDY2KKiIiIiHRyPK7h+0tp+LpYo6mTNcrVIo7Hsc8UERGRuWFiioiIiIjqTBRF7YypUP+GT0wJgoBwbTlfeoNfj4iIiAyLiSkiIiIiqrPotAJkFJTCykKG9j6OBrkmG6ATERGZLyamiIiIiKjONLOlOjVzgpWF3CDX1MyYOp+Yg9ziMoNck4iIiAyDiSkiIiIiqrN/+0u5GuyaXo7WCHCzhVoEomIyDXZdIiIianhMTBERERFRnRmyv9Sd/u0zxXI+IiIic8LEFBERERHVSUJWIRKzi2AhE9DZz8mg1w4PZAN0IiIic8TEFBERERHViaaMr11TR9hYWhj02t0rE1NXUvKQWVBq0GsTERFRw2FiioiIiIjqRFvGF2DYMj4AcLe3QssmdgCAYzEs5yMiIjIXTEwRERERUZ1EStRfSqNHkBsAIIJ9poiIiMwGE1NEREREdE9peSWISSuAIADdJEpM/dsAnX2miIiIzAUTU0RERER0Tycq+0u1amIPRxuFJDF0D3CFIADRaQW4nVssSQxERESkX0xMEREREdE9RUrYX0rD0UaBYG8HAEAE+0wRERGZBSamiIiIiOiepGx8fqfwytX5jt5gYoqIiMgcMDFFRERERHeVU1SGyym5AKRrfK6hbYDOGVNERERmgYkpIiIiIrqrUzezIIpAgJstPByUksbSLcAFcpmA+MxCJGQVShoLERER3T8mpoiIiIjorjT9pbr5O0scCWBnZYEOPo4AgIhozpoiIiIydUxMEREREdFdRcVWJIBCA1wljqRCj6CKOJiYIiIiMn2SJqYOHTqEkSNHwtvbG4IgYNu2bVX2C4JQ48/7779f6zkXL15c7fjWrVs38CMhIiIiMk9FpSqcT8wBAIRJ3PhcIzywos/U0egMiKIocTRERER0PyRNTBUUFCAkJARr166tcX9ycnKVn6+//hqCIGD8+PF3PW9wcHCV+x05cqQhwiciIiIye6dvZaFMJcLTQQkfZ2upwwEAdPFzhqVchpTcYsRlsM8UERGRKbOQ8uLDhg3DsGHDat3v6elZ5fZvv/2Gfv36ITAw8K7ntbCwqHZfIiIiItJdVGV/qdAAFwiCIHE0Fawt5ejYzAlRsZk4Gp2OADdbqUMiIiKiejKZHlOpqan4/fffMWPGjHsee/36dXh7eyMwMBAPP/ww4uPjDRAhERERkfm5MzFlTNhnioiIyDxIOmNKF9988w3s7e0xbty4ux4XFhaGDRs2oFWrVkhOTsaSJUvQq1cvXLhwAfb29jXep6SkBCUlJdrbubm5AICysjKUlZXp70EYmCZ2U34MpoTjbVgcb8PieBsOx9qwON53V1quxqn4LABAZ1+H+x4nfY53qJ8TgIrEVGlpqdHM5jImfH0bDsfasDjehsXxNixzGW9d4hdEI+kYKQgCtm7dijFjxtS4v3Xr1hg0aBA++ugjnc6bnZ0NPz8/rFy5stbZVosXL8aSJUuqbf/hhx9gY2Oj0/WIiIiIzEVcHrDqggVsLUS83VUFY8r9lKuB/zsuR5lawP+FlMOLb9mIiIiMRmFhIaZOnYqcnBw4ODjc9ViTmDF1+PBhXL16FT///LPO93VyckLLli1x48aNWo9ZsGAB5s6dq72dm5sLX19fDB48+J4DaMzKysqwd+9eDBo0CAqFQupwzB7H27A43obF8TYcjrVhcbzv7vPDscCF6+jRoglGjOh43+fT93j/mn4S/0RnQOHTDsO7N7vv85kbvr4Nh2NtWBxvw+J4G5a5jLemEq0uTCIx9dVXX6FLly4ICQnR+b75+fmIjo7Go48+WusxVlZWsLKyqrZdoVCY9AtBw1weh6ngeBsWx9uwON6Gw7E2LI53zU7G5wAAwgJd9To++hrvHs3d8E90BiJjszCjV5AeIjNPfH0bDsfasDjehsXxNixTH29dYpe0+Xl+fj7OnDmDM2fOAABiY2Nx5syZKs3Kc3Nz8csvv+DJJ5+s8RwDBgzAxx9/rL398ssv4++//0ZcXByOHj2KsWPHQi6XY8qUKQ36WIiIiIjMiUot4niccTY+19A0QI+MzYRKbRTdKYiIiEhHks6YOnHiBPr166e9rSmne+yxx7BhwwYAwE8//QRRFGtNLEVHRyM9PV17OyEhAVOmTEFGRgbc3d3Rs2dPHDt2DO7u7g33QIiIiIjMzNWUPOQVl8PWUo62XsbZ2qB9U0fYWVkgp6gMl5Nz0a6po9QhERERkY4kTUz17dsX9+q9/tRTT+Gpp56qdX9cXFyV2z/99JM+QiMiIiJq1KJiMwAAXfxdYCGXdJJ9rSzkMoQGuGD/lduIiM5gYoqIiMgEGee7DCIiIiKS1PG4LABAmJGW8WloyvmORqff40giIiIyRkxMEREREVEVoigiMraiv1Q3f+NOTHUPrEhMRcVmokylljgaIiIi0hUTU0RERERURWx6AdLzS2BpIUMHH+Muj2vr5QBHawUKSlU4n5gjdThERESkIyamiIiIiKiKqMrZUh19naBUyCWO5u5kMgHdAytmdUVEZ0gcDREREemKiSkiIiIiqiIqriIxZez9pTR6BLkBYGKKiIjIFDExRURERERVRJlIfykNTQP043GZKClXSRwNERER6YKJKSIiIiLSSsouQkJWEeQyAZ39nKUOp06ae9jBzc4KJeVqnInPljocIiIi0gETU0RERESkdbyyjK+dtwPsrCwkjqZuBEFAeOWsqaMs5yMiIjIpTEwRERERkVakiZXxaYQHViSm2GeKiIjItDAxRURERERamv5SoSbS+FxD02fq9K0sFJWyzxQREZGpYGKKiIiIiAAAGfkluHE7H4DpzZjyc7WBl6MSZSoRJ25mSh0OERER1RETU0REREQEADgelwUAaNXEHs62lhJHo5s7+0yxnI+IiMh0MDFFRERERAD+LePrFmAaq/H9V48gNwBsgE5ERGRKmJgiIiIiIgBAVFxFQic0wFXiSOpHM2PqfGIO8orLJI6GiIiI6oKJKSIiIiJCXnEZLiXlAgBCTay/lEZTJ2v4udpApRZxPI59poiIiEwBE1NEREREhJM3s6AWK5qIezoqpQ6n3sIDK2ZNHb3Bcj4iIiJTwMQUEREREf3bX8pEZ0tpaBugxzAxRUREZAqYmCIiIiIibWIqNMA8ElOXknORXVgqcTRERER0L0xMERERETVyxWUqnEvIAQCEmXhiysNeieYedhBF4FgM+0wREREZOyamiIiIiBq5M7eyUapSw8PeCs1cbKQO57710JTzRadLHAkRERHdCxNTRERERI3cnWV8giBIHM390zZAj2afKSIiImPHxBQRERFRI6dJTJl6GZ9G98rE1PXb+UjLK5E4GiIiIrobJqaIiIiIGrEylRqn4rMAAKEBrhJHox/OtpZo4+UAgKvzERERGTsmpoiIiIgasYtJuSgsVcHRWoEWHnZSh6M3//aZYmKKiIjImDExRURERNSIRcVWJG66+btAJjP9/lIabIBORERkGpiYIiIiImrEzK2/lEa3ABfIBCAuoxBJ2UVSh0NERES1YGKKiIiIqJFSq0Ucj6voL9XNzBJTDkoF2vs4AWA5HxERkTFjYoqIiIiokbp2Ow85RWWwsZQj2NtB6nD0Lrxydb6jTEwREREZrftOTOXm5mLbtm24fPmyPuIhIiIiIgPRlPF18XOGQm5+31dq+kwdi8mAKIoSR0NEREQ10fkdyKRJk/Dxxx8DAIqKitC1a1dMmjQJHTp0wJYtW/QeIBERERE1DE1iKtTfvMr4NLr6O0MhF5CYXYT4zEKpwyEiIqIa6JyYOnToEHr16gUA2Lp1K0RRRHZ2Nj788EMsXbpU7wESERERkf6JoqhNTJlbfykNG0sLdPR1AsA+U0RERMZK58RUTk4OXFwq3rzs3r0b48ePh42NDUaMGIHr16/rPUAiIiIi0r+bGYW4nVcCS7lMm7wxR+FBbgDYZ4qIiMhY6ZyY8vX1RUREBAoKCrB7924MHjwYAJCVlQWlUqn3AImIiIhI/zSzpUJ8HaFUyCWOpuHc2QCdfaaIiIiMj86JqZdeegkPP/wwfHx84O3tjb59+wKoKPFr3769vuMjIiIiogYQFVfZX8pMy/g0OjVzgpWFDOn5JYhOy5c6HCIiIvoPC13v8NxzzyE0NBS3bt3CoEGDIJNV5LYCAwPZY4qIiIjIRGj7S5lp43MNpUKOLn7OOBqdgaPRGWjuYS91SERERHQHnRNTANC1a1d07dq1yrYRI0boJSAiIiIialjJORWr1MkEoIufs9ThNLgeQa44Gp2BiOgMTAv3lzocIiIiuoPOiSmVSoUNGzZg3759uH37NtRqdZX9+/fv11twRERERKR/mtlSwd6OsFcqJI6m4VU0QL+GiJgMqNUiZDJB6pCIiIioks6JqRdffBEbNmzAiBEj0K5dOwgC/2MnIiIiMiXH4xpHGZ9GBx9H2FjKkV1YhispeWjr7SB1SERERFRJ58TUTz/9hE2bNmH48OENEQ8RERERNTDNjClzb3yuoZDLEBrggoNX03A0Op2JKSIiIiOi86p8lpaWaN68eUPEQkREREQNLKugFNdSK1an6+Zv/v2lNMIDXQEAEdEZEkdCREREd9I5MTVv3jysWbMGoig2RDxERERE1IA0ZXwtPOzgamclcTSG0yPIDUDFbLFylfoeRxMREZGh6FzKd+TIERw4cAB//PEHgoODoVBUbZj566+/6i04IiIiItIvTRlft0ZSxqfR1tsBDkoL5BaX40JSLjr6OkkdEhEREaEeiSknJyeMHTu2IWIhIiIiogYWVTljKqyRJabkMgFhga7YeykVEdEZTEwREREZCZ0TU+vXr2+IOIiIiIiogeWXlONCYg6AxrMi3516BFUkpo5Gp+PZvkFSh0NERESoR2JKIy0tDVevXgUAtGrVCu7u7noLioiIiIj079TNLKhFwNfFGt5O1lKHY3DhQRUN0E/EZaG0XA1LC53brRIREZGe6fy/cUFBAZ544gl4eXmhd+/e6N27N7y9vTFjxgwUFhbqdK5Dhw5h5MiR8Pb2hiAI2LZtW5X9jz/+OARBqPIzdOjQe5537dq18Pf3h1KpRFhYGKKionSKi4iIiMgcaftLNcLZUgDQ0sMerraWKCpT4WxCttThEBEREeqRmJo7dy7+/vtv7NixA9nZ2cjOzsZvv/2Gv//+G/PmzdPpXAUFBQgJCcHatWtrPWbo0KFITk7W/vz44493PefPP/+MuXPnYtGiRTh16hRCQkIwZMgQ3L59W6fYiIiIiMyNJjHV2PpLachkAroHVsyaOnojQ+JoiIiICKhHYmrLli346quvMGzYMDg4OMDBwQHDhw/HF198gc2bN+t0rmHDhmHp0qV3baZuZWUFT09P7Y+zs/Ndz7ly5UrMnDkT06dPR9u2bfHpp5/CxsYGX3/9tU6xEREREZmT4jIVzlTOEgoNcJU2GAlpyvkiYtIljoSIiIiAeiSmCgsL0aRJk2rbPTw8dC7lq4uDBw/Cw8MDrVq1wrPPPouMjNq/3SotLcXJkycxcOBA7TaZTIaBAwciIiJC77ERERERmYpzCTkoLVfDzc4K/q42UocjmR6VialTN7NRXKaSOBoiIiLSufl5eHg4Fi1ahG+//RZKpRIAUFRUhCVLliA8PFyvwQ0dOhTjxo1DQEAAoqOj8dprr2HYsGGIiIiAXC6vdnx6ejpUKlW1xFmTJk1w5cqVWq9TUlKCkpIS7e3c3FwAQFlZGcrKyvT0aAxPE7spPwZTwvE2LI63YXG8DYdjbViNabwjbqQBALr5OaG8vFySGIxhvH0cLdHE3gqpeSWIiklDeKD5zh4zhvFuLDjWhsXxNiyOt2GZy3jrEr8giqKoy8kvXLiAIUOGoKSkBCEhIQCAs2fPQqlU4s8//0RwcLBu0WoCEQRs3boVY8aMqfWYmJgYBAUF4a+//sKAAQOq7U9KSkLTpk1x9OjRKkmyV199FX///TciIyNrPO/ixYuxZMmSatt/+OEH2Ng03m8UiYiIyHysuyTDlRwZxvur0NtLp7d/Zue76zKcSJdhcFM1RjRTSx0OERGR2SksLMTUqVORk5MDBweHux6r84ypdu3a4fr169i4caN2FtKUKVPw8MMPw9q6YZcdDgwMhJubG27cuFFjYsrNzQ1yuRypqalVtqempsLT07PW8y5YsABz587V3s7NzYWvry8GDx58zwE0ZmVlZdi7dy8GDRoEhUIhdThmj+NtWBxvw+J4Gw7H2rAay3iXq9R47eQBACo8PqInWnvaSxKHsYx3wclEnNh2EWkyZwwfHiZZHA3NWMa7MeBYGxbH27A43oZlLuOtqUSrC50TUwBgY2ODmTNn1ueu9yUhIQEZGRnw8vKqcb+lpSW6dOmCffv2aWdeqdVq7Nu3D7Nnz671vFZWVrCysqq2XaFQmPQLQcNcHoep4HgbFsfbsDjehsOxNixzH+/LqdkoKFXBQWmB4KbOkMkESeORerx7tfQAcBHnE3NRohZgZ1Wvt8QmQ+rxbkw41obF8TYsjrdhmfp46xJ7nf4X3r59O4YNGwaFQoHt27ff9dhRo0bV+eL5+fm4ceOG9nZsbCzOnDkDFxcXuLi4YMmSJRg/fjw8PT0RHR2NV199Fc2bN8eQIUO09xkwYADGjh2rTTzNnTsXjz32GLp27YrQ0FCsXr0aBQUFmD59ep3jIiIiIjInUbGZAIBu/i6SJ6WMga+LDXxdrHErswjH4zLRr5WH1CERERE1WnVKTI0ZMwYpKSnw8PC4aw8oQRCgUtV9dZMTJ06gX79+2tuacrrHHnsM69atw7lz5/DNN98gOzsb3t7eGDx4MP73v/9Vmd0UHR2N9PR/l/udPHky0tLSsHDhQqSkpKBjx47YvXt3jSsJEhERETUGkZWJqdAAF4kjMR7hga64lZmAY9EZTEwRERFJqE6JKbVaXeO/71ffvn1xt97rf/755z3PERcXV23b7Nmz71q6R0RERNRYqNUiTsRVzphiYkqrR5AbNp1IwNHoDKlDISIiatRkut7h22+/RUlJSbXtpaWl+Pbbb/USFBERERHpx420fGQVlsFaIUc7b0epwzEa4UGuAIALSTnIKTTtJbmJiIhMmc6JqenTpyMnJ6fa9ry8PPZxIiIiIjIymjK+zn5OsLTQ+a2f2WrioESguy1EEYiM5awpIiIiqej87kQURQhC9aaZCQkJcHTkt3BERERExuS4pr+Uv6vEkRif8MCKMWE5HxERkXTqvDZup06dIAgCBEHAgAEDYGHx711VKhViY2MxdOjQBgmSiIiIiHQniuK/K/IFOEscjfHpEeSGjZHxOBbDxBQREZFU6pyY0qzGd+bMGQwZMgR2dnbafZaWlvD398f48eP1HiARERER1c+tzCKk5BZDIRfQyZeJqf/qHljRDP5KSh4y8kvgamd1j3sQERGRvtU5MbVo0SIAgL+/PyZPngylUtlgQRERERHR/dP0Turg4wRrS7nE0RgfVzsrtPa0x5WUPByLycSIDl5Sh0RERNTo6Nxj6rHHHmNSioiIiMgEHI+r7C8V4CJxJMZLszrf0eh0iSMhIiJqnHROTKlUKqxYsQKhoaHw9PSEi4tLlR8iIiIiMg5R2sbnfI9WG00D9Ag2QCciIpKEzompJUuWYOXKlZg8eTJycnIwd+5cjBs3DjKZDIsXL26AEImIiIhIV6m5xYjLKIQgAF382V+qNmGBrpAJQEx6AVJyiqUOh4iIqNHROTG1ceNGfPHFF5g3bx4sLCwwZcoUfPnll1i4cCGOHTvWEDESERERkY40s6XaejnAQamQOBrj5WitQLumjgCAiBiW8xERERmazomplJQUtG/fHgBgZ2eHnJwcAMCDDz6I33//Xb/REREREVG9aPpLdWMZ3z2xnI+IiEg6OiemfHx8kJycDAAICgrCnj17AADHjx+HlRWX2CUiIiIyBpoZU2FsfH5P/zZAZ2KKyNip1CIiYzNxMl1AZGwmVGpR6pCI6D5Z6HqHsWPHYt++fQgLC8Pzzz+PRx55BF999RXi4+MxZ86choiRiIiIiHSQXViKKyl5AIBuTEzdUzd/F1jIBCRkFeFWZiF8XWykDomIarD7QjKW7LiE5JxiAHJ8e/0EvByVWDSyLYa285I6PCKqJ50TU8uWLdP+e/LkyfDz88PRo0fRokULjBw5Uq/BEREREZHuTsRlAQCC3G3hZscZ7fdia2WBEF8nnLyZhYjoDCamiIzQ7gvJePb7U/jv/KiUnGI8+/0prHukM5NTRCZK51K+Q4cOoby8XHu7e/fumDt3LoYNG4ZDhw7pNTgiIiIi0l1UZX+pUM6WqjNNn6mj0WyATmRsVGoRS3ZcqpaUAqDdtmTHJZb1EZkonRNT/fr1Q2ZmZrXtOTk56Nevn16CIiIiIqL6i4xlYkpXPSr7TEXEZEAU+eGWyJhExWZWlu/VTASQnFOs7a1HRKZF58SUKIoQBKHa9oyMDNja2uolKCIiIiKqn4KSclxIrFg1OTTAVeJoTEdnP2dYWsiQmluCmPQCqcMhojvczqs9KVWf44jIuNS5x9S4ceMAAIIg4PHHH6+yAp9KpcK5c+fQo0cP/UdIRERERHV2Oj4bKrWIpk7WaOpkLXU4JkOpkKNzMycci8lERHQGgtztpA6JiCp52Cv1ehwRGZc6z5hydHSEo6MjRFGEvb299rajoyM8PT3x1FNP4fvvv2/IWImIiIjoHqJiMwCwjK8+egS5AQAiojMkjoSI7hQa4AIvRyWq1+1UEAB4OSr5d4/IRNV5xtT69esBAP7+/nj55ZdZtkdERERkhNhfqv7Cg1yBvRV9ptRqETJZbR+DiciQ5DIBi0a2xTPfn6pxvwhg0ci2kPN3lsgk6dxjatGiRVWSUn///Td27dqFrKwsvQZGRERERLopKVfhzK1sAExM1UeIjxOsFXJkFpTi2u08qcMhojsMbeelXaSgJo7WlgaMhoj0qc6JqeXLl+PNN9/U3hZFEUOHDkW/fv3w4IMPok2bNrh48WKDBElERERE93Y+IQcl5Wq42Vki0I2z23VlaSFDt8qE3tEbLOcjMiaFpeU4W5l4f2N4K0xrocL3T3TF5G4+AICXfzmLvOIyCSMkovqqc2Lq559/Rrt27bS3N2/ejEOHDuHw4cNIT09H165dsWTJkgYJkoiIiIjuTVPG183fpcZVlOnewgMrZmRExDAxRWRM/ryYgoJSFZq52GBa92bo4iYiLMAFbz4YDF8XayRmF2HpzstSh0lE9VDnxFRsbCw6dOigvb1r1y5MmDABDzzwAFxcXPDGG28gIiKiQYIkIiIionuLYn+p+6YpFToWkwGVWpQ4GiLS2HwyAQAwvrNPlcS7nZUFVkwIgSAAP5+4hf1XUqUKkYjqqc6JqfLyclhZWWlvR0REoEePHtrb3t7eSE9P1290RERERFQnKrWIkzcren4yMVV/wd4OsLeyQF5xOS4m5UgdDhEBSMouwtHK1TLHdW5abX9YoCtmPBAAAJi/5TyyCkoNGh8R3Z86J6aCgoJw6NAhAEB8fDyuXbuG3r17a/cnJCTA1bX2ZnRERERE1HAuJ+civ6Qc9lYWaO3pIHU4JstCLkNYYEViLyKa5XxExmDr6USIItA90AW+LjY1HvPykFZo7mGHtLwSvPnbBQNHSET3o86JqVmzZmH27NmYMWMGhg0bhvDwcLRt21a7f//+/ejUqVODBElEREREd6fpL9XV35lLpt+n7pV9po4yMUUkOVEUq5Tx1UapkGPlpBDIZQJ2nkvGjrNJhgqRiO5TnRNTM2fOxIcffojMzEz07t0bW7ZsqbI/KSkJTzzxhN4DJCIiIqJ7i4qtSKKEBnAG+/3qEeQGADgel4kylVriaIgat1Px2YhNL4C1Qo5h7b3uemwHHyfM6tccAPDmbxdwO7fYECES0X2y0OXgJ554otbk0yeffKKXgIiIiIhIN6Io4nicpr+Us8TRmL7WnvZwtlEgq7AM5xKy0cWPPbuIpKKZLTWsvSfsrO798fX5/s2x/0oqLiTmYv6Wc/j68W5cpZTIyNV5xhQRERERGafotHxkFpTCykKG9k2dpA7H5Mlkgracj32miKRTXKbCznMVJXkT7lLGdyeFXIaVkzrC0kKGA1fT8PPxWw0ZIhHpARNTRERERCZO01+qczNnWFrw7Z0+9Ahinykiqe29lIq84nI0dbLWJovromUTe7w8uCUA4H87L+FWZmFDhUhEesB3LkREREQm7nhlYio0gCVn+hJemZg6cTMLxWUqiaMhapw0ZXzjOjeFTMdFHWb0DESovwsKSlV4+ZezUKvFhgiRiPSAiSkiIiIiEyaKonbGFBNT+hPkbgd3eyuUlqtxOj5b6nCIGp3U3GIcvp4GABhXxzK+O8llAlZMDIGNpRyRsZn4+p9YfYdIRHrCxBQRERGRCUvIKkJyTjEsZAI6NXOSOhyzIQiCtpwvIjpd4miIGp+tpxOhFoGufs4IcLOt1zmaudrg9RFtAADv/XkVN27n6TNEItITnVblA4CxY8fWuKqBIAhQKpVo3rw5pk6dilatWuklQCIiIiKqXVTlbKn2Po6wsdT5rR3dRXigK347k4SIGPaZIjIkURSxpbKMb3wX3WdL3WlqaDP8eTEVh66lYd6ms9jybA9YyDk/g8iY6Pwb6ejoiP379+PUqVMQBAGCIOD06dPYv38/ysvL8fPPPyMkJAT//PNPQ8RLRERERHc4HscyvobSI8gNAHDmVjYKS8sljoao8TifmIPrt/NhZSHDiA5e93UuQRDw3vgOcFBa4GxCDj45GK2nKIlIX3ROTHl6emLq1KmIiYnBli1bsGXLFkRHR+ORRx5BUFAQLl++jMceewzz589viHiJiIiI6A6aGVOh/kxM6ZuvizWaOlmjTCXiRFyW1OEQNRqapudDgj3hoFTc9/k8HZV4a3Q7AMCH+67jQmLOfZ+TiPRH58TUV199hZdeegky2b93lclkeP755/H5559DEATMnj0bFy5c0GugRERERFTV7bxixKQXQBCArn5MTOmbIAja1fmORrOcj8gQSspV2H42CcD9l/HdaXRHbwxr54lytYi5m85wtU0iI6JzYqq8vBxXrlyptv3KlStQqSp+uZVKZY19qIiIiIhIf47HVsziae3pAEeb+59VQNWFB7IBOpEh7b98G9mFZWjiYIWezd30dl5BELB0TDu42VniWmo+Vu29prdzE9H90Tkx9eijj2LGjBlYtWoVjhw5giNHjmDVqlWYMWMGpk2bBgD4+++/ERwcrPdgiYiIiOhf2v5S/s4SR2K+NDOmzifmILe4TOJoiMzfllMVZXxjO/lALtPvZAdXOyu8O64DAODzwzHav6FEJC2dl25ZtWoVmjRpgvfeew+pqakAgCZNmmDOnDnavlKDBw/G0KFD9RspEREREVURqekvFeAqcSTmy9vJGgFutohNL0BUTCYGtm0idUhEZistrwQHrqYBACZ0adog1xjUtgkmdPHB5pMJmLfpLP54sRdsrbiiKZGUdJ4xJZfL8frrryM5ORnZ2dnIzs5GcnIyXnvtNcjlcgBAs2bN4OOjv3pgIiIiIqoqp6gMV1JyAQDdAjhjqiF115TzxbDPFFFD+u1MIlRqESG+TmjuYd9g11k4si2aOlkjPrMQ7+y63GDXIaK60TkxdScHBwc4ODjoKxYiIiIiqqOTNzMhikCgmy087JVSh2PWerABOpFBbDmVCACY0LlhZktpOCgVeH9CRUnfxsh4/H0trUGvR0R3p3NiKjU1FY8++ii8vb1hYWEBuVxe5YeIiIiIGp6mjK+bP1fja2iaGVOXk3ORWVAqcTRE5uliUg4uJ+fCUi7DyBDvBr9ej+ZueLyHPwBg/uZzyClkDzkiqehcTPv4448jPj4eb775Jry8vLj6HhEREZEEorT9pZiYamju9lZo2cQO11LzERmTgWHtvaQOicjsbDlZMVtqYFsPONlYGuSa84e2xt/X0hCbXoDFOy5i1eSOBrkuEVWl84ypI0eOYOPGjXj22WcxZswYjB49usqPLg4dOoSRI0fC29sbgiBg27Zt2n1lZWWYP38+2rdvD1tbW3h7e2PatGlISkq66zkXL14MQRCq/LRu3VrXh0lERERktApLy3E+IQcAE1OG0iOoYtl6lvMR6V+ZSo3fzlQkpsZ3NlyvYmtLOT6YFAKZAGw9nYjdF5INdm0i+pfOiSlfX1+IoqiXixcUFCAkJARr166ttq+wsBCnTp3Cm2++iVOnTuHXX3/F1atXMWrUqHueNzg4GMnJydqfI0eO6CVeIiIiImNwJj4b5WoRXo5K+DhbSx1Oo8AG6EQN5+DVNGQUlMLNzgq9W7ob9NqdmznjmT5BAIDXtl5AWl6JQa9PRPUo5Vu9ejX+7//+D5999hn8/f3v6+LDhg3DsGHDatzn6OiIvXv3Vtn28ccfIzQ0FPHx8WjWrFmt57WwsICnp+d9xUZERERkrCLvKONjWwXD6B7oAkEAbtzOx+3cYng4sOE8kb5sOZkAABjT0RsK+X2tz1UvLw5sgf1XbuNKSh5e23oenz/ahX9biQxI59/6yZMn4+DBgwgKCoK9vT1cXFyq/DSknJwcCIIAJyenux53/fp1eHt7IzAwEA8//DDi4+MbNC4iIiIiQ2J/KcNzsrFEW6+K1ag5a4pIf7IKSrHvSioAYHwXw5Xx3cnKQo5VkztCIRew91KqdnVAIjKMes2YkkJxcTHmz5+PKVOmwMHBodbjwsLCsGHDBrRq1QrJyclYsmQJevXqhQsXLsDe3r7G+5SUlKCk5N8pm7m5uQAq+lyVlZnu6gya2E35MZgSjrdhcbwNi+NtOBxrwzLF8S4tV+NUfBYAoLOPg0nFborjfafuAc64mJSLf66nYXiwh9Th3JOpj7cp4VjX39ZTt1CmEtHWyx7N3azrNIYNMd7N3azxQr8gfPDXDSzefhHdmjnA24ml0gBf34ZmLuOtS/yCqK+GUfdJEARs3boVY8aMqbavrKwM48ePR0JCAg4ePHjXxNR/ZWdnw8/PDytXrsSMGTNqPGbx4sVYsmRJte0//PADbGxs6nwtIiIiooYWmwesvmABWwsRb3dVgdUmhnMxS8DnV+RwtRKxsLNK6nCIzMKKc3LcKhAw1l+Fvl7SfjRVicCHF+SIyxfQ0lGNZ9uoIePfWKJ6KSwsxNSpU5GTk3PPHE6dZkzl5uZqT6SZTVQbXZJGdVFWVoZJkybh5s2b2L9/v87nd3JyQsuWLXHjxo1aj1mwYAHmzp2rvZ2bmwtfX18MHjxY74/HkMrKyrB3714MGjQICoVC6nDMHsfbsDjehsXxNhyOtWGZ4nh/digWuHAdPVo0wYgRHaUORyemON536lVcjq/ePYCMEiCkRz80NfLZFKY+3qaEY10/11PzcSviKCxkAuY/NACutpZ1ul9Djnf77gUYuTYC13KAbLe2eCSs9t7GjQVf34ZlLuN9r9zRneqUmHJ2dkZycjI8PDzg5ORUYyM4URQhCAJUKv19e6RJSl2/fh0HDhyAq6urzufIz89HdHQ0Hn300VqPsbKygpWVVbXtCoXCpF8IGubyOEwFx9uwON6GxfE2HI61YZnSeJ+MzwYAdA9yM5mY/8uUxvtOLgoFOvg44nR8No7fzIG/u2l8gWmq422KONa6+e1cCgCgX2sPeDrZ6nz/hhjvFp5OWDCsDRZtv4jlf15D39aeCHDTPTZzxNe3YZn6eOsSe50SU/v379c2Nj9w4ED9oqpBfn5+lZlMsbGxOHPmDFxcXODl5YUJEybg1KlT2LlzJ1QqFVJSKv5wubi4wNKyIps+YMAAjB07FrNnzwYAvPzyyxg5ciT8/PyQlJSERYsWQS6XY8qUKXqLm4iIiEgKKrWIEzcr+kuFsfG5JMIDXXE6PhsRMRmY2NVX6nCITFa5So2tpyuajE+QqOl5bR7t7oc/L6bgaHQG5m06g1+e6QE5a/qIGkydElN9+vSp8d/368SJE+jXr5/2tqac7rHHHsPixYuxfft2AEDHjh2r3O/AgQPo27cvACA6Ohrp6enafQkJCZgyZQoyMjLg7u6Onj174tixY3B3d9db3ERERERSuJKSi7zicthZWaCNl2nM1jE3PYLc8MnBaEREZ2grBohId4dvpON2XgmcbRTo18q4FhOQyQS8PzEEQ1cdwqn4bHx2KBrP9W0udVhEZkvnVfnOnTtX43ZBEKBUKtGsWbMay+Jq0rdvX9yt93pd+rLHxcVVuf3TTz/V6dpEREREpiYqNhMA0MXPmd/eS6SLnzMUcgHJOcWIyyhkiQ9RPW05mQAAGN2xKSwtZBJHU11TJ2ssHNkWr2w+h1V7r6FfKw9+IUDUQHROTHXs2PGu3wwpFApMnjwZn332GZRK5X0FR2QqVGoRkbGZOJkuwDU2E+HNPfiBgYiI9E6TmAplGZ9krC3l6NTMGVGxmYiIzmBiiqgecgrLsOdSKgDjK+O704QuPvjzYir+upyKuZvO4rdZDxhlEo3I1On8W7V161a0aNECn3/+Oc6cOYMzZ87g888/R6tWrfDDDz/gq6++wv79+/HGG280RLxERmf3hWT0XL4fj3x9At9el+ORr0+g5/L92H0hWerQiIjIjIiiiONxTEwZgx5BFQvyHI1Ov8eRRFSTneeTUFquRqsm9gj2Nt5ZSIIg4N1x7eFia4nLyblYs++a1CERmSWdE1Nvv/021qxZgxkzZqB9+/Zo3749ZsyYgVWrVuGDDz7Aww8/jI8++ghbt25tiHiJjMruC8l49vtTSM4prrI9JacYz35/iskpIiLSm5j0AqTnl8LSQoYOPo5Sh9OohQdWJKaOxWTUqfUEEVWlKeOb0MXH6Pu0udtb4e0x7QAA6w5G41R8lsQREZkfnRNT58+fh5+fX7Xtfn5+OH/+PICKcr/kZH4gJ/OmUotYsuMSano7qtm2ZMclqNR8w0pERPdPU8bXydcJVhZyiaNp3Do2c4JSIUN6fimu386XOhwikxKdlo9T8dmQywSM7uQtdTh1Mqy9F8Z09IZaBF7edBZFpSqpQyIyKzonplq3bo1ly5ahtLRUu62srAzLli1D69atAQCJiYlo0qSJ/qIkMkJRsZnVZkrdSQSQnFOs/SBBRER0P45X/n8SxjI+yVlZyNHVr+J5iIjOkDgaItPy66mK2VK9W7jBw950ehIvGdUOng5KxKQXYPnuK1KHQ2RWdE5MrV27Fjt37oSPjw8GDhyIgQMHwsfHBzt37sS6desAADExMXjuuef0HiyRMbmdV3tS6k6vbT2P93ZfwcGrt5FXXNbAURERkbmKrExMdWNiyiiEs88Ukc5UahG/nkoEAEzo4itxNLpxtFFg+YQOAIANR+Nw9AZ/94n0RedV+Xr06IHY2Fhs3LgR165VNH+bOHEipk6dCnt7ewDAo48+qt8oiYxQXb/hiU0vwCcHo/HJwWjIBKBdU0eE+rsgLNAV3fyd4WRj2cCREhGRqUvIKkRidhHkMgGdmzlLHQ7h38TUsZhMqNUiZFyNl+ieIqIzkJxTDAelBQa08ZA6HJ31aemOqWHN8ENkPF7ZfA5/vNQLDkqF1GERmTydElNlZWVo3bo1du7ciWeeeaahYiIyCaEBLvB0UCIlt+aZUwIqmiXOHdwSJ+KyEBmbgVuZRTiXkINzCTn48kgsBAFo1cQeYQGaRJUL3O2tDPtAiIjI6GlW42vX1BG2Vjp/r0gNoENTR9hZWSCnqAyXknPRrikb0hPdy5bKMr5RHb2hVJhmr7zXh7fBkevpiM8sxP92XML7E0OkDonI5On0zkahUKC4uG7lS0TmTi4T0LulGzadSKi2T/Od6VujgzG0nRce6tYMAJCUXYSo2ExExmYiKjYD0WkFuJKShyspefgm4iYAIMjdFqEBrpXJKhd4OVob6iEREZGRioqtWAWK/aWMh4VchtAAF+y/chsR0RlMTBHdQ15xGf6oXLF6fGcfiaOpP1srC6yYGILJn0fgl5MJGBLsiYFt2V+Z6H7o/JXbrFmzsHz5cnz55ZewsOA3dtR4Rafl47czSQAAB6UFcovLtfs8HZVYNLIthrbzqnIfbydrjOnUFGM6NQUApOWV4HhcJiJjMhAZm4krKXmITitAdFoBfoyKBwD4ulgjLMAVoQEu6B7gCl8Xa6NfVpeIiPQrKraiwXY3fyamjEl4oGtFYiomAzN7B0odDpFR++N8CorL1Ah0t0VHXyepw7kvoQEumNkrEJ8fisH//Xoee/yc4WLL9hxE9aVzZun48ePYt28f9uzZg/bt28PW1rbK/l9//VVvwREZq3KVGnM3nUVJuRq9Wrhh/ePdcCw6DXsOR2JwrzCEN/eAvA69JtztrTC8vReGt69IYGUXluJ4XBYiYzIQFZeJC4k5uJVZhFuZCdh8smJmlqeDEmGBLggNcEFYgAuC3O2YqCIiMmPp+SWITisAAHTzZ38pY6LpMxUZk4EylRoKuc7rChE1Gpr3shO6+JjFe9e5g1ri4NXbuJaajze2ncfaqZ3N4nERSUHnxJSTkxPGjx/fELEQmYxP/47G2VvZsFda4L0JHWAhlyEswAUZl0WEBbjUKSlVEycbSwxq2wSDKqcD5xWX4eTNLG3537mEbKTkFuO3M0na2VqutpbaJFVogCtae9qzASsRkRk5XrkaX2tPey6YYWTaejnA0VqBnKIynE/MYWN6olrEZxQiKi4TggCMrawcMHVKhRwrJ3XEmLX/YNf5FGw/m4TRHc3jsREZms6JqfXr1zdEHEQm42JSDtbsuw4AWDIquEF7QNkrFejbygN9W1WsWlJUqsLp+CxExmYiMjYDp+OzkVFQij8upOCPCykAKsoKKxJVFeV/wd4OsOA3uEREJiuqsvE5y/iMj0wmoHugC/68mIqI6AwmpohqoWl63rO5m1n1T23X1BHP92+BVX9dw5vbLqB7oCuaONRt5W4i+hebRBHpoKRchbk/n0WZSsSQ4CYG/8bH2lKOHs3d0KO5mzaecwk52hlVJ+MykVtcjr8u38Zfl28DAGwt5ejiXzGjKizABe19HGFlYZqroBARNUZRlTOmQtn43Cj1CHLTJqZm9WsudThERketFrWJqQldTLfpeW2e6xeEfVdScS4hB69uPocN07uxpI9IR/VKTG3evBmbNm1CfHw8SktLq+w7deqUXgIjMkar9l7H1dQ8uNpa4p2x7SX/T8fKQo5u/i7o5u+CWf0qel9dTMpFZGwGomIzERVbkag6dC0Nh66lVd5Hhs7NnCtmVQW6oJOvM6wtmagiIjJGucVluJScC4CJKWOl6TN14mYmSspV/PKH6D+i4jKRkFUEOysLDG7rKXU4eqeQy/DBxBCM+OgI/r6Whh+jbmFqWDOpwyIyKTonpj788EO8/vrrePzxx/Hbb79h+vTpiI6OxvHjxzFr1qyGiJHIKJy8mYnPD0UDAN4Z1x6udlYSR1SdhVyGEF8nhPg64aneQVCpRVxNyauSqMooKEVETAYiYjKAfYBCLiDExwmhARUN1bv6u8DOipMpiYiMwcmbWRBFwN/VhuUhRqqFhx3c7CyRnl+KM/HZCAt0lTokIqOypbLp+YMdvMz2y9AWTezx6pBWWPr7ZSz9/RJ6NndDM1cbqcMiMhk6f/r85JNP8Pnnn2PKlCnYsGEDXn31VQQGBmLhwoXIzMxsiBiJJFdYWo65m85CLQLjOjfFkGDT+LZHLhPQ1tsBbb0dMP2BAIiiiOi0/IoeVTEVfapSc0tw4mYWTtzMwicHoyGXCQj2dtA2Uw/1d4GjjULqh0JE1ChpyvjYX8p4CYKA7oGu2HkuGRExGUxMEd2hsLQcu84nAwDGm2EZ352eeCAAey6lIio2Ey//chY/PtW93gsiETU2Oiem4uPj0aNHDwCAtbU18vLyAACPPvoounfvjo8//li/ERIZgWV/XMHNjEJ4OSqxaGSw1OHUmyAIaO5hj+Ye9ng4zA+iKCI+s1CbqIqKy8CtzCKcS8jBuYQcfHE4FoIAtGpij+6BrtpZVW5GOFuMiMgcsb+UaegR5Iad55JxNDoDLw2UOhoi47H7QgoKSlXwc7VBVz/zXhxAJhPwwcQQDF19CFFxmfj6SCxm9g6UOiwik6BzYsrT0xOZmZnw8/NDs2bNcOzYMYSEhCA2NhaiKDZEjESSOnI9Hd9G3AQAvDehAxytzWf2kCAI8HO1hZ+rLSZ19QUAJGUXVTZTz0BkbCZi0gpwJSUPV1LysOFoHAAgyN0WoQGu6B5Ykagyp9VViIiMRXGZCucSsgEAYQGchWPMNH2mTsdnoahUZbblSkS62lxZxje+s4/kvVkNwdfFBm882BYLfj2P9/dcRZ9W7mjZxF7qsIiMns6Jqf79+2P79u3o1KkTpk+fjjlz5mDz5s04ceIExo0b1xAxEkkmp6gMr2w+CwB4tLsferVwlziihuftZI0xnZpiTOWKg2l5JZX9qSoSVVdS8hCdVoDotAL8GBUPAGjmYlPRTD3ABWEBrvB1sW4Ubz6IiBrS6fhslKlENHGwgq8LvwAwZv6uNvByVCI5pxgnb2ahZws3qUMiklxidlFFT1PA4CtZS+mhbr7482IKDl5Nw9xNZ7D1uQegkMukDovIqOmcmPr888+hVqsBALNmzYKrqyuOHj2KUaNG4emnn9Z7gERSWrLjIpJziuHvaoMFw1tLHY4k3O2tMKKDF0Z08AIAZBeWahupR8Zm4mJSDuIzCxGfWaj9VszLUVmZqKoo/wtyt2WiiohIR/+W8bnyb6iREwQB4UGu+PVUIo5GpzMxRQRg66kEiCIQHugKX5fG0whcEAQsH98Bg1cdwoXEXHy8/wbmDGopdVhERk3nxJRMJoNM9m/G96GHHsJDDz2k16CIjMGfF1Pw66lEyATgg0khsLHkSnUA4GRjicHBnhhc2QA+r7gMJ25maZNV5xKykZxTjN/OJOG3M0kAADc7y4r+VP4uCAt0Rasm9pCxGSQR0V1FxVXMNGB/KdMQHliRmNLMECFqzERRxJZTiQDMv+l5TZo4KPG/Me3wwo+n8fGBGxjYpgna+zhKHRaR0arXJ+3s7GxERUXh9u3b2tlTGtOmTdNLYERSSs8vwWu/ngcAPNU7CF38+KGgNvZKBfq18kC/Vh4AgKJSFU7HZ+FYZfnf6fhspOeXYtf5FOw6nwIAcLRWoJt/ZelfoAvaejnAQocpziq1iMjYTJxMF+Aam4nw5h5c9YSIzEqZSo1TN7MBAGFMTJkETZ+pcwk5yCsug73SfHpSEunqVHwWYtMLYGMpx7B2prGatb6NCvHGnxdT8Pu5ZMzddAY7nu8JpYL954hqonNiaseOHXj44YeRn58PBweHKlPLBUFgYopMniiKeH3reWQUlKK1pz3mDGohdUgmxdpSjh7N3dCjeUUZQ0m5CucSchAZU9Gj6uTNLOQUleGvy6n463IqAMDWUo4umkRVgAs6+DjB0qLmRNXuC8lYsuMSknOKAcjx7fUTlasltsXQdl6GephERA3qQmIOispUcLJRoLm7ndThUB34ONugmYsN4jMLcTwuE/1bN5E6JCLJaNo7DGvnBVurxlt18L/R7RAZk4nrt/PxwZ6reH1EW6lDIjJKOv+VmDdvHp544gm88847sLFpPLXC1HhsPZ2IPy+mQiEX8MGkEFhZ8JuN+2FlIUc3fxd083fBbFTMAriYlIvImIyK8r+4TOQVl+PQtTQcupYGAFAqZOjk64ywylX/OjdzhlIhx+4LyXj2+1P47/qfKTnFePb7U1j3SGcmp4jILGj6S3Xzd2HpswnpEeSK+MxCRERnMDFFjVZxmQo7zyYDAMZ3aTxNz2viYmuJ5ePbY8Y3J/DlkVgMbNMEYYFcZZXov3ROTCUmJuKFF15gUorMUnJOERZtvwgAeHFACwR7sxZc3xRyGTr6OqGjrxOe7hMElVrElZTcimbqMRWJqsyCUkTEZGj7dCjkAjo0dcSV1LxqSSkAEAEIAJbsuIRBbT1Z1kdEJk+TmGIZn2kJD3LFT8dv4Wg0+0xR47XnUirySsrR1Mka3QOYhBnQpgkmdfXBphMJeHnzWfzxYm/YNeJZZEQ10fk3YsiQIThx4gQCAwMbIh4iyYiiiFc3n0NecTlCfJ3wTJ8gqUNqFOQyAcHejgj2dsT0BwIgiiJu3M5HZOWqf5ExGbidV4KT8dl3PY8IIDmnGFGxmdo+H0REpkitFnE8TrMiHxNTpiS8cibEpeRcZBeWwsnGUuKIiAxPU8Y3vnNTzvis9OaDbfHPjQzcyizC279fxrvj2ksdEpFRqVNiavv27dp/jxgxAq+88gouXbqE9u3bQ6Go2thx1KhR+o2QyEC+j4zH4evpsLKQ4YOJITo14yb9EQQBLZrYo0UTezzS3Q+iKOJmRiE+OxSNH6Nu3fP+t/OKDRAlEVHDuZqah9zicthaytHWy0HqcEgHHg5KNPeww43b+TgWk4mhjbTpMzVeKTnFOHK9ojXDuM6NbzW+2tgrFXh/YgdM/SISP0bFY3BwE+3CQURUx8TUmDFjqm176623qm0TBAEqleq+gyIytLj0Arzz+2UAwPyhrdHcg41mjYUgCPB3s8WokKZ1Skx52CsNEBURUcPRlPF19nPmlyQmKDzQtTIxlcHEFDU6W08nQi0C3fyd4e9mK3U4RqVHkBumP+CP9f/EYf7mc9gzpzdnVRJVqtO7HbVaXacfJqXIFKnUIl7+5SyKylQID3TF4z38pQ6JahAa4AIvRyXuNiHcxlKOEF/2BSMi08b+UqatR2U5+dHodIkjITIsURSx5ZSmjI+zpWoyf2hrBLrb4nZeibavLRHVMTFFZM6+OByDEzezYGdlgfcndmAtvJGSywQsGlmxxG5tz1BhqQoTP41ATFq+4QIjItIjURQRFffvinxkejQrbl1LzUdaXonE0RAZzrmEHNy4nQ+lQobhHbhKck2UCjlWTuoIuUzAb2eSsOt8stQhERmFOiem9u/fj7Zt2yI3N7favpycHAQHB+PQoUN6DY6ooV1JycXKPdcAAAsfbAsfZ642acyGtvPCukc6w9Oxarmel6MSs/oFwcXWEheTcvHgR0ewpbLxJhGRKYnLKERaXgks5TKE+DpJHQ7Vg4utJdpU9gY7FsPV+ajx0DQ9HxLsCQel4h5HN14dfZ3wXN+KRZZe33qe/VGJoENiavXq1Zg5cyYcHKo34XR0dMTTTz+NVatW6TU4ooZUWq7G3J/PolSlxoDWHpjYlVOOTcHQdl44Mr8/vn+iK6a1UOH7J7riyPz+eGVIa/zxYi+EB7qisFSFeb+cxZyfzyC/pFzqkImI6iwqtiKR0dHXCUqFXOJoqL7+LedjYooah5JyFbafTQLAMr66eL5/C7T1ckBWYRle+/U8RFGUOiQiSdU5MXX27FkMHTq01v2DBw/GyZMn9RIUkSF8tP86LiXnwtlGgXfHt4cgsITPVMhlAsICXNDFTURYgAvkleWXTRyU+P7JMLw8uCXkMgFbTyfiwQ8P43xCjsQRExHVTWRlf6lQ9pcyaeGV5XycMUWNxb7Lt5FTVAZPByUeaO4mdThGz9JChpWTQ2Apl+Gvy7fxC2f6UyNX58RUamoqFIrap2RaWFggLS1NL0ERNbQzt7LxycFoAMDSMe25kpsZkcsEzO7fAj8/1R3ejkrEZRRi3Lp/8OXhGH4bRURG77imvxQTUyYtNNAFMgGITS9Ack6R1OEQNThNC4WxnZtqvzCku2vt6YA5g1oCAN7acQkJWYUSR0QknTonppo2bYoLFy7Uuv/cuXPw8mKTOzJ+xWUqzNt0Biq1iJEh3hjB5oxmqau/C3a92AtDgpugTCVi6e+X8cSG48jIZyNaIjJOSdlFuJVZBJkAdPFzljocug8OSgXaN61YJTaC5Xxk5tLySnDwWsUEBZbx6eap3oHo4ueM/JJyvPLLOajV/BKVGqc6J6aGDx+ON998E8XF1ZuzFRUVYdGiRXjwwQf1GhxRQ3hv91VEpxXAw94K/xsdLHU41ICcbCzx6SNd8L8x7WBpIcOBq2kYtuYwl/AmIqOkmS3Vrqkj7KwsJI6G7ld4UEU5E/tMkbn77UwiVGoRHX2d0NzDTupwTIpcJuCDiSGwVsgREZOBbyLipA6JSBJ1Tky98cYbyMzMRMuWLfHee+/ht99+w2+//Ybly5ejVatWyMzMxOuvv96QsRLdt4joDHz9TywAYPn4DnCysZQ4ImpogiDg0e5++G3WA2juYYfbeSV4+MtIrPjzKspVaqnDIyLSitL0l/JnGZ850DRAj4jOYCk5mTXNanzju3C2VH34u9niteGtAQDL/riC6LR8iSMiMrw6J6aaNGmCo0ePol27dliwYAHGjh2LsWPH4rXXXkO7du1w5MgRNGnSpCFjJbovecVlePmXswCAKaG+6NfaQ+KIyJDaeDlg++wH8FA3X4gi8PGBG5j8+THW8xOR0dAkpthfyjx09XeGQi4gsbJEk8gcXUzKwZWUPFjKZRjVwVvqcEzWI9390KuFG0rK1Zi36Sy/PKVGp86JKQDw8/PDrl27kJ6ejsjISBw7dgzp6enYtWsXAgICGipGIr1YuvMyErOL4OtijddHtJU6HJKAjaUFlo3vgI+mdIK9lQVO3szC8DWHsftCstShEVEjl5Ffguu3K74l78YZU2bBxtICHX2dAIAl5GS2NLOlBrVtAkeb2hfKorsTBAHvTegAe6UFztzKxmeHYqQOicigdEpMaTg7O6Nbt24IDQ2FszObc5Lx238lFT+fuAVBAFZMCGHvjkZuZIg3fn+hF0J8nZBbXI5nvj+FN7adR3GZSurQiKiROh6XBQBo2cQOLrYsMzcX4YGV5Xwx7DNF5qe0XI3fziQBACawjO++eTlaY8moiv63q/+6hktJuRJHRGQ49UpMEZmSrIJSzN9yHgAw44EAhFW+SaTGrZmrDTY/E46n+wQCAL4/Fo8xa//B9dQ8iSMjosZI0/ics6XMy50N0NlniszNwau3kVlQCnd7K/Rq4SZ1OGZhbKemGNy2YkXpuZvOoKScX5pS48DEFJm9N367gLS8EjT3sMPLQ1pJHQ4ZEYVchgXD2uDbJ0LhZmeJKyl5GPnxEfwUFc8PEERkUNrG5+wvZVY6NXOCpYUMaXklbGhMZmfLqYoyvjEdvWEh58dKfRAEAe+Maw9X24r3pav/ui51SEQGwb8gZNZ2nE3C7+eSIZcJWDkpBEqFXOqQyAj1bumOXS/2Qq8WbiguU+P/fj2P2T+eRm5xmdShEVEjkFdchotJOQCYmDI3SoUcXf0q2l5ERLOcj8xHZkEp9l+5DYCr8embm50V3h7bHgDw2d/ROHkzU+KIiBpenRJTnTt3RlZWRe+Dt956C4WFXMWKjN/t3GK8+dsFAMCsfs3RwcdJ2oDIqHnYK/HN9FD837DWsJAJ+P1cMkZ8eBin47OkDo2IzNyp+GyoRaCZiw28HK2lDof0rEdQRQuBo0xMkRnZfiYRZSoR7Zo6oLWng9ThmJ2h7TwxrlNTqEVg3qazKCwtlzokogZVp8TU5cuXUVBQAABYsmQJ8vP1MxX50KFDGDlyJLy9vSEIArZt21ZlvyiKWLhwIby8vGBtbY2BAwfi+vV7T2dcu3Yt/P39oVQqERYWhqioKL3ES6ZDFEXM33IO2YVlaNfUAc/3by51SGQCZDIBz/QJwi/PhMPH2Rq3Mosw8dMIrDsYDbWapX1E1DCiYisSFuwvZZ7CKxNTx2Iy+H8JmY0tpxIBAOM7c7ZUQ1k0KhhejkrEZRRi2R9XpA6HqEHVaWmyjh07Yvr06ejZsydEUcSKFStgZ2dX47ELFy6s88ULCgoQEhKCJ554AuPGjau2/7333sOHH36Ib775BgEBAXjzzTcxZMgQXLp0CUqlssZz/vzzz5g7dy4+/fRThIWFYfXq1RgyZAiuXr0KDw+POsdGpu3n47dw4GoaLC1kWDmpIxSseycddGrmjF0v9sJrv57HznPJWL77Co5Gp+ODSSHwsK/5bw8RUX1p+kuFsYzPLHXwcYKNpRxZhWW4kpKHtt6cXUKm7WpKHs4n5kAhFzC6Y1OpwzFbjtYKvDehAx79KgrfRtzE4Lae6Mkm82Sm6vRpfcOGDXB1dcXOnTshCAL++OMPbN26tdrPf2c83cuwYcOwdOlSjB07tto+URSxevVqvPHGGxg9ejQ6dOiAb7/9FklJSXe9zsqVKzFz5kxMnz4dbdu2xaeffgobGxt8/fXXOsVGputWZiH+t/MSAODlwS3Rsom9xBGRKXJQKvDRlE5YPr49lAoZDl9Px/A1h3HoWprUoRGRGSkuU+HsLfaXMmcKuUw7Gy4ihuV8ZPo0Tc/7tfKAi62lxNGYt14t3PFodz8AwCubz7L/KZmtOiWmWrVqhZ9++gnHjx+HKIrYt28fTp8+Xe3n1KlTegssNjYWKSkpGDhwoHabo6MjwsLCEBERUeN9SktLcfLkySr3kclkGDhwYK33IfOiVot4+ZezKChVIdTfBTN6BkodEpkwQRAwuVsz7JjdE62a2CM9vxTTvo7Cu39cRplKLXV4RGQGzt7KRqlKDXd7K/i52kgdDjUQTZ+piOh0iSMhuj/lKjW2nq4o45vApucGsWB4a/i72iA5pxhLtl+SOhyiBlGnUr47qdWG+TCWkpICAGjSpEmV7U2aNNHu+6/09HSoVKoa73PlSu11uSUlJSgpKdHezs3NBQCUlZWhrMx0s9Ka2E35Mehq/dGbiIzNhI2lHO+ObQu1qhxqlWGu3RjHW0qGHG9/FyU2Px2Kd3dfxQ9RCfjs7xhERKdj1cQOaObSOD5I8vVtOBxrw5J6vDWJim5+TigvN//mtlKPt1RC/ZwAAMdiMlFUXAILA7UYaKzjLYXGMtYHr6UhLa8EzjYKPBDoLNnjbSzjDQAKAVg+rh2mfBmFLacSMLC1Gwa2MWyLmsY03sbAXMZbl/h1TkwBQHR0NFavXo3Lly8DANq2bYsXX3wRQUFB9Tmd5N59910sWbKk2vY9e/bAxsb0P3Tu3btX6hAMIqUQeP+cHICAB31KceHYQVyQII7GMt7GwpDjHSYHlC0F/Bgtw7mEXIz48DAmB6rR2a3xNLPl69twONaGJdV4/3FJBkAGm4Ik7NqVKEkMUmhsr2+1CFjL5cgvKccXW3bDr+ZWrQ2msY23lMx9rDdcq/ib1d6hBH/t2S11OGY/3nfq5yXDviQZXvnlNBaEqGCnMHwMjWm8jYGpj3dhYWGdj9U5MfXnn39i1KhR6NixIx544AEAwD///IPg4GDs2LEDgwYN0vWUNfL09AQApKamwsvLS7s9NTUVHTt2rPE+bm5ukMvlSE1NrbI9NTVVe76aLFiwAHPnztXezs3Nha+vLwYPHgwHB9NtUFlWVoa9e/di0KBBUCgk+MtlQOUqNSZ9EYVyMRe9W7hi6aOdIQiCQWNoTONtDKQa7+EApmUXYd4v53EyPhvfXJej0KEp3hjeCjaW9cr1mwS+vg2HY21YUo53uUqNBScPAFDh8eE90crT/HsiNubX9+/Zp/HXlTTIPNtgeO8Ag1yzMY+3oTWGsc4pKsPLUQcBiJg7tgeCJWzk3xjG+78GlKsxbt0xXLudj78LvfHxQyEG+7zTGMdbSuYy3ppKtLrQ+VPU//3f/2HOnDlYtmxZte3z58/XW2IqICAAnp6e2LdvnzYRlZubi8jISDz77LM13sfS0hJdunTBvn37MGbMGAAVpYf79u3D7Nmza72WlZUVrKysqm1XKBQm/ULQMJfHcTfrDl3H+cRcOCgt8N6EjrC0lK4RY2MYb2MixXj7uyvw89PhWLPvOj4+cAO/nEzE6Vs5+HhqJ7T2NN1kdl3w9W04HGvDkmK8L6Vko7BUBUdrBdo2dYZMZtgvVKTUGF/fPZq7468raYi6mY3ZBn7sjXG8pWLOY737ZBLKVCJae9ojpJmLwb8Erok5j/d/KRTAyskdMWbtP9hz6TZ+v3gbYzsZts9XYxpvY2Dq461L7DoXuF++fBkzZsyotv2JJ57ApUu6NWPLz8/HmTNncObMGQAVDc/PnDmD+Ph4CIKAl156CUuXLsX27dtx/vx5TJs2Dd7e3tqkEwAMGDAAH3/8sfb23Llz8cUXX+Cbb77B5cuX8eyzz6KgoADTp0/X9aGSibiQmIMP910HALw1uh08HZUSR0SNgYVchnmDW2HjjDB42Fvhxu18jPr4H3x37CZEsfGU9hFR/UXFZgIAuvk3rqRUY9WjeUUD9OOxmSgt5wIaZHo0q/FN6OJjFEmpxqhdU0e8OKAFAGDhbxeRnFMkcURE+qFzYsrd3V2bSLrTmTNn4OGhWxO2EydOoFOnTujUqROAiqRSp06dsHDhQgDAq6++iueffx5PPfUUunXrhvz8fOzevRtK5b+Jh+joaKSn/7vCyeTJk7FixQosXLgQHTt2xJkzZ7B79+5qDdHJPBSXqTB30xmUq0UMa+eJ0R29pQ6JGpkezd3wx4u90K+VO0rL1Xhz2wU88/1JZBeWSh0aERm5yMrEVGiAi8SRkCG09LCHi60lispUOJuQLXU4RDqJTsvH6fhsyGUCRndsKnU4jdqzfYMQ4uuEvOJyvLr5HL8QJbOgcynfzJkz8dRTTyEmJgY9evQAUNFjavny5VX6NNVF37597/qLJAgC3nrrLbz11lu1HhMXF1dt2+zZs+9aukfmY9Xea7iWmg83O0ssHdOO396QJFztrPD1493w1ZFYLN99BX9eTMX5hMNYM6UTuvnzAycRVadWizhxU5OYcpU4GjIEmUxAeKArfj+fjIjoDP7/QCZly8mK2VJ9WrrD3b56CxQyHAu5DB9MDMGIDw/j8PV0bIyMxyPd/aQOi+i+6Dxj6s0338TChQvx0UcfoU+fPujTpw8+/vhjLF68GG+88UZDxEhUo+Nxmfj8cAwA4N1xHeBqx/8kSTqCIODJXoH49dkH4O9qg6ScYkz+LAIf7bsOlZrfZBFRVddv5yO7sAzWCrmkDYTJsMKDKpKQR6PT73EkkfFQqUX8eqpi1dAJXQzb04hq1tzDDvOHtgYAvLPrMm5mFEgcEdH90TkxJQgC5syZg4SEBOTk5CAnJwcJCQl48cUXOVuFDKagpBzzNp2FKFb8BzmoLUs1yTi093HEzhd6YWynplCLwAd7r+HhL48hNbdY6tCIyIhExWYAALr4OUMh1/ntGJkoTWLqVHw2istUEkdDVDdHo9ORklsMR2sFBrTRrXULNZzHe/gjPNAVhaUqzNt0ll+Ekkm7r3dC9vb2sLc3/6WNyfi8s+sy4jML0dTJGgtHtpU6HKIq7KwssGpyR3wwMQQ2lnIci8nEsDWHsf9KqtShEZGRYH+pxinQzRZNHKxQWq7GqZtZUodDVCeaMr5RId6wspBLHA1pyGQC3pvQAXZWFjhxMwtfVlaSEJkifkVHJufva2nYGBkPAHh/Qgc4KE13CU0yb+O7+GDn8z0R7O2AzIJSPLHhBN7acQkl5fyWnKgxE0URx+M0K/IxMdWYCEJFnykAiIjJkDgaonvLKy7D7ospACre15Bx8XWxwZsPtgEAfLDnGq6m5EkcEVH9MDFFJiWnsAzzN58DUDF9tUdzN4kjIrq7QHc7/PpcD0x/wB8A8PU/sRi/7ihi09kLgKixis8sRGpuCRRyAZ2aOUkdDhlYj6CK9y5Ho5mYIuO363wyisvUCHK3RYiPo9ThUA0mdfVF/9YeKFWpMXfTGZSWq6UOiUhnTEyRSVm84yJScosR4GarbfhHZOysLORYNDIYX07rCmcbBS4k5uLBDw9j6+kEqUMjIgloyvhCfJygVLAsprHR9Jk6eysbBSXlEkdDdHdbTmqanvuyn7CREgQBy8a1h5ONAheTcvHx/utSh0SkM50SU2VlZRgwYACuX+eLnQxv94VkbD2dCJkAfDApBNaWfDNPpmVg2yb448XeCAtwQUGpCnN+Pou5m87wgwlRIxPF/lKNmq+LDXycrVGu/rekk8gY3cwoQFRcJmQCMLZTU6nDobvwcFBi6Zh2AIC1B6Nx9la2tAER6UinxJRCocC5c+caKhaiWqXlleC1rRcAAM/0CULnZs4SR0RUP56OSvwwszvmDGwJmQD8eioRD350BBcSc6QOjYgMRNtfiompRqtH5aypCJbzkRHbcqpitlTPFu7wdFRKHA3dy4MdvDEyxBsqtYi5m85w5U8yKTqX8j3yyCP46quvGiIWohqJoojXtp5HZkEpWnva48WBLaQOiei+yGUCXhzYAj89FQ4vRyVi0wsw7pOj+PpILESRS/0SmbOUnGLczCiETAC6+PFLlsZKU87HBuhkrNRqUbsa3/jOnC1lKv43Ohge9laITivA+39elTocojqz0PUO5eXl+Prrr/HXX3+hS5cusLW1rbJ/5cqVeguOCKj4tmbvpVQo5AJWTe7IZWrJbIQGuOCPF3vh1c3nsOdSKt7aeQn/3EjH+xND4GJrKXV4RNQAoipnS7X1duCqso1YeGBFA/QLiTnIKSyDow1fC2RcImMzkZhdBHsrCwwJ9pQ6HKojJxtLLB/fAdM3HMfX/8RiUNsm6F65EiiRMdN5xtSFCxfQuXNn2Nvb49q1azh9+rT258yZMw0QIjVmidlFWLL9IgDgpYEt0cbLQeKIiPTLycYSnz3aBW+NDoalhQz7rtzGsDWHWN5BZKaOV/aX6ubPMr7GzNNRiUA3W6hFIDKWf+/J+Gw5VTFb6sEQLy7SYGL6tfbAlFBfiCLw8i9nkc9epmQCdJ4xdeDAgYaIg6gatVrEq5vPIq+kHJ2aOeHp3oFSh0TUIARBwLRwf3T1c8HsH08hJq0AU788huf7NccLA1rAQs4FVInMhabxeRj7SzV64UGuiEkvQERMBgZzRgoZkYKScuw6nwwAGN/ZR+JoqD5eH9EWh6+nIyGrCEt3XsKy8R2kDonorur9aefGjRv4888/UVRUBADsi0J6992xm/jnRgaUChlWTurID+dk9tp6O2Dn8z0xqasPRBH4cP8NTPniGJKyi6QOjYj0IKugFFdT8wBwxhQBPYIqyvk4Q5aMze4LKSgsVcHf1Ya98EyUnZUFVkwMgSAAPx2/hf1XUqUOieiudP6kn5GRgQEDBqBly5YYPnw4kpMrsukzZszAvHnz9B4gNU6x6QV494/LAIAFw9ogwM32HvcgMg82lhZ4b0II1jzUEXZWFjgel4Vhaw7jz4spUodGRPdJsxpfcw87uNpZSRwNSa17YEVy8kpKHjLySySOhuhfm7VNz30gCILE0VB9dQ90xRMPBAAA5m85j6yCUokjIqqdzompOXPmQKFQID4+HjY2NtrtkydPxu7du/UaHDVOKrWIeZvOoLhMjQeau+LR7n5Sh0RkcKM7NsXvL/REiI8jcorK8PR3J7Hwtwtc+pfIhGkSU5wtRQDgameF1p72AIBjMZkSR0NUISGrULta5FiuxmfyXhnSCs097JCWV4I3f7sgdThEtdI5MbVnzx4sX74cPj5V641btGiBmzdv6i0warw+OxSNU/HZsLeqmDkik/GbGmqc/Fxt8cszPbT91b6NuIkxa//Bjdt5EkdGRPXB/lL0X5rVsiJi0iWOhKjC1lOJAIAeQa7wcba5x9Fk7JQKOVZOCoFcJmDnuWTsOJskdUhENdI5MVVQUFBlppRGZmYmrKw4LZ3uz+XkXKzaew0AsHBkWzR1spY4IiJpWVrIsGB4G2yY3g2utpa4kpKHkR/9g03Hb7G3H5EJ+f/27juuqvr/A/jr3HvZspGhIKI4QLaKiuIqd2XmSlMrzW+21LQcfb8Nm45sm99safXVhportcxtojgRxMVwArL3utz7+f2B8MtcoHDOHa/n4+GjgAu+eHk8Xt73fD6npKIKCWmFAIBIDqbomqjW1YOp/dxnigyAEKL2bnzc9Nx0hHg74bk+/gCAV9cnILOwXOFERDeq92AqOjoa3333Xe3bkiRBr9dj4cKF6NOnT4OGI/NSWaXHjJ/joNUJ3B/ggREd+Q8iUY3e7dyxZVo0evi7oUyrw6w1JzD1x+MoLNcqHY2I6uDoxTzo9ALezjZoxhdd6JourVyhkoCUrBJc5Q+LpLAjF/JwPqcUdpZqDArmnSJNyQt9/RHU3AH5pVrMWRvPFzfJ4NR7MLVw4UIsW7YMgwYNQmVlJWbNmoWgoCDs2bMHCxYsaIyMZCY+3n4Wp9IL4WJnifceCeZmi0T/4O5gje8mRmLWwHZQqyRsjEvDA5/sQ9ylfKWjEdEd1Czji+T+UvQ3jjYW6NDMEQDvzkfKq9n0fFCwF2wtNQqnoYZkoa6+y7mlRoUdpzPx8+FLSkciuk69B1NBQUE4e/YsevTogaFDh6KkpASPPPIIjh07htatWzdGRjIDRy/mYemuZADAOw8Hoak9l4US3YxKJeHZ3v74+eluaO5kg4u5pRi+dD+W7UmGXs9Xv4gM1cGawRSX8dE//P9yPu4zRcop1+rw24nqu61zGZ9pauthj5f6twUAvLkxEZdySxVORPT/7moU7ujoiH//+98NnYXMVFmlDi/9HAe9AB4Oa4ZBwV5KRyIyeB19nbF5WjReWRuP3+LT8e7m09iXlIPFI0M52CUyMBVVOhy/dmUjB1P0T11bu+KLPSm1d0IjUsLvJzNQVFEFb2cb3qDBhE3q0QrbEq/i0Pk8vPRLHFZN7sobTZFBqPcVUwCQl5eH999/H5MmTcKkSZOwePFi5ObyNrd0dxZsPY2U7BJ4Olhj3kNBSschMhqONhb4bGw43h0WDCuNCnvOZmHQx3ux91yW0tGI6G9OXC5AZZUebk0s4edmp3QcMjCdW7pAo5JwKbeMVzCQYmqW8T0S4c1BhQlTqyS8PzIUtpZqHEzNxbf7zysdiQjAXQym9uzZg5YtW+KTTz5BXl4e8vLy8Mknn8DPzw979uxpjIxkwvYnZWP5tRPighEhcLS1UDYQkZGRJAlju7TAxhd6oK1HE2QXV2DCN7FYsPU0tDq90vGICH/bX8rPhfsn0g2aWGkQ4s19pkg5GQXl+Cupeinp8IjmCqehxubraodXBgcAABZuPY2kzGKFExHdxWDqueeew+jRo5Gamoq1a9di7dq1SElJwaOPPornnnuuMTKSiSos1+Ll1ScAAI91aYFebZsqnIjIeLX1sMeG53vgsS4tIASwdFcyRn0Rw1ffiQzAQW58TncQ1doNALicjxSx9thl6EX1OcrXlVd1moPHurRAz7ZNUVGlx8yfj6OKL2aSwuo9mEpKSsLMmTOhVqtr36dWqzFjxgwkJSU1aDgybW9tTMSV/DK0cLGtndoT0d2ztlDjnWHBWPpYBOytNTh2MR+DP9lbu5kpEcmvSqfHkfM1V0y5KpyGDNXfN0DnbdxJTkIIrLm2jG94R14tZS4kScLC4SFwsNYg7nIBPr92EyoipdR7MBUREYFTp07d8P5Tp04hNDS0QUKR6fsz8Sp+OXIZkgS8PzIUdla8JS1RQxkU7IXNU6MR0cIJReVVeG7lUcxdewJllTqloxGZnVPpRSip1MHeWoN2nvZKxyEDFeHrDEu1ClcLK5CaXaJ0HDIjcZcLkJxVAmsLFQbzBkRmxdPRGm8Ord7f95Pt55BwpUDhRGTO6jQNOHHiRO3/T506FdOmTUNSUhK6du0KADhw4ACWLFmC+fPnN05KMim5JZWYszYeADA5uhXvUETUCHxcbPHT093w0Z9n8fmuZKyKvYTD5/Pw2dgI/nBMJKODqdVLszq3dIGaGwrTLVhbqBHh64QDKbnYn5yDVk2bKB2JzMTqI5cAAAM7eMLemnu9mpuhYc3w+8kMbEnIwMyf47Dhhe6w0qjv/IlEDaxOg6mwsDBIknTdpcWzZs264XFjx47F6NGjGy4dmRwhBP6zLh7ZxRVo69EEM/q1VToSkcmyUKvw8oD2iGrthuk/Hce5zGI89Nk+vPZgIMZGtuAmzEQy+PvG50S3062VGw6k5CImJQfjuvoqHYfMQEWVDhvjqpf7D+/orXAaUoIkSXj74SAcOp+LM1eL8MG2s5g7iFuskPzqNJhKTU1t7BxkJjbEpWFzfAY0KgkfjAqDtQUn8kSNrbu/G7ZMi8ZLv8Rh15ks/PvXBOw7l435j/BOmESNSQiBQ+c5mKK6ifJ3xYd/AgeSc6DXC6h4hR01su2nMlFQpoWXo3XtBvxkflybWOG9R0Iw+bvDWLYnBf0CPNCJN+sgmdVpMOXry1dt6N5lFJTj1XUJAIAX+rZBUHNHhRMRmQ+3Jlb45vHO+HpfKhb+fhpbEjJw4nIBPhkTho6+fPJB1BiSMouRV6qFtYUKQc34bx7dXqi3E2ws1MgpqcTZzCK093RQOhKZuNXXNj0fFt6cS43NXL9ADwyP8Maao5cx85c4bJ4azT2ASVZ3dbSlpaVh3759yMzMhF5//a0lp06d2iDByLQIITB7zQkUllchxNsRz/ZprXQkIrOjUkmY3LMVurRywQurjuFCTilGfXEAM/q1xZRerfmklKiBHby2jC+ihTMsNfW+3wyZGUuNCp1aOmPvuWzEJOdwMEWNKrOoHLvPZgHgMj6q9vpDgYhJzsaFnFK8t+UU3n44WOlIZEbqPZhavnw5nn76aVhaWsLV1fW6PUokSeJgim5qVewl7D6bBUuNCh+MCoWFmk/QiZQS4u2ETS/0wH/WJWD98TQs+v0M/krKxoejw+DhYK10PCKTwf2lqL6iWrth77ls7E/OwZPd/ZSOQyZs/bE06PQC4S2c0Jqb7RMAB2sLLBoZise+OogfDlxE/0BP9GzbVOlYZCbqPR149dVX8dprr6GgoADnz59Hampq7a+UlJTGyEhG7mJOKd7+LREAMGtAO/i7845gREqzt7bAR6PDsGhECGws1NifnINBH+/FzjOZSkcjMglCiP8fTHGvDqqjbq1dAQAHU3Kg04s7PJro7gghsOZo9TK+4RG8Wor+X3d/NzzerXobn1mrT6CgVKtwIjIX9R5MlZaW4tFHH4VKxSte6M50eoGXfolDaaUOkX4umMhX/4gMhiRJGNnJB5um9kCAlwNySyrx5LeH8PamRFRW6e/8BYjoli7nlSGjsBwalYTwFs5KxyEjEdTMAfZWGhSWVyExrVDpOGSiTqYV4nRGESw1KjwY0kzpOGRg5gwKgJ+bHTIKy/HGxpNKxyEzUe/p0qRJk/DLL780RhYyQd/sS0Xs+VzYWaqxeGQo7zBDZIBaN22CX5+NwhNRLQEAX+1LxYj/7sf57BIA1QPmg6m5OJIt4WBqLl/FJ6qDmv2lQrwdYWPJO9BS3WjUqtqln/uTsxVOQ6aqZtPzfoEevDsv3cDGUo3Fo0KhkoBfj13B5hNpfB5Ija7ee0y99957eOCBB7B161YEBwfDwuL6k9kHH3zQYOHIuJ29WoRFf5wBAPzngUD4uNgqnIiIbsXaQo03HuqAqNaumLXmBE5cLsCQT/ZiVGcfbE3IQHpBOQA1vjt3GF6O1nj9wUAMDPJSOjaRwYpNzQEARPq5KpyEjE231q7YfjoTMSk5eLoXbxZDDauySo8NcWkAgBHc9JxuIaKFM6b0ao3PdyXj+VXHUD2L4vNAajx3NZj6/fff0a5dOwC4YfNzIgDQ6vSY8fNxVFbp0btdUzza2UfpSERUB/07eCLY2xHTfjyO2NRcfPvX+Rsek1FQjmd+OIql4yL4pIToFg6dzwMARPpxGR/VT1RrNwDVm+drdXreMIYa1M4zmcgtqURTeytE+7spHYcMWIBX9b7A/7xAis8DqTHUezC1ePFifPPNN3jiiScaIQ6Zis92JCHhSiEcbSywYHgIh5ZERsTL0QY/TOqCiLe2obii6oaPCwASgHkbE9Ev0BNqLtEluk5mYTlSs0sgSUBHX258TvXT3tMezrYWyCvV4sTlAnT05XCTGs6aa8v4hoU3h4ZDT7oFnV7g3c2nb/oxPg+kxlDvs5GVlRW6d+/eGFnIRJy4nI/PdiYBAN56OIi3nycyQkcu5N10KFVDAEgvKK+96xgR/b/Y89V/LwI8HeBow/1bqH5UKgldW1UvAY3hPlPUgHKKK7DjdPXdd3k3Prqd2NTca9s43ByfB1JDq/dgatq0afj0008bIwuZgHKtDjN+joNOLzAkxAsPhfJOH0TGKLPo1k9GrntcYd0eR2RODl17ol6ziTVRfXVrfW0wlZKjcBIyJRvi0lClFwhu7oh2nvZKxyEDVufngXV8HNGd1HspX2xsLHbs2IFNmzahQ4cON2x+vnbt2gYLR8Zn8R9nkJRZjKb2Vnh7aJDScYjoLrnb1+1Kx092nEMTaw36tnfnkl2iaw5yMEX3KOraYOrw+TyUa3WwtuCdHenerTlavYyPm57TndT1eWBdH0d0J/UeTDk5OeGRRx5pjCxk5A6m5OCrfakAgPmPBMPZzlLhRER0tyL9XODlaI2MgnLc7qbAyVklmLTiMAK9HPBCX38M6OAJFfcaIDOWX1qJM1eLAACdW3IwRXenddMmaGpvhayiChy7mF97BRXR3TqdUYiEK4WwUEtc0UB3VJfngV6O1nwBhhpMvQdT3377bWPkICNXXFGFl1bHQQhgVCdv3BfgoXQkIroHapWE1x8MxDM/HIUEXPekpGbsNH94CFKyi/F9zAUkphfimf8dRVuPJniujz8eCGnGzTDJLB0+nwchgFZN7dDU3krpOGSkJElCt1au2BCXhpiUHA6m6J7VbHret707XzymO7rd88Aarw4J5HM9ajC8FQM1iHd+O4VLuWVo7mSDVx8IVDoOETWAgUFeWDouAp6O11+m7elojaXjIjC6sw/mDgrAX7P74oW+/rC30uDs1WJM+/E4+n2wG6uPXIZWp1coPZEyDl3b+DySV0vRPapZzscN0OleVen0+PVYGgBgREcfhdOQsbjV88CaUdSF3FL5Q5HJqvcVU35+frfdRyQlJeWeApHx2XkmE6tiLwIAFo0Mgb0170BEZCoGBnmhX6AnYpIy8cfeg+gf3QXd/N2ve4XM2c4SM/u3w1PRrbBi/3l881cqUrJL8NIvcfh4+1k829sfwyO8YanhayFk+ri/FDWUmqukjl/KR2llFWwt6/20nQgAsOdcFrKLK+BqZ4ne7ZoqHYeMyM2eB14pqMDsNfH4cNtZ9GnfFO09HZSOSSag3j8lTJ8+HdOmTav99eyzz6Jbt24oKCjAv/71rwYP2LJlS0iSdMOv55577qaPX758+Q2PtbbmpmyNJb+0ErNXnwAAPNm9JaJauymciIgamloloYufCzq6CXTxc7nlZduONhaYel8b7JvdF7MHtoernSUu5ZZh7tp49Fq0E9/FnEe5VidzeiL5lFRUIeFKAQAOpujetXCxRXMnG2h1AofP5ykdh4zYmiNXAABDw5rDQs0Xiah+/vk8cFQnH9wf4IFKnR4v/hSHyipeHU/3rt4vvUybNu2m71+yZAkOHz58z4H+6dChQ9Dp/v8HmYSEBPTr1w8jR4685ec4ODjgzJkztW/zTlGN57X1J5FZVIFWTe0we2B7peMQkQFoYqXBM71b4/EoX6w8eBHL9qQgvaAcr60/iU93JOHpnq0wtksLvvpPJufYxXxU6QWaO9nA29lW6Thk5CRJQtdWrlhz9DJiUnLQsy2vdKH6yy+txLbEqwCA4R2bK5yGTIEkSXjvkWAc+TAXp9IL8cn2c3hpQDulY5GRa7CR+aBBg7BmzZqG+nK1mjZtCk9Pz9pfmzZtQuvWrdGrV69bfo4kSdd9jocHN+JuDL+dSMeGuDSoVRI+GBXGWxkT0XVsLTV4KroV9szqg7eGdkAzR2tkFVXg7d9OIXrBTny+KwnFFVVKxyRqMLHX9pfq3NJZ4SRkKmr2mdqfnKNwEjJWG0+ko1KnR3tPe3Ro5qh0HDIRTe2t8M6wYADA57uScOwir+qke9Ngg6nVq1fDxaVxL1uvrKzEDz/8gIkTJ972Kqji4mL4+vrCx8cHQ4cOxcmTJxs1lznKLCrHf9bFAwCe7d0aYT5OygYiIoNlbaHG+G4tsevlPpj/SDBauNgip6QSC7eeQff5O/Dxn+dQUKZVOibRPYtNrR4eRPrxDmrUMGr2mYq/nI/Ccp4nqf5q7sY3oqO3wknI1AwO9sLQsGbQC2Dmz3Eoq+R2DXT36r2OIjw8/LqhkBACGRkZyMrKwueff96g4f5p3bp1yM/PxxNPPHHLx7Rr1w7ffPMNQkJCUFBQgPfffx9RUVE4efIkvL1vfkKuqKhARUVF7duFhYUAAK1WC63WeJ8E1GRv6O9BCIE5q08gr1SLAE97TIluadQ9NZTG6ptujn3LqyH6lgAMD/fC0BAPbDyRgaW7U5CaU4oP/zyLL/emYHxXHzzRzRcuZn4bax7b8mqoviuq9Dh2MR8AEOHjwD+/W+DxXT9N7TTwdbHFhdxSxCRloW89N65m3/IxxK6Ts0pw/FI+1CoJQ4LcDSrbvTLEvk3Zrfp+dXA7HEjOQUp2Cd7bnIhXh3Brl4ZgKsd3ffJLQghRny8+b968695WqVRo2rQpevfujfbtG/dAHDBgACwtLbFx48Y6f45Wq0VAQADGjBmDt95666aPeeONN274vgBg5cqVsLXlHhH/dCBTwqpkNdSSwEvBOjSzUzoRERkjvQCO50j4/bIKGWXVL3hYqgR6eAr08dLDwbznU2RkUouAjxI0aKIReLuTDtzekhrKT8kq7M9UobeXHsNacpNhqruNF1T4M02FIGc9JrfnsUON41SehP+ert7S5blAHdo61mu8QCastLQUY8eORUFBARwcbn/3xnoPppRy4cIFtGrVCmvXrsXQoUPr9bkjR46ERqPBqlWrbvrxm10x5ePjg+zs7DsWaMi0Wi22bduGfv36wcLCokG+5pX8Mgz5bD9KKnR4qV8bPN3Tr0G+rilojL7p1ti3vBqzb71eYNupTHy+OwWJ6UUAACuNCqM7eWNydEt4OpjXnVV5bMurofr+Yk8q3t92Dv0D3bFkTFjDBTQxPL7rb9OJdLz4SzwCPO2x4blu9fpc9i0fQ+tapxfotXgPrhZW4NNHQzGwg2ntuWtofZu6O/X96oZE/HjoMpo5WmPT891gb80/k3thKsd3YWEh3Nzc6jSYMppbIn377bdwd3fHkCFD6vV5Op0O8fHxGDx48C0fY2VlBSsrqxveb2FhYdQHQo2G+j70eoG5vyaipEKHjr7OeKZPm1veNt6cmcpxYyzYt7waq+8HwrwxJLQ5dp7JxCfbk3D8Uj6+O3ARPx66jJGdvPFM79Zmd5czHtvyute+D19bxte1lRv/3OqAx3fd9WjrASAepzKKUFwp4HwXy53Zt3wMpeuYs1m4WlgBRxsL9A/ygoXGNG9SZCh9m4tb9f3qAx2wPzkXF3NLMf/3c1g4IlSBdKbH2I/v+mSv8+bnKpUKarX6tr80msaZc+n1enz77bd4/PHHb/g9JkyYgLlz59a+/eabb+KPP/5ASkoKjh49inHjxuHChQt46qmnGiWbOVkRcx4xKTmwsVBj8chQDqWIqEFJkoS+7T3w67NR+H5SJCJbuqBSp8f/Dl5E70W7MGt1HM5nlygdk+gGOr3AkfPVdySK9GvcG8GQ+Wlqb4W2Hk0AAAdSeHc+qps1R6s3PR8a1gxWJjqUIsNhZ6XB+yNDIUnAz4cv48/Eq0pHIiNT50nSr7/+esuPxcTE4JNPPoFe3zhrl//8809cvHgREydOvOFjFy9ehEr1//O1vLw8TJ48GRkZGXB2dkbHjh2xf/9+BAYGNko2c5GcVYz5W04DAF4Z3B4t3bixFBE1DkmSEN2mKaLbNMWBlBx8uuMc/krKwc+HL2P1kcsYGtYcz/Xxh797E6WjEgEATqUXoqiiCvZWGgR4Ge8WAGS4urVyxdmrxYhJycGgYC+l45CBKyzXYmtCBgBgeATvxkfyiPRzweToVli2JwVz1sbjD19ns7+hDdVdnQdTN9vX6cyZM5gzZw42btyIxx57DG+++WaDhqvRv39/3GorrF27dl339ocffogPP/ywUXKYqyqdHjN+jkNFlR7Rbdwwrquv0pGIyEx0beWKrq1cceRCHj7dcQ67zmTh12NXsO74FQwO9sILff3R3pODAFJWbGouAKBjS2deTUyNoltrN6yIuYD9ybxiiu5s84l0VFTp4e/eBCHejkrHITMyo19b7DydiXOZxXh1XQI+GxsOiXcDoTqo81K+v0tLS8PkyZMRHByMqqoqHD9+HCtWrICvLwcWpuiLPSmIu5QPe2sNFo4I4cmFiGTX0dcZy5+MxIbnu6N/oAeEAH47kY6BH+3Fv747jPjLBUpHJDNWM5jiMj5qLF1buUCSgKTMYmQWlSsdhwxczTK+ER29+bydZGVtocYHo8KgUUn4LT4dG+LSlI5ERqJeg6mCggLMnj0b/v7+OHnyJLZv346NGzciKCiosfKRwhLTCvHRn2cBAPMe6gAvRxuFExGROQvxdsKyCZ2wZVo0hoR4QZKAPxKv4sHP9uGJb2Nx5EKe0hHJzAghcOh89WCqCwdT1EicbC0ReG2ZaAyvmqLbOJ9dgkPn86CSgGHhzZWOQ2Yo2NsRz/f1BwC8tv4krhZymE53VufB1MKFC9GqVSts2rQJq1atwv79+xEdHd2Y2UhhFVU6zPj5OLQ6gQEdPPiPGxEZjAAvBywZG4FtL/bEsPDmUEnArjNZGL50Px776gA3CCbZJGeVIKekElYaFYKbOykdh0xYt1auALgBOt3e2mtXS0W3aQoPB2uF05C5eq6PP4KbO6KgTItZq0/cclseohp13mNqzpw5sLGxgb+/P1asWIEVK1bc9HFr165tsHCkrI/+PIfTGUVwtbPEO8OCeSkwERkcf3d7fDg6DNPua4PPdyVh7dEr+CspB38l5SCypQteuM8fPfzdeP6iRlOzjC+8hRMsNXe1QwJRnUT5u+KrfancZ4puSa8XWHP0CgBgeEduek7KsVCr8MGoUAz5dB92n83CqthLGNulhdKxyIDVeTA1YcIEPrE3I0cu5OKL3ckAgHeGBcOtiZXCiYiIbq2lmx0WjgjFC33b4L+7k/HL4cuIPZ+L8V/HIszHCVPv80efdu78d4waXGxq9ZAg0s9V4SRk6jq3dIFaJeFCTimu5JehuRO3V6DrHUjNwZX8Mthba9A/0EPpOGTm2njYY9aAdnj7t1N4+7dE9PB3QwtXW6VjkYGq82Bq+fLljRiDDElpZRVm/hwHvQAeCW+OgUGeSkciIqoTHxdbvDMsuHZAtSr2Io5fysfE5YcR1NwBz/dpg/6BHlDxzmnUQA6dr97XLLIl95eixmVvbYHg5o44fikfMck5GMErYugf1hypvlrqgZBmsLZQK5yGCJjY3Q9/JF5FbGouXvolDj/+qyufg9FN8ZpzusH8LadxPqcUXo7WeP2hDkrHISKqN09Ha7zxUAfsnd0HT/dsBVtLNRKuFGLKD0cw6OO92BiXBp2e+x3QvbmcV33likYlIcLXSek4ZAaiWldfmbc/OVvhJGRoSiqqsCUhHQAwoiP3hSXDoFJJWDwyFHaWasSez8U3f6UqHYkMFAdTdJ1957LxXcwFAMDCESFwtLFQOBER0d1zt7fG3MEB2De7L57v4w97Kw3OXC3CC6uOod+Hu7HmyGVU6fRKxyQjVbO/VFBzR9ha1vkidKK71u3aYOpAcg43E6brbEnIQGmlDn5udoho4ax0HKJaPi62+M8DgQCAhb+fwbmrRQonIkPEwRTVKijT4uXVcQCA8V19Ed2mqcKJiIgahoudJV4a0A775vTFi/e3haONBVKySjDzlzj0XbwbP8ZeRGUVB1RUPzWDqS5+XMZH8ujk6wILtYS0gnJcyClVOg4ZkNVHLgEAhkc0536KZHAe7eyD3u2aorJKjxk/x0HLFwXpHziYolpvbkxEekE5WrraYu7g9krHISJqcI42Fph2fxvsm90Hswa2g4udJS7mlmLO2nj0eX8Xvo85j3KtTumYZCRiz1cPpjpzfymSiY2lGuHXrobh3fmoxqXcUhxIyYUkAcMiuPcYGR5JkrBgePVqnPgrBViyM0npSGRgOJgiAMAfJzOw5uhlqCRg8ahQLkkgIpNmb22BZ3v7Y9/sPvjPkAA0tbfClfwyvLr+JHot2omv96WirJIDKrq1rKIKpGSVQJI4mCJ5dWtVvZwvJoWDKar267HqTc+jWrvybo1ksDwcrPHm0Or9iz/bkYT4ywUKJyJDwsEUIae4Aq/8Gg8A+FfP1ujoyyfYRGQebC01eCq6FfbO6oM3h3ZAM0drXC2swFubEhG9cAf+uzsZxRVVSsckA3To2tVS7Tzs4WjL/RhJPjUboMdwnykCIITAmqOXAQDDebUUGbiHQpthSLAXqvQCM34+zqvUqRYHU2ZOCIF//5qA7OJKtPOwx4v92igdiYhIdtYWakzo1hK7Xu6D9x4Jho+LDbKLKzF/y2n0WLADn2w/h4IyrdIxyYDU7C8Vyf2lSGZhLZxgpVEhu7gCSZnFSschhR2+kIcLOaWws1RjYJCn0nGIbkuSJLz1cBDcmljhXGYxFv9xRulIZCA4mDJz645fwdaTGdCoJCweFQorjVrpSEREirHUqDAmsgV2zOyN90eGopWbHfJLtfhg21n0WLADi/84g7ySSqVjkgHgYIqUYqVR1y4f5T5TtPpw9dVSg4O9uBUHGQUXO0ssGB4MAPhqXyoOclkygYMps5ZeUIbX1p8EAEy7rw2CmjsqnIiIyDBYqFUY0dEb22b0wsePhqGtRxMUlVfh0x1J6LFgB97bcgrZxRVKxySFFJRpcSqjEAAQyf2lSAHd/racj8xXWaUOv8WnAwCGd+QyPjIe9wV4YFQnbwgBvLQ6DiXcNsHscTBlpoQQmLX6BIrKqxDq44RnerdWOhIRkcFRqyQMDWuOrdN6YuljEQj0ckBJpQ5f7E5BjwU78ObGRFwtLFc6JsnsyIVcCAH4udnB3cFa6ThkhmoHUyk50Ou5z5S5+iMxA8UVVfBxseGQnIzOqw8EormTDS7lluGdzaeUjkMK42DKTP1w8CL2nsuGlUaFxSNDoVHzUCAiuhWVSsKgYC/8NrUHvn68E0J9nFCu1eObv1IRvXAnXl2XgCv5ZUrHJJnEpuYBADq3dFY4CZmrkOaOaGKlQUGZFonphUrHIYWsPlK9jO+RcG+oVJLCaYjqx97aAotGhgAAVh68iF1nMhVOREriNMIMXcgpwbu/VU+lZw9sD3/3JgonIiIyDpIk4b4AD6x7NgrfTYxE55bOqKzS4/sDF9B70U7MWXMCF3JKlI5JjSw2tXr5VKSfq8JJyFxp1KrawegB7s9iltILyrAvKRsA78ZHxiuqtRueiGoJAJi95gQKSnmjGXPFwZSZ0ekFZv4chzKtDt1audaeCIiIqO4kSULPtk3x89PdsGpyV0S1doVWJ/DjoUvou3g3Zvx0HMlZvFuWKSqr1OHE5QIAQBdufE4KimrtBoAboJurtUevQIjqGzC0cLVVOg7RXZs9sD1audnhamEFXtuQoHQcUggHU2bmq70pOHwhD02sNFg0MoSX/RIR3QNJktCttStWTu6KNc90Q6+2TaHTC6w9dgX3f7Abz688ijMZRUrHpAZ07GIeqvQCXo7W8Ha2UToOmbGafaZiU3NRpdMrnIbkJITAmqPVy/hG8GopMnI2lmosHhUKlQSsP56Gzdc29CfzwsGUGTmTUYTFf5wFALz2QCC8nfnqChFRQ+no64IVEyOx/rnu6BfoASGATSfSMeCjPXj6+8NIuFKgdERqALHncwEAnVu6QJL44g4pJ8DLAY42FiiuqEI8zy9m5filfKRklcDGQo3BIV5KxyG6Z+EtnPFsb38AwL9/jUdmEW8sY244mDITlVV6zPj5OCp1evRt746RnfjqChFRYwj1ccKXEzph89RoDAn2giQBv5+8igc+3YeJyw/h2MU8pSPSPYhNrR5MRXIZHylMrZLQtVX1ccjlfOalZtPzgUGeaGKlUTgNUcOYel8bBHo5IK9Ui1fWxkMI3nHUnHAwZaJ0eoGDqbk4ki3hYGouPtl+FifTCuFka4H5jwTzVV4iokYW2MwBSx6LwB/Te+LhsGZQScCO05kY9vl+jP/6YO2A4+/+ee7W8TbwBqWySo+j1waL3F+KDEG3VtXL+bgBuvko1+qwMS4NADCiI19oJtNhqVHhg9GhsFSr8OepTPxybQBL5oEjdhO0NSEd8zYmIr2gHIAa3507XPuxtx8OgruDtXLhiIjMTBsPe3z0aDim3d8Wn+9Mwq/HrmDvuWzsPZeNSD8XTO3bBt39XfH7yYwbzt1ejtZ4/cFADAziUg1DkJBWgHKtHs62FryjLRmEKP/qDdAPnc9FRZUOVhq1womosW0/lYnC8io0c7SuHUwSmYr2ng54sV9bLNh6Gm9uTERUa1duP2MmeMWUidmakI5nfjh67QebG2m42TkRkSL83OywaGQodr7UG2O7tIClWoXY1FyM+/og+i7ehSk3OXdnFJTjmR+OYmsCNwI1BDVXuXF/KTIUbdybwK2JJcq1esRd4j5T5mD1kUsAgGERzXkTIzJJ/+rZChEtnFBcUYVZq09Az6vHzQIHUyZEpxeYtzERt/qrKwGYtzGRS0OIiBTk42KLd4cFY/es3ngiqiUs1RJSs0tv+tiaszXP3YaB+0uRoZEkCV2vXTWzPzlb4TTU2DILy7HnXPWf83DejY9MlFolYfGoMNhYqLE/OQffxZxXOhLJgIMpExKbmnvLK6WA6h9w0gvKb7qvCRERycvL0QZvPNQBH48Jv+3jeO42DDq9wKFrd+Tr4sflM2Q4urWuPh5juAG6yVt3/Ap0eoGIFk5o1ZTLicl0+bnZYe7g9gCA+VtPIyWrWOFE1Ng4mDIhdb2tJm+/SURkOCqr9HV6HM/dyjqTUYSi8irYWaoR4GWvdByiWlGtq/eZOnYxH2WVOoXTUGMRQmDNkSsAgBEdfRROQ9T4xnXxRQ9/N5Rr9ZjxcxyqdHV7vkTGiYMpE+JuX7dNzev6OCIianx1PScnphXWeYhFDS82tfpqlI4tXaBR8+kTGY6WrrbwcrRGpU6PIxfylI5DjeRkWiHOXC2CpUaFISG8IQaZPpVKwsIRIbC31uD4pXx8sSdF6UjUiPjMyoRE+rnAy9Eat9oGUQLg5WjNvTGIiAzInc7dNb7Yk4I+7+/C9wcuoKKKV0XILbZ2GR//DSXDIklS7d3ZYlK4z5SpWn3kMgCgf6AHHG0sFE5DJI9mTjZ448EOAICP/jyLxLRChRNRY+FgyoSoVRJefzAQAG74Aafm7dcfDISad/AgIjIYdzp3SwCGRzSHWxMrXMkvw6vrEtBz4U58sy+Vy3ZkIoTgxudk0Gr2mdrPfaZMUmWVHuuP1yzj46bnZF4eiWiO/oEe0OoEZvx8nC/OmSgOpkzMwCAvLB0XAU/H65eGeDpaY+m4CAwM4qW/RESG5k7n7sWjwrBvdh/Me6gDvBytcbWwAm9uSkT0wh34YncySiqqFEpuHlKzS5BdXAlLjQoh3o5KxyG6Qc1g6sTlAhTzfGBydpzORF6pFu72Vohu01TpOESykiQJ7z4SDFc7S5zOKMJHf55TOhI1Ao3SAajhDQzyQr9AT8QkZeKPvQfRP7oLuvm780opIiIDdqdzt7WFGo9HtcSjkT5Yc+QKPt+VhMt5ZXhvy2n8d3cyJvXww4SolnCw5hKPhlZztVSYjxOsNGqF0xDdyNvZFi1cbHExtxSHUnPRp7270pGoAa05Wr2Mb1h4cz6fJ7Pk1sQK7wwLxpQfjuCL3cm4P8AdHX15BbMp4RVTJkqtktDFzwUd3QS6+LnwHzEiIiNQl3O3lUaNsV1aYOdLvbFoRAj83OyQV6rF+3+cRff5O/DBtrPIL61UIL3pqhlMcX8pMmRRtcv5uM+UKckprsDO05kAgOFcxkdmbGCQJx4Jbw69AGb+HIfSSl4dako4mCIiIjJCFmoVRnbywbYXe+LjR8PQxr0Jisqr8Mn2c+g+fwcWbD2N7OIKpWOahJqNzzu35GCKDFfNcr6YFO4zZUrWH09DlV4gxNsRbT3slY5DpKjXH+oATwdrnM8pxYItp5WOQw2IgykiIiIjplGrMDSsOX6f3hOfPxaBAC8HlFTqsHRXMnos2IG3NiUis7Bc6ZhG60p+GS7nlUGtkhDh66x0HKJbqrkz38m0Ql41aUJqlvFx03MiwNHGAgtHhAAAVsRcwF9JvELUVHAwRUREZAJUKgmDg72weWoPfDmhE0K8HVGu1ePrfanosXAnXlufgLT8MqVjGp1D15bxBTVzQBMrbs1JhsvdwRqtm9pBCODgteOWjNup9EKcTCuEhVrCgyHNlI5DZBB6tm2KcV1bAABe/iUOheVahRNRQ+BgioiIyIRIkoR+gR5Y/1x3LH+yMzr6OqOySo/vYi6g16KdmLv2BC7mlCod02jU/IAfyf2lyAhEtXYDAMQkczmfKVhzpPpqqfvae8DZzlLhNESG45XBAfB1tUVaQTnmbUhUOg41AA6miIiITJAkSejdzh2rp3TDysld0K2VK7Q6gVWxl9Bn8S7M/DkOKVnFSsc0eIe4vxQZkdp9pjiYMnpanR7rjqcB4DI+on+ytdRg8chQSFL1ctc/TmYoHYnuEQdTREREJkySJES1dsOqf3XF6ind0LNtU+j0AmuOXsb9H+zG1FXHcPZqkdIxDVJ2cQWSMquHdxxMkTHoem2fqTNXi5BVxJsfGLM9Z7OQXVwBVztL9GrXVOk4RAanU0sX/KtnKwDAK7/GI4c3fDFqHEwRERGZiU4tXfDdxEise6477g9wh14AG+LS0P/DPZjy/REkXClQOqJBOXztaql2HvZcRkNGwcXOEgFeDgCAA7w7n1Gr2fT84fDmsFDzRzaim5nRry3aedgju7gS//41AUIIpSPRXeJZjoiIyMyE+Tjhq8c747epPTAoyBMAsPVkBh74dB8mLT+E45fylQ1oIGJT8wAAnf14Nz4yHjV354vhYMpo5ZdW4s/ETADA8Agu4yO6FSuNGotHhUKjkrD1ZAbWHb+idCS6SxxMERERmakOzRyxdFxH/PFiTzwU2gwqCdh+OhMPL/kL478+WLu/krmKPV/9g32kn6vCSYjqLor7TBm9jXFpqNTpEeDlgMBmDkrHITJoQc0dMe2+NgCA19afRHoB70BsjDiYIiIiMnNtPezxyZhw/DmjF0Z09IZaJWHvuWyM/G8MHl0Wg/1J2WZ3eXxhuRaJaYUAgEjuL0VGJLKVC1QSkJpdgvSCcqXj0F1YfbT6qg9uek5UN8/0bo1Qb0cUlVdh9pp4s3vOYgo4mCIiIiIAQKumTfD+yFDseqk3xkS2gIVawoGUXIz96iBG/DcGu85kms2TvSMX8qAXgK+rLTwdrZWOQ1RnDtYWCG7uCAA4mGreVz0ao6TMIsRdyodGJWFoWDOl4xAZBY1ahcWjwmClUWHP2Sz87+BFpSNRPRn0YOqNN96AJEnX/Wrfvv1tP+eXX35B+/btYW1tjeDgYGzevFmmtERERKbBx8UW7z0SjN0v98Hj3XxhqVHhyIU8PPHtIQxd8he2JV41+QHVoWs/0PNufGSMurV2AwBsiEvHkWwJB1NzodOb9t9ZU7H6SPXVUr3bucOtiZXCaYiMh797E8waWD0reHfzKVzIKVE4EdWHQQ+mAKBDhw5IT0+v/bVv375bPnb//v0YM2YMJk2ahGPHjuHhhx/Gww8/jISEBBkTExERmYZmTjaYNzQI+2b1wVM9/GBjocaJywWY/N1hDPp4L347kQ69if6wG3ttMBXpx8EUGR8LtQQA2JuUg+/OqTHum8PosWAHtiakK5yMbkenF/j1WPXd+EZ0bK5wGiLj82RUS3Rt5YLSSh1m/hzHgbwRMfjBlEajgaenZ+0vNze3Wz72448/xsCBA/Hyyy8jICAAb731FiIiIvDZZ5/JmJiIiMi0uDtY4z8PBGLf7D54pndr2FmqcTqjCM+tPIr+H+3BumNXUKXTKx2zwZRrdYi7nA8A6MLBFBmZrQnp+GxH0g3vzygoxzM/HOVwyoDtS8rG1cIKONlaoE97d6XjEBkdlUrCohGhaGKlweELefhqb4rSkaiODH4wde7cOTRr1gytWrXCY489hosXb71eNCYmBvfff/917xswYABiYmIaOyYREZHJc21ihdkD2+OvOX0x9b42sLfWICmzGNN/Oo77P9iNnw9fgtYEBlTHLuZDqxPwcLBCCxdbpeMQ1ZlOLzBvYyJudo1AzfvmbUzkVQQGas2R6qulhoY2g5VGrXAaIuPk42KLVx8IAAAs/uMszmQUKZyI6kKjdIDb6dKlC5YvX4527dohPT0d8+bNQ3R0NBISEmBvb3/D4zMyMuDh4XHd+zw8PJCRkXHb36eiogIVFRW1bxcWVt+FR6vVQqvVNsB3ooya7Mb8PRgT9i0v9i0v9i0fY+jazkLCC7398ERXb/xw8BK+3X8B53NKMWv1CXzy51n8q6cfHglvDiuNwb/+ddO+DyRnAQA6tXBGVVWVIrlMlTEc38bsYGrube/EJwCkF5QjJimTVwM2sHs9tovKtfj9ZPXPLENDPfl35A54LpGXsfU9LNQTW+LTsetsNl786Rh++VcXWBrBc5Iaxtb3rdQnvySMaPfS/Px8+Pr64oMPPsCkSZNu+LilpSVWrFiBMWPG1L7v888/x7x583D16tVbft033ngD8+bNu+H9K1euhK0tXyklIiK6nQod8NdVCTvSVCjSVu9t42gpcH8zPbq6C1ga2Qv/SxJVOFugwgg/HaI9jeZpEhGOZEv47tyd/8JNaKNDRzce24Zk/1UJP6Wo4WkjMCdUB0lSOhGRcSuoBObHqVFaJWFAcz0GtzD+K7qNTWlpKcaOHYuCggI4ODjc9rEGfcXUPzk5OaFt27ZISrpx3TwAeHp63jCAunr1Kjw9PW/7defOnYsZM2bUvl1YWAgfHx/079//jgUaMq1Wi23btqFfv36wsLBQOo7JY9/yYt/yYt/yMdauh6F6b6afDl/Gl/vO42phBdacV2N3tiUmdW+JMZ29YWdleE87/tm3VqfHnMM7AOjx5JAeaOtx4xXadPeM9fg2Fq6pufju3OE7Pu48PDChS3v4uvIF2IZyr8f2d1/GAsjHhJ5tMaSHX8MHNDE8l8jLWPt2aJ2B6T+fwJ/pavzrgW4I8XZUOlKdGGvf/1SzEq0uDO8Z4m0UFxcjOTkZ48ePv+nHu3Xrhu3bt2P69Om179u2bRu6det2269rZWUFK6sbb8dqYWFh1AdCDVP5PowF+5YX+5YX+5aPMXZtYWGBp3r6Y3yUH345fBlLdyXjSn4ZFvx+Fsv2puKp6FaY0M0X9taG933V9H0yIx9lWj0cbSwQ0MwZKhUvW2gMxnh8G4Nu/u7wcrRGRkH5TfeZqrHnXDb6f7wPD4U2w/N9/eHvzgFsQ7mbYzs1uwRHLuZDJQEjOrbg34164LlEXsbW98MRPvjzdBY2nUjHrLUJ+G1qNKwtjOcybmPr+5/qk92gF1q+9NJL2L17N86fP4/9+/dj2LBhUKvVtUv1JkyYgLlz59Y+ftq0adi6dSsWL16M06dP44033sDhw4fx/PPPK/UtEBERmR0rjRrjuvpi18u9sXB4CHxdbZFXqsWi38+g+/wd+HDbWRSUGua+CbGpOQCAzi1dOJQio6NWSXj9wUAAwD+PXunar1kD2qFPu6bQC2Dd8TT0+3APnvvfUZxKr/sr29Sw1h6t3vS8Z9umcHewVjgNkWl5a2gQmtpbITmrBIt+P6N0HLoFgx5MXb58GWPGjEG7du0watQouLq64sCBA2jatCkA4OLFi0hP//9b3kZFRWHlypVYtmwZQkNDsXr1aqxbtw5BQUFKfQtERERmy0KtwqjOPtg+oxc+HB2K1k3tUFhehY+3n0P3BTuwcOtp5BRX3PkLySg2NRcAuDE0Ga2BQV5YOi4Cno7XDzg8Ha2xdFwEnu3jj2+fjMTG53tgQAcPCAH8Fp+OQR/vxeTvDiP+coFCyc2TXi+w9ugVAMDwCG+F0xCZHmc7SywcHgIA+OavVBxIyVE4Ed2MQS/l+/HHH2/78V27dt3wvpEjR2LkyJGNlIiIiIjqS6NWYVi4Nx4KbY6tCRn4dMc5nM4owue7kvHtX+cxrmsLTO7ZCu72yl4poNcLHDqfBwCI5GCKjNjAIC/0C/RETFIm/th7EP2ju6CbvzvUf7sKMNjbEV+M74TTGYX4bEcSfotPx7bEq9iWeBW92zXFC33boKOvs4LfhXk4kJKDK/llsLfWoF+gx50/gYjqrU97dzza2Qc/HrqEl36Jw9bpPdHEAPe9NGcGfcUUERERmQ61SsKQEC9snhqNZeM7Iri5I8q0Ony5NxXRC3bijQ0nkV5Qpli+s5lFKCjTwtZSjQ7NjPfmJ0RA9d+3Ln4u6Ogm0MXP5bqh1N+193TAZ2MjsO3FXngkvDnUKgm7zmRh+NL9GPvlAV5d0MhWX1vG92BoM6Pa+4bI2PzngUB4O9vgcl4Z3t6UqHQc+gcOpoiIiEhWKpWE/h08seH57vj2yc6IaOGEiio9lu8/j54Ld2Lu2nhcyi2VPVfNMr6Ovs7QqPkUicyLv3sTfDA6DDtm9sLoTj7QqCTsT87Bo8sOYNR/Y7DnbBaEuN2W6lRfxRVV2BKfAYDL+IgaWxMrDd4fGQpJAn48dAk7Tl9VOhL9DZ91ERERkSIkSUKfdu5Y80wU/vdUF3Txc4FWJ7Aq9iJ6v78LL/0Sh9TsEtnyHLw2mIpsyWV8ZL58Xe2wYEQIdr3cG+O6toClWoXY87mY8E0shn2+H9tPXeWAqoFsiU9HmVaHVm52iGjhpHQcIpPXtZUrJnb3AwDMXhOPvJJKhRNRDQ6miIiISFGSJKG7vxt+erobfn66G6LbuEGnF1h95DLuW7wL0348hnNXixo1gxCi9oqpztxfigjezrZ4++Fg7JnVB092bwkrjQrHL+Vj0orDeODTfdiakA69ngOqe7H6SPUyvuEdvSFJvAsokRxeHtAOrZvaIauoAq+uT1A6Dl3DwRQREREZjEg/F3w/qQt+fTYK97V3h14A64+nof9He/Ds/44gMa1xbml/MbcMWUUVsFSrEObj1Ci/B5Ex8nS0xusPdsC+2X3xdK9WsLVU42RaIab8cBSDPt6LDXFp0HFAVW+XcktxMDUXkgQMC2+udBwis2FtocYHo8KgVknYdCIdG+PSlI5E4GCKiIiIDFB4C2d8/URnbHqhBwZ28IQQwOb4DAz+ZC+eWnEYJy7nN+jvF3vtbnyhPo7cgJjoJpraW2HuoAD8NbsvXujrD3srDc5cLcLUVcfQ74PdWH3kMqp0eqVjGo21R68AALq3dkMzJxuF0xCZl1AfJzzXuzUA4NX1CcgsLFc4EXEwRURERAYrqLkj/ju+I36f3hMPhjaDJAF/nrqKhz77C49/E4sjF3Ib5Pc5dKF6MBXJZXxEt+VsZ4mZ/dth35y+mNGvLRxtLJCSXYKXfolDn8W7sCr2IiqrOKC6HSEE1hytWcbHq6WIlPB83zbo0MwB+aVazFkbz73zFMbBFBERERm8dp72+HRMOP6c0QuPRFTf0n732SwMXxqDMcsOYH9y9j09qTx87Yqpztz4nKhOHG0sMPW+NvhrTl/MHtgernaWuJRbhrlr49F70U58F3Me5Vqd0jEN0qHzebiYW4omVhoM6OCpdBwis2SpUeGDUWGwVKuw43Qmfj58SelIZo2DKSIiIjIarZs2wQejwrBzZm882tkHFmoJMSk5GPvlQYz8bwx238Ut7fMrgEt5ZVBJQEdf50ZKTmSamlhp8Ezv1tg7uw/+MyQA7vZWSCsox2vrT6Lnwp34am8Kyio5oPq71UeqfwAeHOwJW0uNwmmIzFc7T3vM7N8WAPDmxkRcyi1VOJH54mCKiIiIjE4LV1vMHx6CXS/3wfiuvrDUqHD4Qh4e/yYWD3++H38m1v2W9slF1XfD6tDMEfbWFo0Zm8hk2Vpq8FR0K+yZ1QdvDu2AZo7WyCyqwNu/nUKPBTuwdFcyiiuqlI6puLJKHTbHZwAAhkd4K5yGiJ6KboXOLZ1RUqnDS7/E8W6jCuFgioiIiIxWcycbvPVwEPbO6oNJPfxgbaFC3KV8PPXdYQz5ZB+2xN/5lvbJhdWDKe4vRXTvrC3UmNCtJXa93AfzHwlGCxdb5JRUYsHW0+ixYAc+2X4OBWVapWMq5veTGSiuqEILF1suHSYyAGqVhPdHhsLWUo2Dqbn4dv95pSOZJQ6miIiIyOh5OFjj1QcCsW92X0zp1Rp2lmokphfimf8dxcCP92D98Ss33NJepxc4mJqLhNzqwVTHFlzGR9RQLDUqPBrZAjtm9sLikaFo5WaH/FItPth2Fj3m78DiP84gr6RS6ZiyW32ketPzRyKaQ6WSFE5DRADg62qHVwYHAAAWbj2NpMxihROZHw6miIiIyGS4NbHCnEHtsW92X0zt6w97aw3OXi3GtB+P4/4PduOXw5eg1emxNSEdPRbswLhvDqNAW/3D4RsbT2JrQrrC3wGRadGoVRje0RvbZvTCJ2PC0dajCYoqqvDpjiT0WLAD7205hayiCqVjyiItvwx/JWcD4DI+IkPzWJcWiG7jhooqPWb+fBxVOt5dVE4cTBEREZHJcbazxIz+7bBvdl/M7NcWTrYWSM0uwcurT6Dre9sx5YejSC8ov+5zsooq8MwPRzmcImoEapWEh0KbYeu0nvjvuAh0aOaAkkodvtidguiFOzBv40lk/OPvpKn59dgVCAF08XOBj4ut0nGI6G8kScLCESGwt9Yg7nIBPt+VrHQks8LBFBEREZksRxsLvHBfG+yb3RdzBrWHq50FcopvvnyoZqHfvI2JNyz7I6KGoVJJGBjkhU0v9MDXj3dCqI8TyrV6fPvXefRcuBP/WRePy3mmd2csIQTWXFvGN7wjr5YiMkRejjZ4c2gHAMAn288h4UqBwonMBwdTREREZPKaWGkwpVdrfDAq7LaPEwDSC8oRm5orSy4icyVJEu4L8MC6Z6Pw3cRIdG7pjEqdHj8cuIjei3Zh9uoTuJBTonTMBnPsUj5SsktgY6HG4GAvpeMQ0S08HNYcAzt4okovMPPnOFRU6ZSOZBY4mCIiIiKzkV/Hu4FlFpn2kiIiQyFJEnq2bYpfpkThx391RXd/V1TpBX46fAl9F+/GjJ+Om8RGxDWbng8K8kQTK43CaYjoViRJwjvDguDWxBJnrhbhg21nlY5kFjiYIiIiIrPhbm/doI8joobTtZUr/vdUV6x5Jgq92zWFTi+w9tgV9PtwN55beRSnMwqVjnhXyrU6bIpLAwCM4DI+IoPn2sQK7w4LBgAs25OCw+d5FXVj42CKiIiIzEaknwu8HK1xq5u0SwC8HK0R6eciZywi+puOvs5Y/mQkNjzfHf0CPSAE8NuJdAz8aC/+9d1ho9v35c9TV1FYXoXmTjbo2spV6ThEVAf9O3hieIQ3hABm/hKHkooqpSOZNA6miIiIyGyoVRJefzAQAG4YTtW8/fqDgVCrbjW6IiK5hHg74csJnbBlWjSGBHtBkoA/Eq/igU/34clvY3H0Yp7SEeukZhnfsPDmUPHcQmQ0Xn8oEM0crXEhpxTvbTmldByTxsEUERERmZWBQV5YOi4Cno7XL9fzdLTG0nERGBjEjYmJDEmAlwOWPBaBbS/2xMNhzaCSgJ1nsvDI5/sx7quDOJiSo3TEW8osLMees1kAeDc+ImPjYG2BhSNCAQA/HLhY+3eZGh4HU0RERGR2BgZ5Yd/svvhhYidMaKPDDxM7Yd/svhxKERkwf3d7fPRoOLbP7I1RnbyhUUnYl5SN0csOYNQXMdh3LhtCCKVjXufXY1egF9XLE/3c7JSOQ0T11KONGyZ08wUAzFp9AgWldbuJCtUPB1NERERkltQqCV38XNDRTaCLnwuX7xEZCT83OywcEYqdL/XGY11awFKtQmxqLsZ9fRCPLN2PHaevGsSASgiBNUerl/Fx03Mi4zVnUHu0dLVFRmE53th4Uuk4JomDKSIiIiIiMjo+LrZ4Z1gwds/qjSeiWsJKo8Kxi/mYuPwwHvxsH7YmZECvV25AlXClEGevFsNKo8KQEF6NSWSsbC01WDwqDCqp+irIrQnpSkcyORxMERERERGR0fJytMEbD3XA3tl98K+erWBrqUbClUJM+eEIBn+yFxvj0qBTYEC1+sglANV393KwtpD99yeihtPR1xlP92oNAPj3rwnILq5QOJFp4WCKiIiIiIiMnru9NV4ZHIB9s/viuT6t0cRKg9MZRXhh1TH0/3A31h69jCqdXpYsFVU6rI9LA8BlfESmYvr9bdDe0x45JZV4ZW28QSwZNhUcTBERERERkclwsbPEywPa46/ZfTH9/jZwsNYgOasEM36Ow30f7MZPhy6isqpxB1Q7T2civ1QLDwcr9PB3a9Tfi4jkYaVR44NRYbBQS/gj8SrWHr2idCSTwcEUERERERGZHEdbC0y/vy3+mtMXswa2g4udJS7klGL2mnj0eX8Xvj9wAeVaXaP83quPVP/AOizcmzdWIDIhgc0cMP3+tgCANzacRFp+mcKJTAMHU0REREREZLLsrS3wbG9/7JvdB/8ZEoCm9la4kl+GV9cloNeinfhmXyrKKhtuQJVdXIFdZzIBACM6Nm+wr0tEhuHpnq0Q3sIJRRVVmLX6hKI3WTAVHEwREREREZHJs7XU4KnoVtg7qw/mPdQBXo7WuFpYgTc3JSJ64Q58sTsZJRVV9/z7rD+ehiq9QKi3I/zd7RsgOREZEo1ahcUjQ2FtocK+pGz8cPCC0pGMHgdTRERERERkNqwt1Hg8qiV2vdwb7w4LhrezDbKLK/HeltPovmAHPt1+DoXl2rv++muOXAbATc+JTFmrpk0we2B7AMC7m08hNbtE4UTGjYMpIiIiIiIyO1YaNcZ2aYGdL/XGohEh8HOzQ36pFou3nUX3+TvwwR9nkF9aWa+veSq9CInphbBUq/BgaLNGSk5EhuDxbi3RrZUryrV6zPz5OHRc0nfXOJgiIiIiIiKzZaFWYWQnH/w5oxc+fjQMbdyboKi8Cp/sSEL3+Tswf8tpZBdX1Olr/Xo8DQBwf6A7nGwtGzM2ESlMpZKwaGQImlhpcPRiPpbtSVE6ktHiYIqIiIiIiMyeWiVhaFhz/D69J5Y+FoEALweUVOrw393J6LFgB97alIjMwvIbPk+nFziYmotDmRLWXLt9/PAILuMjMgfezrZ47cFAAMCH287idEahwomMEwdTRERERERE16hUEgYFe2Hz1B74akInhHo7olyrx9f7UtFj4U68ui4BV67dIn5rQjp6LNiBcd8cxg/JahSWV0ElAWXahrvLHxEZtpEdvXF/gDsqdXq8+FMcKqv0SkcyOhqlAxARERERERkaSZJwf6AH7gtwx55z2fh0+zkcvpCH7w9cwI+HLiKypQv+Ss654fP0Anhh5TFoVBIGBnkpkJyI5CRJEt59JBhHPtyDU+mF+GT7Obw0oJ3SsYwKr5giIiIiIiK6BUmS0KttU/wypRtWTu6Cbq1codWJmw6l/m7exkRuhkxkJtztrfHOsGAAwOe7knDsYp7CiYwLB1NERERERER3IEkSolq7YdW/uuKNa3vK3IoAkF5QjtjUXHnCEZHiBgd7YWhYM+gFMPPnOJRVcklvXXEwRUREREREVA/OdnW7415m0Y2bpROR6XrzoSB4OFghJbsEC7aeVjqO0eBgioiIiIiIqB7c7a0b9HFEZBocbS0wf3gIAGD5/vPYn5StcCLjwMEUERERERFRPUT6ucDL0RrSLT4uAfBytEakn4ucsYjIAPRp544xkS0AAC+vPoHCcq3CiQwfB1NERERERET1oFZJeP3aPlP/HE7VvP36g4FQq241uiIiU/bvIQHwcbHBlfwyvLUxUek4Bo+DKSIiIiIionoaGOSFpeMi4Ol4/XI9T0drLB0XgYFBXgolIyKlNbHSYPHIMEgS8MuRy/gz8arSkQyaRukARERERERExmhgkBf6BXoiJikTf+w9iP7RXdDN351XShERIv1c8FQPP3y5NxVz1sbjD19nuNTxxgnmhldMERERERER3SW1SkIXPxd0dBPo4ufCoRQR1ZrZvx3auDdBdnEFXl2XACGE0pEMkkEPpt577z107twZ9vb2cHd3x8MPP4wzZ87c9nOWL18OSZKu+2VtzbthEBEREREREZF8rC3U+GBUGDQqCb/Fp2NDXJrSkQySQQ+mdu/ejeeeew4HDhzAtm3boNVq0b9/f5SUlNz28xwcHJCenl7768KFCzIlJiIiIiIiIiKqFuztiOf7+gMAXlt/ElcLyxVOZHgMeo+prVu3Xvf28uXL4e7ujiNHjqBnz563/DxJkuDp6dnY8YiIiIiIiIiIbuu5Pv7YfioT8VcKMGv1CSx/sjMkict+axj0FVP/VFBQAABwcXG57eOKi4vh6+sLHx8fDB06FCdPnpQjHhERERERERHRdSzUKnwwKhSWGhV2n83CqthLSkcyKAZ9xdTf6fV6TJ8+Hd27d0dQUNAtH9euXTt88803CAkJQUFBAd5//31ERUXh5MmT8Pb2vunnVFRUoKKiovbtwsJCAIBWq4VWq23Yb0RGNdmN+XswJuxbXuxbXuxbPuxaXuxbXuxbXuxbPuxaXuxbXuy7YbR0scaM+/0xf+tZvP1bIrq0dEQLF9sbHmcqfdcnvySMZFv4Z555Blu2bMG+fftuOWC6Ga1Wi4CAAIwZMwZvvfXWTR/zxhtvYN68eTe8f+XKlbC1vfFAISIiIiIiIiKqD70APjupRnKRhNb2As930MFUb+RZWlqKsWPHoqCgAA4ODrd9rFEMpp5//nmsX78ee/bsgZ+fX70/f+TIkdBoNFi1atVNP36zK6Z8fHyQnZ19xwINmVarxbZt29CvXz9YWFgoHcfksW95sW95sW/5sGt5sW95sW95sW/5sGt5sW95se+GdTG3FA8uiUFppQ5zB7bFxO4tr/u4qfRdWFgINze3Og2mDHopnxACL7zwAn799Vfs2rXrroZSOp0O8fHxGDx48C0fY2VlBSsrqxveb2FhYdQHQg1T+T6MBfuWF/uWF/uWD7uWF/uWF/uWF/uWD7uWF/uWF/tuGK09HPGfIYF45dd4LP4zCX0DPNHGw/6Gxxl73/XJbtCbnz/33HP44YcfsHLlStjb2yMjIwMZGRkoKyurfcyECRMwd+7c2rfffPNN/PHHH0hJScHRo0cxbtw4XLhwAU899ZQS3wIRERERERERUa0xkT7o3a4pKqv0mPFzHLQ6vdKRFGXQg6mlS5eioKAAvXv3hpeXV+2vn376qfYxFy9eRHp6eu3beXl5mDx5MgICAjB48GAUFhZi//79CAwMVOJbICIiIiIiIiKqJUkSFgwPgaONBeKvFGDJziSlIynK4Jfy3cmuXbuue/vDDz/Ehx9+2EiJiIiIiIiIiIjujYeDNd4c2gHTfjyOz3Yk4b72Hgj2dlQ6liIM+oopIiIiIiIiIiJT9FBoMwwO9kSVXmDGz8dRUlGFg6m5OJIt4WBqLnR6g79XXYMw6CumiIiIiIiIiIhMkSRJePvhYMSm5uFcZjEi3/kTJZU6AGp8d+4wvByt8fqDgRgY5KV01EbFK6aIiIiIiIiIiBTgYmeJkR29AeDaUOr/ZRSU45kfjmJrQvrNPtVkcDBFRERERERERKQAnV5g3fErN/1YzUK+eRsTTXpZHwdTREREREREREQKiE3NRXpB+S0/LgCkF5QjNjVXvlAy42CKiIiIiIiIiEgBmUW3HkrdzeOMEQdTREREREREREQKcLe3btDHGSMOpoiIiIiIiIiIFBDp5wIvR2tIt/i4BMDL0RqRfi5yxpIVB1NERERERERERApQqyS8/mAgANwwnKp5+/UHA6FW3Wp0Zfw4mCIiIiIiIiIiUsjAIC8sHRcBT8frl+t5Olpj6bgIDAzyUiiZPDRKByAiIiIiIiIiMmcDg7zQL9ATMUmZ+GPvQfSP7oJu/u4mfaVUDQ6miIiIiIiIiIgUplZJ6OLngpxTAl38XMxiKAVwKR8RERERERERESmEgykiIiIiIiIiIlIEB1NERERERERERKQIDqaIiIiIiIiIiEgRHEwREREREREREZEiOJgiIiIiIiIiIiJFcDBFRERERERERESK4GCKiIiIiIiIiIgUwcEUEREREREREREpgoMpIiIiIiIiIiJSBAdTRERERERERESkCA6miIiIiIiIiIhIERxMERERERERERGRIjRKBzBEQggAQGFhocJJ7o1Wq0VpaSkKCwthYWGhdByTx77lxb7lxb7lw67lxb7lxb7lxb7lw67lxb7lxb7lZSp918xTauYrt8PB1E0UFRUBAHx8fBROQkRERERERERknIqKiuDo6Hjbx0iiLuMrM6PX65GWlgZ7e3tIkqR0nLtWWFgIHx8fXLp0CQ4ODkrHMXnsW17sW17sWz7sWl7sW17sW17sWz7sWl7sW17sW16m0rcQAkVFRWjWrBlUqtvvIsUrpm5CpVLB29tb6RgNxsHBwagPaGPDvuXFvuXFvuXDruXFvuXFvuXFvuXDruXFvuXFvuVlCn3f6UqpGtz8nIiIiIiIiIiIFMHBFBERERERERERKYKDKRNmZWWF119/HVZWVkpHMQvsW17sW17sWz7sWl7sW17sW17sWz7sWl7sW17sW17m2Dc3PyciIiIiIiIiIkXwiikiIiIiIiIiIlIEB1NERERERERERKQIDqaIiIiIiIiIiEgRHEwREREREREREZEiOJgiIiIiIiIiogan1+uVjkBGgIMpIjI7vBkpmTI+ASSie1VRUaF0BLNy9epVpKWlKR3DbFy8eBEnTpxQOoZZOH36ND7++GOlY5gNnU4HrVardIy7olE6ABme8+fPY9u2bSgrK0ObNm0waNAgpSOZtOTkZKxevRqFhYUIDQ3FkCFDYGdnp3Qsk5SbmwsXFxdIkgQhBCRJUjqSSbt06RJ27NiBvLw8hISEoG/fvkpHMmkFBQVwdHSESqWCXq+HSsXXnhpTWloaDh06hPLycrRp0wYRERFKRzJZqampWLduHbKystCtWzc8+OCDSkcyaYmJiZg8eTIWLFiAHj16KB3H5B07dgwPP/wwvv32WzRr1kzpOCbvxIkTGDp0KB544AHMmzcPLi4uSkcyWfHx8ejcuTMqKysRFRWFLl26KB3JpJ05cwYfffQRkpOT0b17d7zwwgtGdXzzWStdJz4+Hl26dMGqVavw66+/4oEHHsCECRMQGxurdDSTlJCQgE6dOmHz5s3Ys2cPxo4diyeffBLbtm1TOprJSUxMhIeHB6ZPnw4AtcMpahzx8fGIjo7GsmXLsGzZMgwcOBArV65UOpbJSkxMhK+vL959910AqB1OUeOIj49Hz5498fbbb2PWrFkYNmwYfvvtN6VjmaQTJ06gZ8+e2LRpE3bv3o2hQ4diw4YNSscyae+//z5iYmLwxBNPICYmRuk4Ji0uLg7R0dEYNmwYX7yRQVJSEu6//36MGDEC77//vlH90G5s4uLiEBkZidGjR6NXr17YtGkTAF7V3VgSEhLQo0cP5Obmok2bNnjnnXewbNkypWPVCwdTVCsnJwfjx4/H5MmTsWPHDuzcuRObNm3C//73P7z99tvYuXOn0hFNSllZGWbPno1x48Zh9+7d2Lt3L/bv34+UlBQsWrQI69evVzqiyUhLS8OTTz6JkJAQfPXVV3jxxRcBcDjVWFJTU/Hggw/i0Ucfxfbt27F7927MnTsXixcvxtWrV9l5A7t8+TLGjRsHDw8PLF68GPPnzwfA4VRjSU5OxqBBgzBixAhs27YNmzZtwuDBg/Htt9+ipKSEx3cDOnv2LIYMGYLx48djy5Yt2LRpEwYNGoTLly8rHc2kRUdHY9asWejduzcefPBB7N27V+lIJunkyZOIjo7GCy+8gI8++gg6nQ7Hjx/H/v37cfLkSaXjmaRNmzahX79+WLRoEdRqNf773/9izpw5WLp0Kc6ePat0PJNx7NgxREdHY+bMmVixYgU6d+6ML774AgUFBVCpVPx3soHl5+dj8uTJmDx5Mn766ScsWbIEc+fORVZWFqqqqpSOV2ccTFGt/Px8aDQajB07FkIIVFZWIiwsDAEBATh06BA+++wz5OXlKR3TZNjY2CAvLw/u7u4Aql9BiIyMxIoVK1BRUYEvvviC698bgBACO3fuhK+vLz799FN8+eWXWLp0KWbMmAGAw6mGVlVVhW+++Qbh4eF4/fXXYW1tjaZNmyIqKgrp6ekAwCWUDUiv12PNmjXw8/PDf//7X8yaNQvvvfceh1ONpLKyEkuWLEFUVBTeeustODk5ITg4GJ07d0ZMTAz0ej2P7wZSWVmJefPm4b777sNbb70FS0tLODs7w8bGBgcOHMCkSZP4vKSR2NraYu/evfj000/RrVs3jBgxAqdOncKrr76Kn376Sel4JqGiogLjx49HkyZNMG3aNADAiBEjMHHiRDz44IPo0qULFi1apHBK03PixAlYWVkBAPr27YtvvvkGhw8fxiuvvILp06djy5YtCic0fpmZmejevTuefvppvP322wBQu6SsZq8p/jvZsMrKylBWVoaePXvWvu/SpUuIjY1Fly5d8MwzzxjFsc09pqhWUVERjh49ioyMDAQGBsLS0hKlpaXw8fHBK6+8gnHjxmHgwIGYPHmy0lGNnhACJSUlsLS0RGZmJoDqHzCFEOjQoQM+++wzDBw4ECtWrMDixYsVTmvcJElCz549YW9vj6ioKERFRUEIgYkTJ0IIgQ8//JB7TjUgjUaDkJAQ2NjYwMbGpvb9Xbp0gUajQXZ2Njw8PBRMaFpUKhUGDx4Md3d39OnTB2FhYRBC4L333gMAzJkzh3tONSCVSgV/f3/4+fnBwsKi9rzRt29fvPnmmygoKIC9vb3SMU2CpaUlXnnlFaSlpUGtVgMA3n33Xfz6668YM2YMrK2tMXXqVJw5cwaffvqpwmlNS0REBCwtLWFjY4ONGzfi0UcfRXh4OJo0acKlfQ3EysoKH3zwAaZMmYIXX3wRZ8+ehZubGz755BNYW1sjJiYG06ZNg729PaZMmaJ0XKNXc6728fFBRkYG1q1bB2tra6xZswZNmzbFuXPnMHHiRHzzzTfcW/ceWVhYYOvWrdcNSTw8PBAeHo4//vgDr732GgDweXcDqqysxLlz5/DXX3+hWbNm2LBhA3788UfMmTMHzs7O+P7773Hp0iWEh4fD09NT6bi3Joiu0Wq1Yvz48cLf31989tlnYtWqVcLZ2Vk8++yzQgghpk+fLh599FGh1WqFXq9XOK1p+PHHH4UkSWL9+vVCCCF0Op2orKwUQgjx/fffC2dnZ3Hx4kUlI5qkqqoqsXLlSmFlZSVefPFFIUT18f/DDz+I+Ph4hdMZv7Kystr/rzlXFBUVCR8fH3Hs2LHaj8XGxsodzWT9/ZyclZUl5s+fLxwcHMR7770nhKg+5jds2CCysrKUimgy0tLSav+/pvcrV64IX19fcf78+dr3nTp1SpF8purEiRPi/vvvF5s3b67tePXq1UKj0YjTp08rnM70hIaGijNnzgghhBg7dqyws7MTzs7O4tChQwonM35/P1/v3LlTeHp6il69el13bhFCiJkzZ4rg4GCRk5PD590NZOvWrUKSJBEdHS2eeuqp6z528OBBIUmSOHLkiELpTJNOpxNCCJGQkCCsrKzE119/rXAi07R8+XJha2srBg8eLOzt7cXq1atrPxYfHy8kSRIbNmxQMOGd8YopM5aWloYrV64gJycH/fr1g0ajwezZs7FkyRK8/vrr8PT0xLPPPlt7GWZBQQHy8vKg0fCwuRtarRYWFhYAULt0bMSIEdi3bx9Gjx6NX3/9FQMHDqy9qsHZ2RleXl68Q99d+HvXN6NWqzFy5EgAwJNPPgmg+vaqS5cuRVJSkiwZTck/+7a2tq79f0mSUFVVheLiYlRVVcHW1hYAMHfuXCxYsACZmZlwc3OTPbMx+/u5+/7774dKpYJKpUJVVRU0Gg3c3NwwceJEANVXmAghkJOTg48//hgXL15UOL3xqek7OzsbAwYMqL3ir6ZvvV6PwsJClJaWwtLSEpIk1R7feXl5cHBw4KvCdXSrYxsAgoOD8d1338HLy6v28SqVCoGBgTyH3KV/Pg+UJAkqlQplZWVwdnZGUVERpk6dil27dmHHjh1YvHgxunbtiv379yMyMlLp+Ebn733fd999AIDevXtj06ZNSExMRNOmTa97vLW1NWxtbeHs7MxzyF345/kEAAYMGIDZs2dj4cKFcHJyQklJSe3zbGdnZ4SHh8PR0VHJ2EbpVufumqu1hRDw8/PDAw88gC1btmDs2LGwsrLicX2X/nkukSQJjz/+eO15ZdiwYQgLC6tdjePk5ITw8HDDv6Jb2bkYKSUuLk74+PiIwMBAodFoRFhYmFi2bJkoLS0VQghx+fLlG14VnjBhgpg9e7bQ6/V85aaeEhISxEMPPSROnjx5w8dSU1PFpEmThKWlpfjqq69ERkaGKC8vF7NnzxahoaEiNzdXgcTG63Zd/1NVVZX4/vvvhSRJfCX4LtWlb71eL7Kzs0WzZs3E+fPnxbx580STJk14xdRd+Oe5Ozw8XCxdulQUFRUJIaqP6RpZWVnivffe4/F9D27W9+eff17bd80rwcnJycLLy0vk5eWJN954Q9jb24uDBw8qGd3o3OnYFkLc8Nzj5ZdfFoMHDxaFhYVyxzV6t+q7oKBACFF9tY6NjY1o1qxZ7RUkFRUVYty4cbVXUlHd3azvJUuW1PZdc7X8302ZMkVMnDhRVFRU8Hl3Pd3q3F1SUiKysrLE008/LdRqtXj99ddFcnKyKC4uFq+99poICAgQV69eVTq+UbnTubvm30khhPjf//4nrKys+PzvHtzqXFLz72BKSopwc3MTf/75Z+3nvP7668Lf319cuXJFqdh1wsGUGcrKyhIBAQFi9uzZIjU1VWRmZooxY8aIzp07i+nTp4v8/PzrHp+cnCxeeeUV4eTkJBITExVKbbxSU1NFq1athCRJIiws7KZP6NLT08Wbb74pLCwsROvWrUVoaKhwc3MTR48eVSCx8apL13+n0+nEpEmThIODA4/tu1CfvktLS0VQUJDo37+/sLS0FIcPH5YxqWm41bm7S5cuYvr06bVPSv7+JHD8+PHCwcGhToNaul5d+xZCiKtXr4qQkBAxcuRIHt93oT5dC1G9nPI///mPcHJy4vLru3C7vqdNmyZKS0vF+vXrxZAhQ65bfk13526O71dffVU4Ozvz3H0XbvdzzowZM0RJSYkoLi4Wb731lrCyshK+vr4iNDRUeHl58Xl3PdX12P77i2bh4eFi/PjxQqfTceBaT3fqu+Zn+ClTpgiNRiMGDx4sBg0aJDw8PIziXM7BlBmKj48XLVu2FHFxcbXvq6ioEK+99pqIjIwU//73v2v3iMnKyhJTpkwR7dq148n6LpSXl4s33nhDDBs2TBw6dEhERkaKgICAW/4Af/ToUbFq1SqxcuVKkZqaKm9YI1ffroUQYvPmzcLPz49XktyF+vSt1+vFhQsXhCRJwsrK6rpzD9Vdfc7der1efP/998LDw4P7Zdyl+vSdkJAgJEkSNjY24vjx40pFNlr16frw4cNi3Lhxws/PzyieaBui2/XdqVMnMW/ePCGEuO5qNbp79Tm+Y2NjxciRI4W3tzeP77t0p+P71VdfFeXl5UIIIY4fPy7WrFkj1q5dKy5cuKBUZKNVn2O7xscffyzOnTsnd1STUJe+KysrRW5urliyZIkYOXKkeOWVV4zmKlcOpszQmTNnhJ+fn9i4caMQonrT55r/vvzyyyIsLEzs2bOn9vHJycni8uXLimQ1djqdTqxZs0b88ssvQggh8vLybvkDPF81uDf16brGlStXRHp6upwxTcbd9L1o0SK++nsP6nvuTklJEefPn1ckqymoT995eXnipZde4pWXd6k+XV++fFls2LBBpKSkKJbX2N2p75CQELF3714hBJ+bNIT6HN+XLl0Sv/zyi0hKSlIsr7G7U9+hoaFi9+7dSkY0GfU5tms+RnevLsf2vn37ah9vbOdvSYhruzCT2aioqECPHj3g6emJdevWQa1W127iKoRAaGgowsPDsWLFCqWjmgSdTld7q2sAyMnJweDBg1FUVIT169ejTZs2qKqqQmxsLDp27AgrKysF0xq3+nQdERFx3SbdVH/16btz587QaDTc6PIe1OfcLXgb5ntW338rKyoqeP6+S3XpOiwsDN99953SUU0CnwfKi8e3vHh8y4ddy8vUzyUqpQOQvPR6PaysrPDtt99iz549eOaZZwCg9oCWJAkPPfQQMjMzFU5qOmp+cK+ZAbu6uuK3336Dvb09hg4dipMnT+KFF17Aiy++iOLiYiWjGr36dF1SUqJkVJNQ176nTZuGoqIiDkruQX3P3ez63tSn75rjn0Opu1PXrrOyshROahr4PFBePL7lxeNbPuxaXuZwLuFgysyoVCrodDoEBQVhxYoVWLVqFSZMmICrV6/WPiY1NRXOzs7Q6XQKJjUdNT+01PygKISAm5sbNm/eDCcnJ4SEhGDFihVYsmQJXF1dlYxq9Ni1vOra99KlS+Hi4qJkVKPHc7e86tO3Xq9XMKnx47EtL/YtL/YtL/YtH3YtL3Pom0v5TNw/l3PUXO5XXFyMiooKHD9+HGPHjoWvry9cXFzg6uqK9evXIyYmBsHBwQomN07/7LtmqVNhYSH0ej2cnJyue/zEiROxYcMG7NmzB4GBgTKnNW7sWl7sW156vR4q1f+/dsRzd+Ni3/Jh1/Ji3/Ji3/Ji3/Jh1/Iyx755xZSJqpmU1swdhRC1B/T58+fRtm1bHDp0CPfddx9OnjyJwYMHo3nz5nB3d0dsbKzRHtBKuVXfarUa58+fR0BAAGJiYmofL4TAp59+iuXLl2Pbtm38wb0e2LW82Le8srOzAfz/K2NA9Z8Bz92Ng33Lh13Li33Li33Li33Lh13Ly6z7bvj91ElpZ86cEdOnTxePPPKImDdv3nV3rrl48aJwc3MTkyZNEnq9XlRVVQkh/n/Xfp1Op0hmY1aXvp966qnr7oyg1+vFzp07ebvUemLX8mLf8jpz5oywt7cXkydPrn1fzTma5+6Gx77lw67lxb7lxb7lxb7lw67lZe5984opExMfH4+oqCjk5eVBr9djy5YtWLVqFYQQ0Gq1WL9+PcaNG4cvv/wSkiRdd0ctgBvm1ldd+162bNl13UqShN69e8Pf31/B9MaFXcuLfcsvMTERNjY2iI+Px9NPPw2geoP5yspKbNiwAePHj8cXX3zBc3cDYd/yYdfyYt/yYt/yYt/yYdfyMvu+lZ2LUUNKTk4Wvr6+4t///nft+yZNmiSmTp163eNqJqx0b9i3fNi1vNi3MjZv3izatm0r5s+fL4KDg8XTTz9d+7FLly4pmMw0sW/5sGt5sW95sW95sW/5sGt5mXvfGqUHY9QwdDodtm3bhvvuuw8zZ86s3ajYxsYGCQkJ6NWrF3x9fTFlyhRERUXdsJEx1Q/7lg+7lhf7Vk5wcDA6duyIp556CpaWlli+fDlmzJiBgoICREZGYuLEibCwsFA6pslg3/Jh1/Ji3/Ji3/Ji3/Jh1/Iy+76Vm4lRQ0tJSREJCQm1b8+bN09YW1uLd999V7z22mti9OjRolWrVtftE0N3j33Lh13Li30ro6SkRISEhIhjx46JkpISsWzZMuHq6iokSRInTpwQQvAqtYbEvuXDruXFvuXFvuXFvuXDruVl7n1zjykT4ufnV3sHrIqKChw8eBCrV6/G3LlzMW/ePDz//PMoLi5GUlKSwklNA/uWD7uWF/uWn1arhZWVFTw9PVFcXAxbW1ts374dWq0W/v7++OqrrwDghj0F6O6wb/mwa3mxb3mxb3mxb/mwa3mxb4BL+YxYWloajh49isrKSvj6+qJjx46QJAk6nQ5WVlbYuHEjVCoV9Ho9VCoVXFxc4OHhARcXF6WjGyX2LR92LS/2La+/992yZUtERETUXprdsWNHJCUlYdmyZdizZw82btyI+Ph4zJ8/HxqNBosXL1Y4vfFh3/Jh1/Ji3/Ji3/Ji3/Jh1/Ji3zfHwZSRio+Px8MPPww3NzekpKSgZcuWmD17NkaMGFE7Sa3Z90Wlqr4w7vvvv4e1tTV8fX0Vy22s2Ld82LW82Le8btc3AFhZWWHixIlo2bIlNm3ahIiICISEhEClUmHAgAEKpzc+7Fs+7Fpe7Fte7Fte7Fs+7Fpe7Ps2lF5LSPWXlJQkvL29xaxZs0R+fr44fPiwePzxx8XEiRNFVVWV0Ov11z3+woUL4uWXXxbOzs4iLi5OodTGi33Lh13Li33L63Z9a7VaIYQQWq1WPPvssyI2NlYIIWr/DHQ6nWK5jRX7lg+7lhf7lhf7lhf7lg+7lhf7vj0OpoxMRUWFmDFjhhg1apSoqKioff/XX38tXF1dRXZ29nWPP3TokHj22WdFaGioOH78uNxxjR77lg+7lhf7lld9+6Z7w77lw67lxb7lxb7lxb7lw67lxb7vjEv5jIxer4e3tzcCAgJgaWlZe6v2qKgoNGnSBFqt9rrHd+rUCWVlZfjPf/4DLy8vhVIbL/YtH3YtL/Ytr/r2XfM5NcsnqX7Yt3zYtbzYt7zYt7zYt3zYtbzY951xMGVkrK2t8fDDD8PPz++69zs5OcHCwuK6g/rIkSPo2LEjoqOj5Y5pMti3fNi1vNi3vOrT97FjxxAeHm5WT0YaGvuWD7uWF/uWF/uWF/uWD7uWF/u+M/P6bo1Ueno6YmNjsXXrVuj1+toDWqfT1W5KXFBQgLy8vNrPee2119CvXz/k5ORACKFIbmPFvuXDruXFvuV1t33fd9997PsusG/5sGt5sW95sW95sW/5sGt5se96km/VIN2NuLg44evrK9q2bSscHR1F+/btxcqVK0VOTo4Q4v83RDtz5oxo2rSpyM3NFW+99ZawsbERhw8fVjK6UWLf8mHX8mLf8mLf8mLf8mHX8mLf8mLf8mLf8mHX8mLf9cfBlAHLzMwU7du3F6+88opITk4WV65cEaNHjxYBAQHi9ddfF5mZmbWPvXr1qggPDxejR48WlpaWZntA3wv2LR92LS/2LS/2LS/2LR92LS/2LS/2LS/2LR92LS/2fXc4mDJgJ0+eFC1btrzhAJ09e7YIDg4WCxcuFCUlJUIIIRITE4UkScLGxkYcO3ZMgbTGj33Lh13Li33Li33Li33Lh13Li33Li33Li33Lh13Li33fHe4xZcC0Wi2qqqpQWloKACgrKwMAzJ8/H3369MHSpUuRlJQEAHB2dsazzz6Lo0ePIiwsTKnIRo19y4ddy4t9y4t9y4t9y4ddy4t9y4t9y4t9y4ddy4t93x1JCHPbVcu4REZGokmTJtixYwcAoKKiAlZWVgCAzp07w9/fH6tWrQIAlJeXw9raWrGspoB9y4ddy4t9y4t9y4t9y4ddy4t9y4t9y4t9y4ddy4t91x+vmDIgJSUlKCoqQmFhYe37vvjiC5w8eRJjx44FAFhZWaGqqgoA0LNnT5SUlNQ+lgd0/bBv+bBrebFvebFvebFv+bBrebFvebFvebFv+bBrebHvhsHBlIFITEzEI488gl69eiEgIAD/+9//AAABAQH4+OOPsW3bNowcORJarRYqVfUfW2ZmJuzs7FBVVWV+t5O8R+xbPuxaXuxbXuxbXuxbPuxaXuxbXuxbXuxbPuxaXuy74WiUDkDVB3TPnj0xYcIEdOrUCUeOHMGTTz6JwMBAhIeH46GHHoKdnR2effZZhISEoH379rC0tMRvv/2GAwcOQKPhH2N9sG/5sGt5sW95sW95sW/5sGt5sW95sW95sW/5sGt5se+GxT2mFJabm4sxY8agffv2+Pjjj2vf36dPHwQHB+OTTz6pfV9RURHefvtt5ObmwtraGs888wwCAwOViG202Ld82LW82Le82Le82Ld82LW82Le82Le82Ld82LW82HfD45hOYVqtFvn5+RgxYgQAQK/XQ6VSwc/PD7m5uQAAIQSEELC3t8eCBQuuexzVD/uWD7uWF/uWF/uWF/uWD7uWF/uWF/uWF/uWD7uWF/tueGxFYR4eHvjhhx8QHR0NANDpdACA5s2b1x60kiRBpVJdt6GaJEnyhzUB7Fs+7Fpe7Fte7Fte7Fs+7Fpe7Fte7Fte7Fs+7Fpe7LvhcTBlANq0aQOgeoJqYWEBoHrCmpmZWfuY9957D1999VXtbv48qO8e+5YPu5YX+5YX+5YX+5YPu5YX+5YX+5YX+5YPu5YX+25YXMpnQFQqFYQQtQdszbT1tddew9tvv41jx45xk7QGxL7lw67lxb7lxb7lxb7lw67lxb7lxb7lxb7lw67lxb4bBq+YMjA1e9FrNBr4+Pjg/fffx8KFC3H48GGEhoYqnM70sG/5sGt5sW95sW95sW/5sGt5sW95sW95sW/5sGt5se97x9GdgamZsFpYWODLL7+Eg4MD9u3bh4iICIWTmSb2LR92LS/2LS/2LS/2LR92LS/2LS/2LS/2LR92LS/2fe94xZSBGjBgAABg//796NSpk8JpTB/7lg+7lhf7lhf7lhf7lg+7lhf7lhf7lhf7lg+7lhf7vnuSqLnujAxOSUkJ7OzslI5hNti3fNi1vNi3vNi3vNi3fNi1vNi3vNi3vNi3fNi1vNj33eFgioiIiIiIiIiIFMGlfEREREREREREpAgOpoiIiIiIiIiISBEcTBERERERERERkSI4mCIiIiIiIiIiIkVwMEVERERERERERIrgYIqIiIiIiIiIiBTBwRQRERGRGZEkCevWrVM6BhEREREADqaIiIiIZPHEE09AkiRMmTLlho8999xzkCQJTzzxRIP9fm+88QbCwsIa7OsRERERNQYOpoiIiIhk4uPjgx9//BFlZWW17ysvL8fKlSvRokULBZMRERERKYODKSIiIiKZREREwMfHB2vXrq1939q1a9GiRQuEh4fXvq+iogJTp06Fu7s7rK2t0aNHDxw6dKj247t27YIkSdi+fTs6deoEW1tbREVF4cyZMwCA5cuXY968eYiLi4MkSZAkCcuXL6/9/OzsbAwbNgy2trZo06YNNmzY0PjfPBEREdFNcDBFREREJKOJEyfi22+/rX37m2++wZNPPnndY2bNmoU1a9ZgxYoVOHr0KPz9/TFgwADk5uZe97h///vfWLx4MQ4fPgyNRoOJEycCAEaPHo2ZM2eiQ4cOSE9PR3p6OkaPHl37efPmzcOoUaNw4sQJDB48GI899tgNX5uIiIhIDhxMEREREclo3Lhx2LdvHy5cuIALFy7gr7/+wrhx42o/XlJSgqVLl2LRokUYNGgQAgMD8eWXX8LGxgZff/31dV/rnXfeQa9evRAYGIg5c+Zg//79KC8vh42NDZo0aQKNRgNPT094enrCxsam9vOeeOIJjBkzBv7+/nj33XdRXFyM2NhY2TogIiIiqqFROgARERGROWnatCmGDBmC5cuXQwiBIUOGwM3NrfbjycnJ0Gq16N69e+37LCwsEBkZiVOnTl33tUJCQmr/38vLCwCQmZl5x/2q/v55dnZ2cHBwQGZm5j19X0RERER3g4MpIiIiIplNnDgRzz//PABgyZIld/11LCwsav9fkiQAgF6vr9fn1XxuXT6PiIiIqKFxKR8RERGRzAYOHIjKykpotVoMGDDguo+1bt0alpaW+Ouvv2rfp9VqcejQIQQGBtb597C0tIROp2uwzERERESNgVdMEREREclMrVbXLstTq9XXfczOzg7PPPMMXn75Zbi4uKBFixZYuHAhSktLMWnSpDr/Hi1btkRqaiqOHz8Ob29v2Nvbw8rKqkG/DyIiIqJ7xcEUERERkQIcHBxu+bH58+dDr9dj/PjxKCoqQqdOnfD777/D2dm5zl9/+PDhWLt2Lfr06YP8/Hx8++23eOKJJxogOREREVHDkYQQQukQRERERERERERkfrjHFBERERERERERKYKDKSIiIiIiIiIiUgQHU0REREREREREpAgOpoiIiIiIiIiISBEcTBERERERERERkSI4mCIiIiIiIiIiIkVwMEVERERERERERIrgYIqIiIiIiIiIiBTBwRQRERERERERESmCgykiIiIiIiIiIlIEB1NERERERERERKQIDqaIiIiIiIiIiEgR/wf4Vv/abl5H8gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import requests\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Function to fetch data from Open Charge Map\n", + "def fetch_data(url, headers):\n", + " response = requests.get(url, headers=headers)\n", + " if response.status_code == 200:\n", + " return response.json()\n", + " else:\n", + " print(f\"Failed to retrieve data. Status code: {response.status_code}\")\n", + " return []\n", + "\n", + "# Example URL and headers (update 'YOUR_API_KEY' with your actual API key)\n", + "url = \"https://api.openchargemap.io/v3/poi/?output=json&countrycode=AU\"\n", + "headers = {\n", + " \"X-API-Key\": \"2f5df05b-4b9d-46a3-b38e-c138e919abea\"\n", + "}\n", + "\n", + "# Fetch data\n", + "data = fetch_data(url, headers)\n", + "\n", + "# Convert to DataFrame for analysis\n", + "df = pd.json_normalize(data)\n", + "\n", + "# Convert 'DateCreated' to datetime\n", + "df['DateCreated'] = pd.to_datetime(df['DateCreated'])\n", + "# Convert 'DateCreated' to naive datetime\n", + "df['DateCreated'] = df['DateCreated'].dt.tz_localize(None)\n", + "\n", + "# Extract year and month\n", + "df['YearMonth'] = df['DateCreated'].dt.to_period('M')\n", + "\n", + "\n", + "# Filter data for 2023 and 2024\n", + "df = df[(df['DateCreated'].dt.year == 2023) | (df['DateCreated'].dt.year == 2024)]\n", + "\n", + "# Extract year and month\n", + "df['YearMonth'] = df['DateCreated'].dt.to_period('M')\n", + "\n", + "# Count the number of charging stations per month\n", + "stations_per_month = df.groupby('YearMonth').size()\n", + "\n", + "# Convert to DataFrame for plotting\n", + "stations_per_month_df = stations_per_month.reset_index(name='Number of Charging Stations')\n", + "\n", + "# Plot\n", + "plt.figure(figsize=(12, 6))\n", + "plt.plot(stations_per_month_df['YearMonth'].astype(str), stations_per_month_df['Number of Charging Stations'], marker='o', linestyle='-')\n", + "plt.xlabel('Month')\n", + "plt.ylabel('Number of Charging Stations')\n", + "plt.title('Number of Charging Stations by Month (2023 & 2024)')\n", + "plt.xticks(rotation=45)\n", + "plt.grid(True)\n", + "plt.tight_layout()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "0c68c945-afb2-4ac4-91a2-bbc9def86b26", + "metadata": {}, + "source": [ + "The above line plot indicates that the growth of charging stations was seen the most in March 2024. Hence, it indicates that the people showed more interest in using EVs during that time. However, in August 2024 (till now), the growth eas the least indicating that there has been a decrease in poularity of the EVs currently. This can be mainly attributed to the high maintenance and charging costs of EVs. This shows that the EV infrastructure growth will take some time." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f304fb93-4a8c-4d04-b65f-d83509bf1ba5", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}